/var/lib/mobyle/programs/msaprobs.xml is in mobyle-programs 5.1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | <?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron, -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris. -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
<head>
<name>msaprobs</name>
<version>0.9.4</version>
<doc>
<title>MSAProbs</title>
<description>
<text lang="en">is a protein multiple sequence alignment algorithm based on pair hidden Markov models and partition function posterior probabilities</text>
</description>
<authors>Yongchao Liu, Bertil Schmidt and Douglas L. Maskell</authors>
<reference doi="doi:10.1093/bioinformatics/btq338">
Yongchao Liu, Bertil Schmidt and Douglas L. Maskell (Bioinformatics 2010 26(16): 1958-1964)
MSAProbs: multiple sequence alignment based on pair hidden Markov models and
partition function posterior probabilities.
</reference>
<sourcelink>http://sourceforge.net/projects/msaprobs/files/MSAProbs-0.9.4.tar.gz/download</sourcelink>
<homepagelink>http://sourceforge.net/projects/msaprobs/</homepagelink>
<comment>
<div xmlns="http://www.w3.org/1999/xhtml">
<p>MSAProbs is an open-source protein multiple sequence ailgnment algorithm,
achieving the stastistically highest alignment accuracy on popular benchmarks:
<a href="http://www-bio3d-igbmc.u-strasbg.fr/balibase/">BALIBASE</a>,
<a href="http://www.drive5.com/muscle/prefab.htm">PREFAB</a>,
<a href="http://bioinformatics.vub.ac.be/databases/databases.html">SABMARK</a>,
<a href="http://www.compbio.dundee.ac.uk/Software/Oxbench/oxbench.html">OXBENCH</a>,
compared to ClustalW, MAFFT, MUSCLE, ProbCons and Probalign.</p>
</div>
</comment>
</doc>
<category>alignment:multiple</category>
<command>msaprobs</command>
</head>
<parameters>
<parameter ismandatory="1" issimple="1">
<name>sequences</name>
<prompt lang="en">Sequences File ( a file containing several sequences ).</prompt>
<type>
<biotype>Protein</biotype>
<datatype>
<class>Sequence</class>
</datatype>
<dataFormat>FASTA</dataFormat>
</type>
<format>
<code proglang="perl">" $sequences"</code>
<code proglang="python">" " + str( sequences )</code>
</format>
<argpos>1000</argpos>
</parameter>
<paragraph>
<name>accuracy</name>
<prompt lang="en">Accuracy Options</prompt>
<parameters>
<parameter>
<name>consitency</name>
<prompt lang="en">passes of consistency transformation( 0 >= REPS >= 5 default: 2 )</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>2</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef)" -c $value " : ""</code>
<code proglang="python">("" , " -c "+str(value))[ value is not None and value != vdef ]</code>
</format>
<ctrl>
<message>
<text lang="en">use 0 >= REPS >= 5</text>
</message>
<code proglang="perl">$value >=0 and $value<=5</code>
<code proglang="python">value >=0 and value<=5</code>
</ctrl>
<comment>
<text lang="en">A probabilistic consistency transformation is used to re-estimate more
accurate posterior probabilities of each sequence pair x and y by introducing
another sequence z. Instead of re-computing the posterior probabilities
based on three-sequence alignments, the transformation is performed
based on the already computed probability matrices estimated from
pairwise alignments.
To avoid a biased sampling of sequences, we therefore derive a weighed
probabilistic consistency transformation approach
This motivation of the weighted approach is to obtain more accurate
alignments than the non-weighted one. The transformations are further
performed for a fixed number of iterations to refine the probabilities. In
MSAProbs, two iterations (the default value) are used. This default value
offers a good trade-off between alignment accuracy and execution time.</text>
</comment>
</parameter>
<parameter>
<name>iterative_refinement</name>
<prompt lang="en">passes of iterative-refinement ( use 0 >= REPS >= 1000 default: 10 )</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>10</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef)" -ir $value " : ""</code>
<code proglang="python">("" , " -ir "+str(value))[ value is not None and value != vdef ]</code>
</format>
<ctrl>
<message>
<text lang="en">use 0 >= REPS >= 1000</text>
</message>
<code proglang="perl">$value >=0 and $value<=100</code>
<code proglang="python">value >=0 and value<=100</code>
</ctrl>
<comment>
<text lang="en">
As a post-processing step, a randomized iterative alignment is employed
to further improve alignment accuracy. This refinement randomly partitions
S into two non-overlapped subsets, and then performs a profile–profile
alignment of the two subsets. MSAProbs designs its own pseudo random
number generator based on the linear congruential method for the random
partition of S. The iterative refinement is designed to complete after a fixed
number of iterations (10 iterations, by default).
</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>output_opt</name>
<prompt lang="en">Output Options</prompt>
<parameters>
<parameter>
<name>annotation</name>
<prompt lang="en">write annotation for multiple alignment to FILENAME</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value)" -annot $value " : ""</code>
<code proglang="python">("" , " -annot " + str(value))[ value is not None ]</code>
</format>
<comment>
<text lang="en">The score of each column of the final alignment, from the leftmost to the right most, will be report on this annotation file.</text>
</comment>
</parameter>
</parameters>
</paragraph>
<parameter isstdout="1">
<name>alignment</name>
<prompt lang="en">Alignment file</prompt>
<type>
<biotype>Protein</biotype>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>FASTA</dataFormat>
</type>
<filenames>
<code proglang="perl">"msaprobs.out"</code>
<code proglang="python">"msaprobs.out"</code>
</filenames>
</parameter>
<parameter isout="1">
<name>annotation_file</name>
<prompt lang="en">Annotation file</prompt>
<precond>
<code proglang="perl">defined $annotation</code>
<code proglang="python">annotation is not None</code>
</precond>
<type>
<datatype>
<class>MSAProbsAnnotation</class>
<superclass>Report</superclass>
</datatype>
</type>
<filenames>
<code proglang="perl">$annotation</code>
<code proglang="python">annotation</code>
</filenames>
<comment>
<text lang="en">Each line represents the score of each column of the final alignment from the leftmost to the right most.</text>
</comment>
</parameter>
</parameters>
</program>
|