This file is indexed.

/var/lib/mobyle/programs/netOglyc.xml is in mobyle-programs 5.1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron,             -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris.         -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>netOglyc</name>
    <version>3.1</version>
    <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/cbs_package.xml"/>
    <doc>
      <title>netOglyc</title>
      <description>
        <text lang="en">predict O-glycosylation sites in proteins.</text>
      </description>
      <sourcelink>http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netNglyc</sourcelink>
      <authors> Karin Julenius, kj@cbs.dtu.dk</authors>
      <reference>Prediction,  conservation  analysis and structural characterization of 
      mammalian mucin-type O-glycosylation sites.
       K. Julenius, A. Moelgaard, R. Gupta and S. Brunak.
       Glycobiology, 15:153-164, 2005.
      </reference>
      <doclink>http://www.cbs.dtu.dk/services/NetOGlyc/</doclink>
      <doclink>http://www.cbs.dtu.dk/databases/OGLYCBASE/</doclink> 
      <comment>
        <text lang="en">The NetOglyc server produces neural network predictions of mucin type GalNAc O-glycosylation sites in mammalian proteins.</text>
      </comment>
    </doc>
    <category>sequence:protein:motifs</category>
    <category>sequence:protein:pattern</category>
    <category>sequence:protein:profiles</category>
  </head>
  <parameters>
     
    <parameter ishidden="1" iscommand="1">
      <name>netoglyc</name>
      <type>
        <datatype>
          <class>String</class>
        </datatype>
      </type>
      <format>
        <code proglang="perl">" netOglyc "</code>
        <code proglang="python">" netOglyc "</code>
      </format>
    </parameter>
   
    <parameter ismandatory="1" issimple="1" ismaininput="1">
      <name>sequence</name>
      <prompt lang="en">Input Sequence</prompt>
      <type>
        <datatype>
          <class>Sequence</class>
        </datatype>
        <dataFormat>FASTA</dataFormat>
      </type>
      <format>
        <code proglang="python">" " + str( value )</code>
      </format>
      <argpos>50</argpos>
      <example>
&gt;LEUK_RAT P13838 LEUKOSIALIN PRECURSOR (LEUCOCYTE SIALOGLYCOPROTEIN) (SIALOPHORIN) (CD43) (W3/13 ANTIGEN).
WAQVVSQENLPNTMTMLPFTPNSESPSTSEALSTYSSIATVPVTEDPKESISPWGQTTAP
ASSIPLGTPELSSFFFTSAGASGNTPVPELTTSQEVSTEASLVLFPKSSGVASDPPVTIT
NPATSSAVASTSLETFKGTSAPPVTVTSSTMTSGPFVATTVSSETSGPPVTMATGSLGPS
KETHGLSATIATSSGESSSVAGGTPVFSTKISTTSTPNPITTVPPRPGSSGMLLVSMLIA
LTVVLVLVALLLLWRQRQKRRTGALTLSRGGKRNGTVDAWAGPARVPDEEATTASGSGGN
KSSGAPETDGSGQRPTLTTFFSRRKSRQGSVALEELKPGTGPNLKGEEEPLVGSEDEAVE
TPTSDGPQAKDGAAPQSL
      </example>
    </parameter>
    
    <parameter>
      <name>signal_peptide</name>
      <prompt lang="en">Run signalp on the input sequences (-sp).</prompt>
      <type>
        <datatype>
          <class>Boolean</class>
        </datatype>
      </type>
      <vdef>
        <value>0</value>
      </vdef>
      <format>
        <code proglang="perl">( $value ) ? "-sp ": ""</code>
        <code proglang="python">( "","-sp ")[ bool( value ) ]</code>
      </format>
      <argpos>10</argpos>
      <comment>
         <text lang="en"> Non-secretory  proteins  are unlikely to be glycosylated in vivo even though they contain potential motifs.
       Therefore, it is possible to run the signal peptide predictor signalp on the input sequences</text>
      </comment>
    </parameter>
    
    <parameter >
      <name>graphics</name>
      <prompt lang="en">generate graphics (-g).</prompt>
      <type>
        <datatype>
          <class>Boolean</class>
        </datatype>
      </type>
      <vdef>
        <value>0</value>
      </vdef>
      <format>
        <code proglang="perl">( $value )? "-g " : ""</code>
        <code proglang="python">( "" , "-g " )[ bool( value ) ]</code>
      </format>
      <comment>
        <text lang="en"> Generate graphics, plotting the G-score against the position in the sequence
              of each serine and threonine residue. The I-score is plotted instead for the
              residues  where  it  decides  the  final answer. For each input sequence two
              files will be produced  ``&lt;seqname&gt;.ps''
              (in PostScript) and ``&lt;seqname&gt;.gif'' (in GIF).</text>
      </comment>
      <argpos>20</argpos>
    </parameter>  
    
    <parameter isstdout="1">
      <name>results</name>
      <prompt lang="en">netOglyc report</prompt>
      <type>
        <datatype>
          <superclass>Report</superclass>
          <class>NetOGlyc</class>
        </datatype>
      </type>
      <filenames>
        <code proglang="perl">"netOglyc.out"</code>
        <code proglang="python">"netOglyc.out"</code>
      </filenames>
      <comment>
      <div xmlns="http://www.w3.org/1999/xhtml">
        <p> Each input sequence is displayed with the predicted sites
       indicated,  labelled  with  ``S''  and ``T'' for serine and threonine, respectively. The signal peptide (if
       predicted) is labelled with ``_''. The details of the prediction for each serine and threonine residue  are
       then shown in a table. The columns are:</p>
       <ul>
           <li>sequence name</li>
           <li>residue (S or T)</li>
           <li>position in the sequence</li>
           <li>G-score (general predictor)</li>
           <li>I-score (isolated site predictor)</li>
           <li>final answer (S/T for predicted sites, otherwise `.')</li>
           <li>comment</li>
        </ul>   
        <p>The  final  answer  is  calculated as follows.  If the G-score is &gt;0.5 the residue is predicted as glycosy‐
       lated; the higher the score the more confident the prediction. If the G-score is &lt; 0.5 but the I-score  &gt;0.5
       and there are no predicted neighbouring sites (distance &lt;10 residues) the residue is also predicted as gly‐
       cosylated.</p>
       <p>If a residue in a predicted signal peptide is predicted as glycosylated there is a warning in  the  comment
       field.
        </p>
        </div>
      </comment>
    </parameter> 
    
    <parameter isout="1">
      <name>postscript</name>
      <prompt lang="en">graphic in Postsricpt</prompt>
      <type>
        <datatype>
          <superclass>Binary</superclass>
          <class>NetOGlyc_graphic</class>
        </datatype>
        <dataFormat>PostScript</dataFormat>
      </type>
      <precond>
        <code proglang="perl">graphics</code>
        <code proglang="python">graphics</code>
      </precond>
      <filenames>
        <code proglang="perl">"*.ps"</code>
        <code proglang="python">"*.ps"</code>
      </filenames>
      <comment>
        <text lang="en"> plotting the G-score against the position in the  sequence  of  each  serine  and
              threonine  residue.  The  I-score  is  plotted  instead  for the residues where it decides the final
              answer.
        </text>
      </comment>
    </parameter> 
    
    <parameter isout="1">
      <name>gif</name>
      <prompt lang="en">graphic in GIF</prompt>
      <type>
        <datatype>
          <superclass>Binary</superclass>
          <class>NetOGlyc_graphic</class>
        </datatype>
        <dataFormat>GIF</dataFormat>
      </type>
      <precond>
        <code proglang="perl">graphics</code>
        <code proglang="python">graphics</code>
      </precond>
      <filenames>
        <code proglang="perl">"*.gif"</code>
        <code proglang="python">"*.gif"</code>
      </filenames>
      <comment>
        <text lang="en"> plotting the G-score against the position in the  sequence  of  each  serine  and
              threonine  residue.  The  I-score  is  plotted  instead  for the residues where it decides the final
              answer.
        </text>
      </comment>
    </parameter> 
    
    
  </parameters>
</program>