This file is indexed.

/var/lib/mobyle/programs/netNglyc.xml is in mobyle-programs 5.1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron,             -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris.         -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>netNglyc</name>
    <version>1.0c</version>
    <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/cbs_package.xml"/>
    <doc>
      <title>netNglyc</title>
      <description>
        <text lang="en">predict N-glycosylation sites in proteins.</text>
      </description>
      <sourcelink>http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netNglyc</sourcelink>
      <authors>Ramneek Gupta, ramneek@cbs.dtu.dk</authors>
      <reference>Prediction of N-glycosylation sites in human proteins.
                 R. Gupta, E. Jung and S. Brunak.
                 In preparation, 2004.
      </reference>
      <doclink>http://www.cbs.dtu.dk/services/NetNGlyc/</doclink>
      <comment>
        <text lang="en">netNglyc predicts N-glycosylation sites in human proteins using artificial neural networks that examine the
       sequence context of Asn-Xaa-Ser/Thr sequons where Xaa  is  any  amino  acid  but  proline.</text>
      </comment>
    </doc>
    <category>sequence:protein:motifs</category>
    <category>sequence:protein:pattern</category>
    <category>sequence:protein:profiles</category>
  </head>
  <parameters>
     
    <parameter ishidden="1" iscommand="1">
      <name>netnglyc</name>
      <type>
        <datatype>
          <class>String</class>
        </datatype>
      </type>
      <format>
        <code proglang="perl">"netNglyc "</code>
        <code proglang="python">"netNglyc "</code>
      </format>
    </parameter>
   
    <parameter ismandatory="1" issimple="1" ismaininput="1">
      <name>sequence</name>
      <prompt lang="en">Input Sequence</prompt>
      <type>
        <datatype>
          <class>Sequence</class>
        </datatype>
        <dataFormat>FASTA</dataFormat>
      </type>
      <format>
        <code proglang="perl">" $value"</code>
        <code proglang="python">" " + str( value )</code>
      </format>
      <argpos>50</argpos>
     <example>
&gt;CBG_HUMAN
MPLLLYTCLLWLPTSGLWTVQAMDPNAAYVNMSNHHRGLASANVDFAFSLYKHLVALSPK
KNIFISPVSISMALAMLSLGTCGHTRAQLLQGLGFNLTERSETEIHQGFQHLHQLFAKSD
TSLEMTMGNALFLDGSLELLESFSADIKHYYESEVLAMNFQDWATASRQINSYVKNKTQG
KIVDLFSGLDSPAILVLVNYIFFKGTWTQPFDLASTREENFYVDETTVVKVPMMLQSSTI
SYLHDSELPCQLVQMNYVGNGTVFFILPDKGKMNTVIAALSRDTINRWSAGLTSSQVDLY
IPKVTISGVYDLGDVLEEMGIADLFTNQANFSRITQDAQLKSSKVVHKAVLQLNEEGVDT
AGSTGVTLNLTSKPIILRFNQPFIIMIFDHFTWSSLFLARVMNPV
     </example>
    </parameter>
    
    <parameter >
      <name>graphics</name>
      <prompt lang="en">generate graphics (-g).</prompt>
      <type>
        <datatype>
          <class>Boolean</class>
        </datatype>
      </type>
      <vdef>
        <value>0</value>
      </vdef>
      <format>
        <code proglang="perl">($value)? "-g " : ""</code>
        <code proglang="python">( "" , "-g " )[ bool( value ) ]</code>
      </format>
      <comment>
        <text lang="en">Generate  graphics,  plotting  the N-glycosylation potential and the thresh‐
              old(s) against the residue number of each predicted site. Two files will  be
              produced for each input sequence, one in PostScript and the other in GIF.</text>
      </comment>
      <argpos>10</argpos>
    </parameter>  

    <parameter>
      <name>threshold</name>
      <prompt lang="en">Show additional thresholds (0.32, 0.75, 0.90) in the graph(s).</prompt>
      <type>
        <datatype>
          <class>Boolean</class>
        </datatype>
      </type>
      <vdef>
        <value>0</value>
      </vdef>
      <format>
        <code proglang="perl">( defined $value )? "-a " : ""</code>
        <code proglang="python">( "" , "-a " )[ bool( value ) ]</code>
      </format>
      <comment>
        <text lang="en">Show  additional thresholds (0.32, 0.75 and 0.90) in the graphs. This option
              is ignored unless -g is also given.</text>
      </comment>
      <argpos>20</argpos>
    </parameter>
    
        <parameter>
      <name>aspargine</name>
      <prompt lang="en">Predict on all Asn residues (-f).</prompt>
      <type>
        <datatype>
          <class>Boolean</class>
        </datatype>
      </type>
      <vdef>
        <value>0</value>
      </vdef>
      <format>
        <code proglang="perl">( defined )? "-f " : ""</code>
        <code proglang="python">( "","-f ")[ bool( value ) ]</code>
      </format>
      <comment>
        <text lang="en">Predict on all asparagines in the input. Note that asparagines that  do  not
              occur  within the Asn-Xaa-Ser/Thr sequon are unlikely to be glycosylated, no
              matter what the prediction score.  The default is to  predict  only  on  the
              asparagines in the Asn-Xaa-Ser/Thr triplet.</text>
      </comment>
      <argpos>30</argpos>
    </parameter>

    <parameter isstdout="1">
      <name>results</name>
      <prompt lang="en">netNglyc report.</prompt>
      <type>
        <datatype>
          <superclass>Report</superclass>
          <class>NetNglyc</class>
        </datatype>
      </type>
      <filenames>
        <code proglang="perl">"netNglyc.out"</code>
        <code proglang="python">"netNglyc.out"</code>
      </filenames>
      <comment>
      <div xmlns="http://www.w3.org/1999/xhtml">
        <p> Each input sequence is displayed with  the  predicted  
        N-glycosylation sites highlighted. For each site the following is shown:</p>
        <ul>      
          <li>sequence name</li>
          <li>position in the sequence</li>
          <li>sequence motif</li>
          <li>N-glycosylation potential</li>
          <li>Jury agreement, 9 networks</li>
          <li>Prediction strength (+, ++ or +++)</li>
        </ul>
        </div>
      </comment>
    </parameter> 
    
    
    <parameter isout="1">
      <name>postscript</name>
      <prompt lang="en">graphic in PostScript</prompt>
      <type>
        <datatype>
          <superclass>Binary</superclass>
          <class>NetNGlyc_Graph</class>
        </datatype>
        <dataFormat>Postscript</dataFormat>
      </type>
      <precond>
        <code proglang="python">graphics</code>
      </precond>
      <filenames>
        <code proglang="perl">"*.ps"</code>
        <code proglang="python">"*.ps"</code>
      </filenames>
      <comment>
        <text lang="en"> plotting the N-glycosylation potential and the threshold(s) against the residue
              number of each predicted site.
        </text>
      </comment>
    </parameter> 
    
    <parameter isout="1">
      <name>gif</name>
      <prompt lang="en">graphic in GIF</prompt>
      <type>
        <datatype>
          <superclass>Binary</superclass>
          <class>NetNGlyc_Graph</class>
        </datatype>
        <dataFormat>GIF</dataFormat>
      </type>
      <precond>
       <code proglang="perl">$graphics</code>
        <code proglang="python">graphics</code>
      </precond>
      <filenames>
        <code proglang="perl">"*.gif"</code>
        <code proglang="python">"*.gif"</code>
      </filenames>
      <comment>
        <text lang="en"> plotting the N-glycosylation potential and the threshold(s) against the residue
              number of each predicted site.
        </text>
      </comment>
    </parameter> 
    
  </parameters>
</program>