This file is indexed.

/usr/share/doc/munipack/astoverview.html is in munipack-doc 0.5.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
<!DOCTYPE HTML>
<html lang="en">
<head>
<!-- meta -->
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="description" content="A general astronomical image processing software">
<meta name="author" content="Filip Hroch">
<link href="news_feed.xml" type="application/atom+xml" rel="alternate" title="Sitewide ATOM Feed" />
<link type="text/css" rel="stylesheet" href="munipack.css">
<link rel="shortcut icon" href="favicon.ico">
<title>Munipack ‒ Astrometry Overview</title>
</head>
<body>
<header>
<a href="munipack.html"><img src="title_logo.png" alt="Munipack's logo" class="head"></a>
<div class="headhead">
<div class="headtitle">
<a class="headtitle" href="munipack.html">Munipack</a>
<a class="headsubtitle" href="munipack.html">A general astronomical image processing software</a>
</div>
<ul class="menu">
  <li class="menu"><a href="docs.html" class="menu">Documents</a></li>
  <li class="menu"><a href="guide.html" class="menu">User guide</a></li>
</ul>
</div>
</header>

<h1>Astrometry Overview</h1>

<p class="abstract">
  Astrometry calibration establishes mutual mapping between
  sky's coordinates and coordinates on frames.
  Astrometry is essential for any additional processing like photometry
  or frame composition.
</p>

<p>
  Usage of a command line astrometry tool
  can be found in <a href="man_astrometry.html">Astrometry</a> manual page.
</p>


<h2>Introduction</h2>

<p>
  Astronomical instruments works as devices which projects
  spherical coordinates (Right Ascension α or Declination δ)
  onto rectangular coordinates of imaging devices. The projection
  establishes an unique mapping for all objects (pixels).
  The mapping is usually complicated (nonlinear) because
  projected images of sky may be deformed. The calibration can
  be considered as the two step procedure:
</p>
<ul>
<li>
  spherical coordinates are projected
  (by <a href="https://en.wikipedia.org/wiki/Gnomonic_projection">gnomonic</a>
  or another projection) on to auxiliary rectangular coordinates,
</li>
<li>
  and
  <a href="https://en.wikipedia.org/wiki/Affine_transformation">affine mapping</a>
  (including rotation, shift, scaling and reflection) is applied to get
  the mutual transformation between the auxiliary projected and
  current on-chip coordinates.
</li>
</ul>

<p>
The calibration can be stored in FITS frame header as
<a href="http://fits.gsfc.nasa.gov/fits_wcs.html">WCS
  (world-coordinate system) calibration</a> which is
described at reference <a href="dataform_astrometry.html">Astrometry</a> header
page.
</p>

<div class="screenshots">
<figure>
<img class="figure" src="astrocoo.png" alt="screenshot">
<figcaption>Panel with the coordinate indicator</figcaption>
</figure>
</div>



<h2>How To Describe Of Astrometry Mapping</h2>

<p>
To describe of the astrometry calibration, Munipack uses
carefully selected set of parameters. Parameters
are easy for use (change in a single parameter doesn't affects others)
and supports robust fitting.
</p>

<dl>
<dt>Projection</dt>
  <dd>The type of projection of spherical coordinates onto rectangular. Currently only
      gnomonic projection is implemented.</dd>
<dt>Reference point on images <i>x</i><sub>c</sub>, <i>y</i><sub>c</sub></dt>
<dd>The reference point of rectangular coordinates,
  the image is rotated around the point, normally, centre of the image. </dd>
<dt>Centre of spherical projection <i>α</i><sub>c</sub>, <i>δ</i><sub>c</sub></dt>
  <dd>It's a centre of projection of spherical coordinates.
      One simply gives coordinates of the centre of captured field.
</dd>
<dt>Scale <i>c</i></dt>
  <dd>Scale of image in degrees per pixels.</dd>
<dt>Angle of rotation <i>φ</i></dt>
  <dd>It's an angle of the image rotation around the reference point
      <i>x</i><sub>c</sub>, <i>y</i><sub>c</sub>.
      The value increases in counterclockwise direction (according to
      mathematical sense) and with its origin on <i>x</i>-axis (on 3-th hour direction).
</dd>
<dt>Reflection</dt>
  <dd>Mutual reflection</dd>
</dl>

<p>
<b>All angles are in degrees.</b>
Also don't try use fractions like arcsecs or don't interchange degrees and radians.
</p>


<h2>Modes Of Astrometry Calibration</h2>

<p>
Munipack provides following modes of the calibration of FITS frames:
</p>
<h3>Match</h3>
<p>Stars, detected on frames, are identified in an astrometric catalogue
  by matching. The parameters are estimated by fitting of the transformation.
  Matching is intended for general use.
</p>

<h3>Sequence</h3>
<p>
User provides a sequence of identified stars and the transformation
is derived from coordinates of the stars by fitting. It can be useful
when matching has failed.
</p>


<h3>Manual</h3>
<p>
  Manual mode just save a calibration in WCS conventions using of parameters
  <i>α</i><sub>c</sub>, <i>δ</i><sub>c</sub>, <i>c</i>, <i>φ</i> and
  possible reflection
  provided by user. Any other information (detection of objects, catalogues)
  are not required. It can be useful when astrometry is already known.
</p>



<h2>Sources Of Reference Stars</h2>

<p>
These sources can be used as a references of the coordinates.
</p>
<dl>
<dt>Catalogue</dt><dd>Stars selected from an astrometric catalogue are
used as the reference.</dd>
<dt>Reference frame</dt><dd>Stars detected on already calibrated frame are
used as the reference.</dd>
<dt>Relative frame</dt><dd>Stars detected on a reference frame are
used as reference. A projection is not applied. There is only relative
calibration. Useful when a right projection is not available or possible.</dd>
</dl>

<p>
Note that the types of calibrations using catalogues and frames
requires detected objects (see <a href="man_aphot.html">aperture photometry</a>).
</p>

<h2>Projection</h2>

<p>
Projection maps spherical coordinates and rectangular coordinates.
Just only Gnomonic is implemented yet.
</p>

<p>
No projection is useful for relative matching of frames.
</p>


<h2>Matching</h2>

<p>
Matching between objects on reference (catalogue) and calibrated frames
is developed on base of a kind
of <a href="http://en.wikipedia.org/wiki/Backtracking">backtracking</a>
algorithm. All possible combinations of triplets are generated from
data and grouped to sequences. Sequences of catalogue and observed
data is searched for minimal distance in the triangle space
(an application of triangle similarity, one from basic triangle rules,
known from first school years).
</p>

<p>
The backtracking is affected by parameters: --minmatch
(minimal lenght of match sequence, --maxmatch (maximum length of match sequence),
--sig sets a typical deviation of coordinates
and --fsig is the dispersion in fluxes.
Ones are important for fitting (and successful calibration).
</p>

<p>
An another method for matching can be also used by setting --match NEARLY.
In this case, the correspondence between object's list is established
by looking for nearest stars. An initial transformation
needs to be known. The parameter --sig sets coordinate uncertainty.
</p>


<h2>Fitting</h2>

<p>
The matched stars are used for fitting of a transformation
(fit of scale, rotation) and projection (fit of centre of projection).
The standard least-squares and robust methods can be used (--fit).
</p>


<h2>Reference Catalogue</h2>

<p>
The catalogue is a FITS table with coordinates of objects.
The table is usually a list of selected stars from a catalogue
provided by a Virtual Observatory server.
</p>

<p>
The coordinates are arranged to a columns (defaulted to
RA, DEC). Catalogue columns with coordinates can be selected
with --col-ra, --col-dec parameters.
</p>



<h2>See Also</h2>


<p>
Manuals:
<a href="man_astrometry.html">Astrometry</a>,
Data Formats:
<a href="dataform_astrometry.html">Astrometry Header</a>.
</p>

<footer>
<div style="float:left; margin-left:2em;">
Copyright &copy; 1997 – 2018
Filip Hroch (<a style="text-decoration: none" href="mailto:hroch@physics.muni.cz?Subject=Munipack" title="Author's Email"></a>), license <a href="http://www.gnu.org/licenses/gpl.html">GPLv3</a>.
</div>
<div style="float:right; margin-right:2em; margin-top:-0.2em;">
<a href="http://monteboo.blogspot.com/search/label/Munipack" title="Munipack on MonteBoo Blog"><img src="favicon-blogger.png" alt="Blogger"></a>
<a href="http://www.muni.cz/?lang=en" title="Masaryk University in Brno, Czech Republic"><img src="mu-logo.png" alt="Masaryk University"></a>
<a href="news_feed.xml" title="Munipack's Releases in Atom Syndication Format"><img src="Feed-icon.png" alt="Atom Feed"></a>
</div>
</footer>

</body>
</html>