/usr/share/doc/munipack/phoverview.html is in munipack-doc 0.5.10-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | <!DOCTYPE HTML>
<html lang="en">
<head>
<!-- meta -->
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="description" content="A general astronomical image processing software">
<meta name="author" content="Filip Hroch">
<link href="news_feed.xml" type="application/atom+xml" rel="alternate" title="Sitewide ATOM Feed" />
<link type="text/css" rel="stylesheet" href="munipack.css">
<link rel="shortcut icon" href="favicon.ico">
<title>Munipack ‒ Photometry Calibration Overview</title>
</head>
<body>
<header>
<a href="munipack.html"><img src="title_logo.png" alt="Munipack's logo" class="head"></a>
<div class="headhead">
<div class="headtitle">
<a class="headtitle" href="munipack.html">Munipack</a>
<a class="headsubtitle" href="munipack.html">A general astronomical image processing software</a>
</div>
<ul class="menu">
<li class="menu">◈ <a href="docs.html" class="menu">Documents</a></li>
<li class="menu">☺ <a href="guide.html" class="menu">User guide</a></li>
</ul>
</div>
</header>
<h1>Photometry Calibration Overview</h1>
<p class="abstract">
A photometry calibration, implemented by Munipack, is on base of
relation between detected counts and expected photons
as the natural consequence of use of photon counting detectors.
<!--
Ratio of observed and expected photons represents an efficiency
of the detection and establishes the calibration itself.
-->
</p>
<h2>Basic Ideas</h2>
<p>
The traditional way for calibrating of optical observations is to derive,
so called, instrumental magnitudes from some observed quantity. A magnitude offset,
between both instrumental and catalogue magnitudes, represents the calibration.
</p>
<p class="indent">
Munipack offers an alternative approach. Magnitudes of calibration stars are
converted to photons and the calibration establishes a relation
between expected amount of photons and observed counts.
</p>
<p class="indent">
The photon approach has been chosen for two reasons. For the principal reason,
the physical quantity which is detected by modern detectors are photons.
For the second reason: statistical properties are much more suitable for
robust statistics.
</p>
<p class="indent">
Why photons? Common modern devices detects photons.
Its energy and wavelength doesn't matter (at least for an ideal detector).
The amount of detected photons is quantity designed as the counts
of events that appeared in detector. An ideal detector has amount of counts
equal to amount of detected photons.
</p>
<h2>Photons</h2>
<p>
Light is composed from electromagnetic waves which carries an energy
emited by sources. The connection between the energy <i>E</i>
of <i>n</i> photons for a single wave with frequency <i>ν</i> is established
by <a href="http://en.wikipedia.org/wiki/Planck%E2%80%93Einstein_relation">
Planck's relation</a>:
</p>
<p>
<i>E = n h ν</i>
</p>
<p>
The energy <i>E</i> can be measured by a calorimeter (bolometer)
while photons <i>n</i> are collected by digital cameras or photomultipliers.
</p>
<p class="indent">
In astronomical photometry, we are collecting the energy or photons
for a time interval <i>T</i> falling on an area <i>A</i>.
To get values independent on the factors we are normalising
the (specific) quantities.
The energy per unit of time and area is replaced by energy flux
</p>
<p>
<i>E / T A → F</i>
</p>
<p class="indent">
and photons by photon flux
</p>
<p>
<i>n / T A → Φ</i>.
</p>
<p class="indent">
By using the substitutions, Planck's relation gets the form
</p>
<p>
<i>F = Φ h ν</i>
</p>
<p class="indent">
A relation between between energy flux <i>F</i>
and the apparent magnitude <i>m</i> in a filter can be determined
(inverse of
<a href="http://en.wikipedia.org/wiki/Apparent_magnitude">Pogsons's equation</a>) as
</p>
<p>
<i>
F = f<sub>ν0</sub> Δν ‧ 10<sup>-m/2.5</sup>
</i>
</p>
<p>
where <i>f<sub>ν0</sub></i> is a reference flux density (per frequency)
and <i>Δν</i> is the frequency width of the filter (the filter is modelled
as a rectangle). The product <i>f<sub>ν0</sub> Δν</i> is flux throughout
given filter. The <i>h ν</i> is energy of single photon.
For photon flux, the mean number of photons is flux per
photon energy, we have
</p>
<p>
<i>
Φ = (f<sub>ν0</sub> Δν) / (h ν) ‧ 10<sup>-m/2.5</sup>
</i>
</p>
<p class="indent">
Of course, photon flux can be also expresed in terms of wavelengts.
Use standard relation between frequency and wavelength
</p>
<p>
<i>ν = c / λ</i>,
</p>
<p>
form the flux as
</p>
<p>
<i>
Φ = (f<sub>λ0</sub> Δλ) / (h c / λ) ‧ 10<sup>-m/2.5</sup>.
</i>
</p>
<p class="indent">
Just for illustration, number of photons
falling on square meter per second in Johnson's V filter
(like eye's sensitivity) is summarised in following table
(constants approved <i>f<sub>ν0</sub></i> = 4 ‧ 10<sup>-11</sup> W/m<sup>2</sup>/nm,
<i>Δλ</i> = 70 nm, <i>λ</i> = 550 nm).
</p>
<table>
<caption>Energy and photon fluxes in visual band</caption>
<tr><th>magnitude</th><th>energy flux [W/m<sup>2</sup>]</th><th>photon flux [ph/s/m<sup>2</sup>]</th><th>example</th></tr>
<tr><td>0</td><td>10<sup>-9</sup></td><td>10<sup>10</sup></td><td>Vega</td></tr>
<tr><td>5</td><td>10<sup>-11</sup></td><td>10<sup>8</sup></td><td>naked eye limit</td></tr>
<tr><td>10</td><td>10<sup>-13</sup></td><td>10<sup>6</sup></td><td>bright quasars</td></tr>
<tr><td>15</td><td>10<sup>-15</sup></td><td>10<sup>4</sup></td><td>Kuiper belt objects</td></tr>
<tr><td>20</td><td>10<sup>-17</sup></td><td>10<sup>2</sup></td><td>optical afterglows</td></tr>
<tr><td>25</td><td>10<sup>-19</sup></td><td>1</td><td>Earth telescope limit</td></tr>
</table>
<h2>Calibration</h2>
<p class="indent">
A knowledge of magnitudes of standard stars can be used to compute expected
photon flux and also count of photons for our observations.
</p>
<p>
<i>n = A T Φ</i>
</p>
<p>
and we can compare it with actually observed photons <i>c = g d</i>
(where <i>g</i> is gain and <i>d</i> number of events given by our instrument):
</p>
<p><i>
η = c / n
</i></p>
<p>
which determines a sensitivity of both our and a standard instrument.
The ratio has meaning of light effectivity of full
device (detector, optical apparatus, atmosphere together).
</p>
<p class="indent">
Both catalogue <i>n</i> and measured quantities <i>c</i> are determined with
a certain uncertainity. Main source of the uncertainity comes from properties
of detection mechanism of photons which is known as
<a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a>.
The statistical error is related to count of detected photons as <i>σ² = c</i>
as can be see on <a href="http://monteboo.blogspot.cz/2011/03/photon-rain-statistics.html">simple numerical experiment</a>. As one can see, the uncertainity
depends on calibration star brightness which is absolutely strange
for common experiences with regular meassurements (time, lenght).
</p>
<p class="indent">
Direct computation of mean of ratio <i>c/n</i> is slightly uncorrect
because measurements has principially huge diffrences in precision.
Therefore, we are using the transformation to a new variable
</p>
<p><i>
(n - c/η) / σ
</i></p>
<p>
which has mean value 0 and dispersion 1. This is mathematically
little bit complicated way because detremination of <i>η</i> requires
solution of implicit non-linear equation.
</p>
<p class="indent">
The very hearth of calibration is determining of the ratio and the constant
<i>η</i> from a set of stars.
The prerequisites leads to minimisation the function
</p>
<p>
<i>
Σ<sub>i</sub> ρ[(n<sub>i</sub> - r c<sub>i</sub>) / σ<sub>i</sub>]
</i>
</p>
<p>
where <i>σ² = r c + σ²<sub>x</sub> + …</i> (Poisson and
others sources of noise), the unknown parameter <i>r = 1 / η</i>
and function <i>ρ</i>
is a <a href="https://en.wikipedia.org/wiki/Robust_statistics">robust function</a>
(classic <i>χ<sup>2</sup></i> or least squares has non-robust version
of <i>ρ[x]</i> as <i>x<sup>2</sup></i>).
</p>
<p>
If the parameter <i>r = 1 / η</i> is known, all objects can be transformed
to standard photon counts:
</p>
<p>
<i>
n<sub>i</sub> = r c<sub>i</sub>
</i>
</p>
<p>
and also to fluxes or magnitudes.
</p>
<p class="indent">
The photon calibration approach is common to high-energy astrophysics,
the flux-based for radio-astronomy and magnitude based to (near-)optical
astronomy. Important advantages are:
</p>
<ul>
<li> Properties of Poisson distributions can be used
for determination and check of statistical errors.
</li>
<li>
The robust statistical methods can be used.
</li>
<li>
The determination of colour transformations is more exact
and clearer.
</li>
<li>
The quantities can be easy used in multi-wavelength
research.
</li>
<li>
Photons are easy to use and understand because detected
counts are same kind.
</li>
<li>
The framework is not confusing.
</li>
</ul>
<p class="indent">
Why magnitudes are confusing? Because bright objects has negative
magnitude. Sum means products. Magnitude increases with distance.
Magnitudes are both relative and absolute quantity. Magnitudes has no units.
There are none magnitude detectors.
</p>
<figure>
<img src="res_fill.svg" alt="Residuals" title="Residuals of calibration">
<figcaption>Residuals on Landolt 101 field in V filter. Crosses
are relative difference between catalogue and measured counts
<i>(n - r*c)/n</i> and the filling is expected <i>1-σ</i> interval
of errors. The filling has rougly limit as <i>1/√n</i>.
</figcaption>
</figure>
<h2 id="calibration">Photometry Calibration</h2>
<p>
The basic photometry tool is <a href="man_phcal.html">phcal</a>
which computes calibration ratio <i>r=1/η</i> coded by CTPH keyword
and creates a new frame with values in photons (not counts). The
frame has both photometry table and image values calibrated in
photons.
<!-- and is a central point of the whole calibration.-->
</p>
<!--
<h2>Photometry In Magnitudes</h2>
<p>
Whereas, Munipack internally uses photons as a basic calibration
quantity, another quantities are also available:
</p>
<ul>
<li>
Magnitudes: instrumental, calibrated in a filter, STmag and ABmag
</li>
<li>
Fluxes: energy fluxes in a filter and as a flux density per frequency
or wavelength unit
</li>
</ul>
-->
<!--
<h2>Photometry system transformations</h2>
<h2>Aperture Photometry</h2>
<p>
aphot prepares aperture photometry. One is stored as a table HDU
in FITS file with APERPHOT extname. The structure of the table
is quilt extensive and intended for additional processing.
</p>
<h2>Frame conversion</h2>
<p>
To provide exactly defined photometry quantity. Utility for frame
conversion is included.
</p>
<h2>Calibration Modes</h2>
<h2>Calibration field</h2>
<h2>Calibration Transformation</h2>
<h2>Multi-filter calibration</h2>
-->
<h2>See Also</h2>
<p>
Manuals:
<a href="man_aphot.html">Aperture Photometry</a>,
<a href="man_phcal.html">Photometry Calibration</a>,
<a href="man_phcorr.html">Photometric corrections</a>.
Data Formats:
<a href="dataform_tmseries.html">Time Series Tables</a>.
</p>
<footer>
<div style="float:left; margin-left:2em;">
Copyright © 1997 – 2018
Filip Hroch (<a style="text-decoration: none" href="mailto:hroch@physics.muni.cz?Subject=Munipack" title="Author's Email">✉</a>), license <a href="http://www.gnu.org/licenses/gpl.html">GPLv3</a>.
</div>
<div style="float:right; margin-right:2em; margin-top:-0.2em;">
<a href="http://monteboo.blogspot.com/search/label/Munipack" title="Munipack on MonteBoo Blog"><img src="favicon-blogger.png" alt="Blogger"></a>
<a href="http://www.muni.cz/?lang=en" title="Masaryk University in Brno, Czech Republic"><img src="mu-logo.png" alt="Masaryk University"></a>
<a href="news_feed.xml" title="Munipack's Releases in Atom Syndication Format"><img src="Feed-icon.png" alt="Atom Feed"></a>
</div>
</footer>
</body>
</html>
|