/usr/share/doc/munipack/artific.html is in munipack-doc 0.5.10-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | <!DOCTYPE HTML>
<html lang="en">
<head>
<!-- meta -->
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="description" content="A general astronomical image processing software">
<meta name="author" content="Filip Hroch">
<link href="news_feed.xml" type="application/atom+xml" rel="alternate" title="Sitewide ATOM Feed" />
<link type="text/css" rel="stylesheet" href="munipack.css">
<link rel="shortcut icon" href="favicon.ico">
<title>Munipack ‒ Artificial Sky</title>
</head>
<body>
<header>
<a href="munipack.html"><img src="title_logo.png" alt="Munipack's logo" class="head"></a>
<div class="headhead">
<div class="headtitle">
<a class="headtitle" href="munipack.html">Munipack</a>
<a class="headsubtitle" href="munipack.html">A general astronomical image processing software</a>
</div>
<ul class="menu">
<li class="menu">◈ <a href="docs.html" class="menu">Documents</a></li>
<li class="menu">☺ <a href="guide.html" class="menu">User guide</a></li>
</ul>
</div>
</header>
<h1>Artificial Sky</h1>
<p class="abstract">
An overview of an artificial sky modelling.
</p>
<h2>Purpose</h2>
<p>
The tool <samp>artificial</samp> creates artificial frames which looks
similar as frames acquired by a real telescope. The primary purpose of
this tool is to test and to verify algorithms of Munipack.
However, it can be very useful
for both education and planing of an observation
because various atmospheric and instrumental effects as well
as various phenomena can be easy modelled.
</p>
<h2>Brand Icon</h2>
<p>
All generated frames are marked by a brand icon. The icon is supposed
as the very important element because the created frames can look very
realistic for inexperienced peoples. In many situations, it can be very
difficult to recognise, even by an objective method,
between a real and an artificial frame. That why there is no way how
to remove the icon without a source code modification.
</p>
<figure>
<img class="figure" src="artbrand.png" alt="artbrand.png" title="Brand Icon">
<figcaption>The brand icon</figcaption>
</figure>
<p>
FITS headers of all files contains review of parameters used for frame
generation. It naturally indicates the right origin of any frame without
doubts. However, frames are sometimes converted to other picture formats
such as PNG or JPG, or examined by non-expers,
so the clearly visible watermark is the proper warning sign.
</p>
<h2>The Very First Simulation</h2>
<p>
For our very first generated frame, we'll select the open star
cluster NGC 637 (see <a href="chart.html">A Star Chart Tutorial</a>).
The artificial frame can be generated by these commands:
</p>
<pre>
$ munipack cone -o ngc637.fits -r 0.1 -- 25.775 64.03
$ munipack artificial -c ngc637.fits --rcen 25.775 --dcen 64.03 --verbose
</pre>
<p>
The result is available as <samp>artificial.fits</samp> and displayed
on figure below. Many parameters has been keep on their default values
as <samp>--verbose</samp> switch shows.
The most important parameters are the telescope area 1m<sup>2</sup>
(cca 1.1m in diameter by default) and the exposure duration
1 second.
The stars on the frame has been given by a catalogue (in this case UCAC4)
so a real exposure can provide more deeper look.
</p>
<figure>
<img class="figure" src="ngc637_art.jpeg" alt="ngc637_art.jpeg" title="NGC 637">
<figcaption>Artificial frame of NGC 637</figcaption>
</figure>
<p>
Size of the generated picture, field of view (or scale) and rotation can be
adjusted. Results can be saved to a named file. The following example creates
a mini picture with dimensions in golden ratio, which is rotated around
center with 180° angle and stored in <samp>ngc637_mini.fits</samp> file.
</p>
<pre>
$ munipack artificial -c ngc637.fits --rcen 25.775 --dcen 64.03 --verbose \
--width 168 --height 100 --fov 0.2 --angle 180 \
--mask ngc637_mini.fits
</pre>
<figure>
<img class="figure" src="ngc637_mini.jpeg" alt="ngc637_mini.jpeg" title="NGC 637">
<figcaption>Miniature of NGC 637</figcaption>
</figure>
<h2>Observation Planning</h2>
<p>
Artificial frames can be useful in preparing of plans of an observation.
The observer's proper choice of the exposure time for an unknown object
significantly increase both reliability and precision of results.
The matter can be generalised also on an unknown telescope,
actual observing conditions, detectors. All the conditions can be
adjusted "on the run", but this tool can help to save precious
observing time.
</p>
<p>
All the detector and telescope parameters can be set with <samp>--exptime,
--diameter (--area), --qeff</samp> options.
Their impact, using common values, in case of the field of blazar 0716+71
displays the figure.
The blazar itself is at centre of the picture on pixel coordinates 256, 192.
</p>
<pre>
$ munipack cone -r 0.3 -- 110.473 71.343
$ munipack artificial --qeff 0.02 --exptime 120 --area 0.3 \
-c cone.fits --rcen 110.473 --dcen 71.343 --fov 0.3 \
--width 512 --height 384 --col-mag Vmag
</pre>
<figure>
<img class="figure" src="0716_art.jpeg" alt="0716_art.jpeg" title="0716+71">
<figcaption>Artificial frame of 0716+71</figcaption>
</figure>
<p>
Keep in mind, the frames with different parameters can looks identical due
auto-adjusting capabilities of FITS viewers. Observed frames taken
at longer exposures will reveal more faint stars, which are not included
in common catalogues, due to its limitations. To be sure, while playing with
artificial sky, inspect values of single pixels inside stars, that
simulated counts are proportional to the parameters.
</p>
<p>
The quantum efficiency (<samp>--qeff</samp>) of a telescope includes
products of
all individual efficiencies in given spectral band of detector (CCD), filter, telescope
(and possibly other optical elements down to optical path). They can be estimated
from a calibrated observed frame by CTPH keyword as <i>r</i>
(<a href="dataform_photometry.html">see</a>). The frame should be
take near zenith. Assuming of an extinction in the given filter on <i>k</i>
(typical values are 0.05 for Johnson R and 0.3 for Johnson B filters),
the efficiency is <i>η = 1/r - k</i>. The typical values <i>η</i> lies inside
interval from 0.05 (bad) to 0.5 (very good).
</p>
<p>
<span class="par">Range checking</span>
The visual inspection of peak value of the blazar gives
4300 counts above background (peak at 5300, background one thousand).
The value is pretty acceptable. The peak value is within expected dynamical
range (65 thousands), if a 16-bit CCD detector is expected.
</p>
<p>
<span class="par">Result Precision</span>
More detailed analysis can be performed with help of the complete
photometry calibration:
</p>
<pre>
$ munipack find artificial.fits
$ munipack aphot artificial.fits
$ munipack phcal -c cone.fits --photsys-ref Johnson --area 0.3 \
-f V --col-mag Vmag --col-magerr e_Vmag artificial.fits
</pre>
<p>
The result in <samp>artificial_cal.fits</samp> gives for
magnitude of the blazar 14.23 ± 0.01 with good agreement
with catalogue value 14.2 ± 0.4 (note use of parameter
<samp>--col-mag</samp> which
is important here). The error due to photon noise is relative
high and longer exposure duration can be recommend. Moreover,
the used quantum efficiency only 2% (!) is extremely low and
an technical improvement in apparatus can be recommended.
</p>
<h2>Atmospheric Effect Modelling</h2>
<p>
Light rays passing Earth's atmosphere are scattered, reflected
and attenuated proportionally to the length its path in the atmosphere.
The atmosphere related effects, which are modelled, includes
both atmospheric extinction and seeing and sky background dependence.
The atmospheric refraction is excluded.
</p>
<p>
The effects are considered just if <samp>--atmosphere</samp>
switch is presented. Only the extinction parameter (<samp>--extk</samp>)
can be adjusted (see <a href="man_artificial.html">manual page</a>).
The proper set up of observation station and time
(<samp>--long, --lat, --date, --time </samp>) is necessary.
</p>
<p>
To show the capability, we will prepare of a sequence of seven frames,
each 1 s, separated by one hour interval which demonstrate atmospheric
effects on BL Lac blazar field during its down somewhere in central Europe.
The figure below shows two selected output frames.
</p>
<pre>
$ munipack cone -r 0.2 -- 330.68 42.27
$ munipack artificial --verbose --fov 0.3 -c cone.fits --rcen 330.68 --dcen 42.27 \
--mask 'art_?.fits' --lat 50 --long -15 --date 2016-08-29 \
--time 00:00:00.000 --count 7 --timestep 3600 --exptime 1 \
--atmosphere --extk 0.1 --width 315 --height 510
</pre>
<table>
<tr>
<td class="blank">
<figure>
<img src="bllac_art1.jpeg" alt="bllac_art1.jpeg" title="Artificial BL Lac">
<figcaption>BL Lac field near zenith</figcaption>
</figure>
</td>
<td class="blank">
<figure>
<img src="bllac_art7.jpeg" alt="bllac_art7.jpeg" title="Artificial BL Lac">
<figcaption>BL Lac field 20° above horizon</figcaption>
</figure>
</td>
</tr>
</table>
<p>
<!-- Both extinction and seeing is modeled as desicibes manual page.-->
The actual value of the radius of seeing core is determined from <samp>--hwhm</samp>
option.
The radius represents spreading of a star image by turbulent motions
in Earth atmosphere. The turbulence is very unpredictable. The fact
is known to observers at moments when "focusing is impossible".
It also confirms the experience that the best focusing is near zenith.
</p>
<h2 id="lc">Light Curves</h2>
<p>
Light curves extracted from generated frames can be used for
training purposes as well as testing of various processing algorithms.
</p>
<p>
There are more ways to specify a light curve.
We will select the most common way.
The light curve pattern can be included in a table with twines:
time, magnitude (detailed description by <a href="dataform_tmseries.html">Times
series</a> document). The table is used to create a required light curve.
Points located out of tabulated values are interpolated by
<a href="https://en.wikipedia.org/wiki/Smoothing_spline">smooth spline</a>.
</p>
<p>
As the model data, I selected a light curve extracted from article
<a href="https://phys.org/news/2011-11-planet-kepler-21b.html">New planet
-- Kepler-21b -- discovered (physrev.org)</a>. The weighted original data
(the plus or star symbol in blue by the paper) are used but I changed significantly
the deep of the occultation.
Therefore only the shape of light curve is similar to original. Everything
else is my personal choice (period,...).
</p>
<p>
The first step is preparation of the data to form (FITS file) required
by the utility. The easy way is modification
of <a href="Kepler-21b.lst">Kepler-21b.lst</a> file:
</p>
<pre>
0 1.00714
0.0245776 1.00714
0.0506912 0.953571
0.0768049 1.03393
....
</pre>
<p>
The data can be replaced any another set. The number of rows must
corresponds with NAXIS2 keyword. When the file is prepared, create
FITS table (note that FITS table can be also created by any other way):
</p>
<pre>
$ munipack fits --restore Kepler-21b.lst
</pre>
<p>
No catalogue is used here with contrast to previous examples of modelling.
The background field stars are random in both positions and brightness.
The picture looks artificially because stars are limited by 13 magnitude.
The frame is not the actual field of Kepler 21b in any case!
</p>
<p>
Light curve related parameters starts with <samp>--lc-</samp>
and defines equatorial coordinates <samp>--lc-ra, --lc-dec</samp>
of a variable object (there exactly in the centre of frame),
magnitude <samp>--lc-mag</samp> and the light elements
<samp>--lc-jd0, --lc-per</samp> (the created sequence of frames
covers the full period).
</p>
<pre>
$ munipack artificial --verbose --mask 'art_??.fits' --fov 0.3 --rcen 150 --dcen 50 \
--date 2017-07-14 --time 00:00:00 --count 48 --timestep 180 --exptime 60 \
--lc-table Kepler-21b.fits --lc-mag 12 --lc-jd0 2457948.5 --lc-per 0.1 \
--lc-ra 150 --lc-dec 50
</pre>
<figure>
<img class="figure" src="Kepler_art.jpeg" alt="Kepler_art.jpeg" title="Kepler-21b">
<figcaption>Artificial frame of Kepler-21b.</figcaption>
</figure>
<p>
The artificial frames can be processed by the same way how frames
which has been taken on the real sky. The processing
skips photometric corrections (like bias frames) and the astrometry
calibration which is already included. There is no
photometry catalogue, so I referenced all frames against the first
(by random choice) frame in sequence. There are the processing steps:
</p>
<pre>
$ munipack find art_??.fits
$ munipack aphot art_??.fits
$ munipack phcal -C 1 --photsys-ref Johnson -f V -O --mask '\!\1_man.\2' art_01.fits
$ ls art_??.fits | xargs -L 1 munipack phcal --photsys-ref Johnson -f V -r art_01_man.fits
$ munipack timeseries -c MAG,MAGERR --stdout 150,50 art_*_cal.fits > Kepler-21b.lc
</pre>
<figure>
<img class="figure" src="Kepler-21b.svg" alt="Kepler-21b.svg" title="Kepler-21b">
<figcaption>The artificial light curve and the model of Kepler-21b.</figcaption>
</figure>
<p>
The graph shows small visible offset between model and data curve.
The slight difference due to some improper normalisation in model data
is a potential trap.
</p>
<p>
Tip. It is very instructive to play with shorter or longer exposures to discover
a noise contribution.
</p>
<h2>See Also</h2>
<p>
Manuals:
<a href="man_artificial.html">Artificial frames</a>.
<a href="http://physics.muni.cz/~hroch/artific.pdf">Artificial Sky …</a> (seminary talk)
</p>
<footer>
<div style="float:left; margin-left:2em;">
Copyright © 1997 – 2018
Filip Hroch (<a style="text-decoration: none" href="mailto:hroch@physics.muni.cz?Subject=Munipack" title="Author's Email">✉</a>), license <a href="http://www.gnu.org/licenses/gpl.html">GPLv3</a>.
</div>
<div style="float:right; margin-right:2em; margin-top:-0.2em;">
<a href="http://monteboo.blogspot.com/search/label/Munipack" title="Munipack on MonteBoo Blog"><img src="favicon-blogger.png" alt="Blogger"></a>
<a href="http://www.muni.cz/?lang=en" title="Masaryk University in Brno, Czech Republic"><img src="mu-logo.png" alt="Masaryk University"></a>
<a href="news_feed.xml" title="Munipack's Releases in Atom Syndication Format"><img src="Feed-icon.png" alt="Atom Feed"></a>
</div>
</footer>
</body>
</html>
|