This file is indexed.

/usr/share/doc/munipack/phoverview.html is in munipack-doc 0.5.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
<!DOCTYPE HTML>
<html lang="en">
<head>
<!-- meta -->
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="description" content="A general astronomical image processing software">
<meta name="author" content="Filip Hroch">
<link href="news_feed.xml" type="application/atom+xml" rel="alternate" title="Sitewide ATOM Feed" />
<link type="text/css" rel="stylesheet" href="munipack.css">
<link rel="shortcut icon" href="favicon.ico">
<title>Munipack ‒ Photometry Calibration Overview</title>
</head>
<body>
<header>
<a href="munipack.html"><img src="title_logo.png" alt="Munipack's logo" class="head"></a>
<div class="headhead">
<div class="headtitle">
<a class="headtitle" href="munipack.html">Munipack</a>
<a class="headsubtitle" href="munipack.html">A general astronomical image processing software</a>
</div>
<ul class="menu">
  <li class="menu"><a href="docs.html" class="menu">Documents</a></li>
  <li class="menu"><a href="guide.html" class="menu">User guide</a></li>
</ul>
</div>
</header>

<h1>Photometry Calibration Overview</h1>

<p class="abstract">
A photometry calibration, implemented by Munipack, is on base of 
relation between detected counts and expected photons 
as the natural consequence of use of photon counting detectors. 
<!--
Ratio of observed and expected photons represents an efficiency
of the detection and establishes the calibration itself.
-->
</p>


<h2>Basic Ideas</h2>

<p>
  The traditional way for calibrating of optical observations is to derive,
  so called, instrumental magnitudes from some observed quantity. A magnitude offset,
  between both instrumental and catalogue magnitudes, represents the calibration.
</p>

<p class="indent">
  Munipack offers an alternative approach. Magnitudes of calibration stars are
  converted to photons and the calibration establishes a relation
  between expected amount of photons and observed counts.
</p>

<p class="indent">
The photon approach has been chosen for two reasons. For the principal reason,
the physical quantity which is detected by modern detectors are photons.
For the second reason: statistical properties are much more suitable for 
robust statistics.
</p>

<p class="indent">
  Why photons? Common modern devices detects photons.
  Its energy and wavelength doesn't matter (at least for an ideal detector). 
  The amount of detected photons is quantity designed as the counts
  of events that appeared in detector. An ideal detector has amount of counts
  equal to amount of detected photons. 
</p>

<h2>Photons</h2>

<p>
Light is composed from electromagnetic waves which carries an energy
emited by sources. The connection between the energy <i>E</i> 
of <i>n</i> photons for a single wave with frequency <i>ν</i> is established 
by <a href="http://en.wikipedia.org/wiki/Planck%E2%80%93Einstein_relation">
Planck's relation</a>:
</p>
<p>
    <i>E = n h ν</i>
</p>
<p>
The energy <i>E</i> can be measured by a calorimeter (bolometer)
while photons <i>n</i> are collected by digital cameras or photomultipliers.
</p>

<p class="indent">
In astronomical photometry, we are collecting the energy or photons
for a time interval <i>T</i> falling on an area <i>A</i>. 
To get values independent on the factors we are normalising 
the (specific) quantities.
The energy per unit of time and area is replaced by energy flux 
</p>
<p>
<i>E / T A → F</i>
</p>
<p class="indent">
and photons by photon flux 
</p>
<p>
<i>n / T A → Φ</i>.
</p>
<p class="indent">
By using the substitutions, Planck's relation gets the form
</p>
<p>
    <i>F = Φ h ν</i>
</p>

<p class="indent">
A relation between between energy flux <i>F</i>
and the apparent magnitude <i>m</i> in a filter can be determined
(inverse of 
<a href="http://en.wikipedia.org/wiki/Apparent_magnitude">Pogsons's equation</a>) as
</p>
<p>
<i>
F = f<sub>ν0</sub> Δν ‧ 10<sup>-m/2.5</sup>
</i>
</p>
<p>
where <i>f<sub>ν0</sub></i> is a reference flux density (per frequency)
and <i>Δν</i> is the frequency width of the filter (the filter is modelled
as a rectangle). The product <i>f<sub>ν0</sub> Δν</i> is flux throughout
given filter. The <i>h ν</i> is energy of single photon.
For photon flux, the mean number of photons is flux per
photon energy, we have 
</p>
<p>
<i>
Φ = (f<sub>ν0</sub> Δν) / (h ν) ‧ 10<sup>-m/2.5</sup>
</i>
</p>

<p class="indent">
Of course, photon flux can be also expresed in terms of wavelengts.
Use standard relation between frequency and wavelength
</p>
<p>
<i>ν = c / λ</i>,
</p>
<p>
form the flux as
</p>
<p>
<i>
Φ = (f<sub>λ0</sub> Δλ) / (h c / λ) ‧ 10<sup>-m/2.5</sup>.
</i>
</p>


<p class="indent">
Just for illustration, number of photons
falling on square meter per second in Johnson's V filter
(like eye's sensitivity) is summarised in following table
(constants approved <i>f<sub>ν0</sub></i> = 4 ‧ 10<sup>-11</sup> W/m<sup>2</sup>/nm,
<i>Δλ</i> = 70 nm, <i>λ</i> = 550 nm).
</p>

<table>
<caption>Energy and photon fluxes in visual band</caption>
<tr><th>magnitude</th><th>energy flux [W/m<sup>2</sup>]</th><th>photon flux [ph/s/m<sup>2</sup>]</th><th>example</th></tr>
<tr><td>0</td><td>10<sup>-9</sup></td><td>10<sup>10</sup></td><td>Vega</td></tr>
<tr><td>5</td><td>10<sup>-11</sup></td><td>10<sup>8</sup></td><td>naked eye limit</td></tr>
<tr><td>10</td><td>10<sup>-13</sup></td><td>10<sup>6</sup></td><td>bright quasars</td></tr>
<tr><td>15</td><td>10<sup>-15</sup></td><td>10<sup>4</sup></td><td>Kuiper belt objects</td></tr>
<tr><td>20</td><td>10<sup>-17</sup></td><td>10<sup>2</sup></td><td>optical afterglows</td></tr>
<tr><td>25</td><td>10<sup>-19</sup></td><td>1</td><td>Earth telescope limit</td></tr>
</table>


<h2>Calibration</h2>

<p class="indent">
A knowledge of magnitudes of standard stars can be used to compute expected
photon flux and also count of photons for our observations.
</p>
<p>
<i>n = A T Φ</i>
</p>
<p>
and we can compare it with actually observed photons <i>c = g d</i>
(where <i>g</i> is gain and <i>d</i> number of events given by our instrument):
</p>
<p><i>
   η = c / n     
</i></p>
<p>
which determines a sensitivity of both our and a standard instrument.
The ratio has meaning of light effectivity of full
device (detector, optical apparatus, atmosphere together).
</p>

<p class="indent">
Both catalogue <i>n</i> and measured quantities <i>c</i> are determined with
a certain uncertainity. Main source of the uncertainity comes from properties 
of detection mechanism of photons which is known as 
<a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a>. 
The statistical error is related to count of detected photons as <i>σ² = c</i>
as can be see on <a href="http://monteboo.blogspot.cz/2011/03/photon-rain-statistics.html">simple numerical experiment</a>. As one can see, the uncertainity
depends on calibration star brightness which is absolutely strange
for common experiences with regular meassurements (time, lenght).
</p>

<p class="indent">
Direct computation of mean of ratio <i>c/n</i> is slightly uncorrect
because measurements has principially huge diffrences in precision.
Therefore, we are using the transformation to a new variable
</p>
<p><i>
(n - c/η) / σ
</i></p>
<p>
which has mean value 0 and dispersion 1. This is mathematically
little bit complicated way because detremination of <i>η</i> requires
solution of implicit non-linear equation.
</p>


<p class="indent">
The very hearth of calibration is determining of the ratio and the constant 
<i>η</i> from a set of stars. 
The prerequisites leads to minimisation the function
</p>
<p>
<i>
Σ<sub>i</sub> ρ[(n<sub>i</sub> - r c<sub>i</sub>) / σ<sub>i</sub>]
</i>
</p>
<p>
where <i>σ² = r c + σ²<sub>x</sub> + …</i> (Poisson and 
others sources of noise), the unknown parameter <i>r = 1 / η</i>
and function <i>ρ</i>
is a <a href="https://en.wikipedia.org/wiki/Robust_statistics">robust function</a>
(classic <i>χ<sup>2</sup></i> or least squares has non-robust version
of <i>ρ[x]</i> as <i>x<sup>2</sup></i>).
</p>

<p>
If the parameter <i>r = 1 / η</i> is known, all objects can be transformed
to standard photon counts:
</p>
<p>
<i>
n<sub>i</sub> = r c<sub>i</sub>
</i>
</p>
<p>
and also to fluxes or magnitudes.
</p>

<p class="indent">
  The photon calibration approach is common to high-energy astrophysics,
  the flux-based for radio-astronomy and magnitude based to (near-)optical
  astronomy. Important advantages are:
</p>
<ul>
<li> Properties of Poisson distributions can be used
    for determination and check of statistical errors.
</li>   
<li>
   The robust statistical methods can be used. 
</li>
<li>
   The determination of colour transformations is more exact
    and clearer.
</li>
<li>
   The quantities can be easy used in multi-wavelength
    research.
</li>
<li>
   Photons are easy to use and understand because detected
   counts are same kind.
</li>
<li>
   The framework is not confusing.
</li>
</ul>

<p class="indent">
  Why magnitudes are confusing? Because bright objects has negative
  magnitude. Sum means products. Magnitude increases with distance. 
  Magnitudes are both relative and absolute quantity. Magnitudes has no units.
  There are none magnitude detectors. 
</p>

<figure>
<img src="res_fill.svg" alt="Residuals" title="Residuals of calibration">
<figcaption>Residuals on Landolt 101 field in V filter. Crosses
are relative difference between catalogue and measured counts 
<i>(n - r*c)/n</i> and the filling is expected <i>1-σ</i> interval
of errors. The filling has rougly limit as <i>1/√n</i>.
</figcaption>
</figure>



<h2 id="calibration">Photometry Calibration</h2>

<p>
   The basic photometry tool is <a href="man_phcal.html">phcal</a> 
   which computes calibration ratio <i>r=1/η</i> coded by CTPH keyword
   and creates a new frame with values in photons (not counts). The
   frame has both photometry table and image values calibrated in
   photons.
<!-- and is a central point of the whole calibration.-->
</p>


<!--
<h2>Photometry In Magnitudes</h2>

<p>
   Whereas, Munipack internally uses photons as a basic calibration
   quantity, another quantities are also available:
</p>
<ul>
<li>
     Magnitudes: instrumental, calibrated in a filter, STmag and ABmag
</li>
<li>
     Fluxes: energy fluxes in a filter and as a flux density per frequency
              or wavelength unit
</li>
</ul>
-->
  


<!--

<h2>Photometry system transformations</h2>

   


<h2>Aperture Photometry</h2>

<p>
aphot prepares aperture photometry. One is stored as a table HDU
in FITS file with APERPHOT extname. The structure of the table
is quilt extensive and intended for additional processing.
</p>


<h2>Frame conversion</h2>

<p>
To provide exactly defined photometry quantity. Utility for frame
conversion is included. 
</p>


<h2>Calibration Modes</h2>

<h2>Calibration field</h2>

<h2>Calibration Transformation</h2>

<h2>Multi-filter calibration</h2>

-->

<h2>See Also</h2>


<p>
Manuals:
<a href="man_aphot.html">Aperture Photometry</a>,
<a href="man_phcal.html">Photometry Calibration</a>,
<a href="man_phcorr.html">Photometric corrections</a>.
Data Formats:
<a href="dataform_tmseries.html">Time Series Tables</a>.
</p>

<footer>
<div style="float:left; margin-left:2em;">
Copyright &copy; 1997 – 2018
Filip Hroch (<a style="text-decoration: none" href="mailto:hroch@physics.muni.cz?Subject=Munipack" title="Author's Email"></a>), license <a href="http://www.gnu.org/licenses/gpl.html">GPLv3</a>.
</div>
<div style="float:right; margin-right:2em; margin-top:-0.2em;">
<a href="http://monteboo.blogspot.com/search/label/Munipack" title="Munipack on MonteBoo Blog"><img src="favicon-blogger.png" alt="Blogger"></a>
<a href="http://www.muni.cz/?lang=en" title="Masaryk University in Brno, Czech Republic"><img src="mu-logo.png" alt="Masaryk University"></a>
<a href="news_feed.xml" title="Munipack's Releases in Atom Syndication Format"><img src="Feed-icon.png" alt="Atom Feed"></a>
</div>
</footer>

</body>
</html>