This file is indexed.

/usr/lib/nodejs/geographiclib/src/GeodesicLine.js is in node-geographiclib 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
 * GeodesicLine.js
 * Transcription of GeodesicLine.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

// Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js

(function(
  g,
  /**
   * @exports GeographicLib/GeodesicLine
   * @description Solve geodesic problems on a single geodesic line via the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
   *   class.
   */
  l, m) {

  /**
   * @class
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   * @property {number} lat1 the initial latitude (degrees).
   * @property {number} lon1 the initial longitude (degrees).
   * @property {number} azi1 the initial azimuth (degrees).
   * @property {number} salp1 the sine of the azimuth at the first point.
   * @property {number} calp1 the cosine the azimuth at the first point.
   * @property {number} s13 the distance to point 3 (meters).
   * @property {number} a13 the arc length to point 3 (degrees).
   * @property {bitmask} caps the capabilities of the object.
   * @summary Initialize a GeodesicLine object.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   * @classdesc Performs geodesic calculations along a given geodesic line.
   *   This object is usually instantiated by
   *   {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
   *   The methods
   *   {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
   *   Geodesic.DirectLine} and
   *   {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
   *   Geodesic.InverseLine} set in addition the position of a reference point
   *   3.
   * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
   *   Geodesic} object.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include; LATITUDE | AZIMUTH are always included.
   */
  l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
    var t, cbet1, sbet1, eps, s, c;
    if (!caps) caps = g.STANDARD | g.DISTANCE_IN;

    this.a = geod.a;
    this.f = geod.f;
    this._b = geod._b;
    this._c2 = geod._c2;
    this._f1 = geod._f1;
    this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;

    this.lat1 = m.LatFix(lat1);
    this.lon1 = lon1;
    if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
      this.azi1 = m.AngNormalize(azi1);
      t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
    } else {
      this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
    }
    t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
    // norm(sbet1, cbet1);
    t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
    // Ensure cbet1 = +epsilon at poles
    cbet1 = Math.max(g.tiny_, cbet1);
    this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));

    // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
    this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
    // Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
    // is slightly better (consider the case salp1 = 0).
    this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
    // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
    // sig = 0 is nearest northward crossing of equator.
    // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
    // With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
    // With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
    // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
    // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
    // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
    // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
    this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
    this._csig1 = this._comg1 =
      sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
    // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
    t = m.hypot(this._ssig1, this._csig1);
    this._ssig1 /= t; this._csig1 /= t;
    // norm(this._somg1, this._comg1); -- don't need to normalize!

    this._k2 = m.sq(this._calp0) * geod._ep2;
    eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);

    if (this.caps & g.CAP_C1) {
      this._A1m1 = g.A1m1f(eps);
      this._C1a = new Array(g.nC1_ + 1);
      g.C1f(eps, this._C1a);
      this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
      s = Math.sin(this._B11); c = Math.cos(this._B11);
      // tau1 = sig1 + B11
      this._stau1 = this._ssig1 * c + this._csig1 * s;
      this._ctau1 = this._csig1 * c - this._ssig1 * s;
      // Not necessary because C1pa reverts C1a
      //    _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
    }

    if (this.caps & g.CAP_C1p) {
      this._C1pa = new Array(g.nC1p_ + 1);
      g.C1pf(eps, this._C1pa);
    }

    if (this.caps & g.CAP_C2) {
      this._A2m1 = g.A2m1f(eps);
      this._C2a = new Array(g.nC2_ + 1);
      g.C2f(eps, this._C2a);
      this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
    }

    if (this.caps & g.CAP_C3) {
      this._C3a = new Array(g.nC3_);
      geod.C3f(eps, this._C3a);
      this._A3c = -this.f * this._salp0 * geod.A3f(eps);
      this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
    }

    if (this.caps & g.CAP_C4) {
      this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
      geod.C4f(eps, this._C4a);
      // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
      this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
      this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
    }

    this.a13 = this.s13 = Number.NaN;
  };

  /**
   * @summary Find the position on the line (general case).
   * @param {bool} arcmode is the next parameter an arc length?
   * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
   *   first point to the second in (arcmode ? degrees : meters).
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
                                                  outmask) {
    var vals = {},
        sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
        omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
        B22, AB2, J12, t, B42, salp12, calp12;
    if (!outmask) outmask = g.STANDARD;
    else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
    outmask &= this.caps & g.OUT_MASK;
    vals.lat1 = this.lat1; vals.azi1 = this.azi1;
    vals.lon1 = outmask & g.LONG_UNROLL ?
      this.lon1 : m.AngNormalize(this.lon1);
    if (arcmode)
      vals.a12 = s12_a12;
    else
      vals.s12 = s12_a12;
    if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
      // Uninitialized or impossible distance calculation requested
      vals.a12 = Number.NaN;
      return vals;
    }

    // Avoid warning about uninitialized B12.
    B12 = 0; AB1 = 0;
    if (arcmode) {
      // Interpret s12_a12 as spherical arc length
      sig12 = s12_a12 * m.degree;
      t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
    } else {
      // Interpret s12_a12 as distance
      tau12 = s12_a12 / (this._b * (1 + this._A1m1));
      s = Math.sin(tau12);
      c = Math.cos(tau12);
      // tau2 = tau1 + tau12
      B12 = -g.SinCosSeries(true,
                            this._stau1 * c + this._ctau1 * s,
                            this._ctau1 * c - this._stau1 * s,
                            this._C1pa);
      sig12 = tau12 - (B12 - this._B11);
      ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
      if (Math.abs(this.f) > 0.01) {
        // Reverted distance series is inaccurate for |f| > 1/100, so correct
        // sig12 with 1 Newton iteration.  The following table shows the
        // approximate maximum error for a = WGS_a() and various f relative to
        // GeodesicExact.
        //     erri = the error in the inverse solution (nm)
        //     errd = the error in the direct solution (series only) (nm)
        //     errda = the error in the direct solution
        //             (series + 1 Newton) (nm)
        //
        //       f     erri  errd errda
        //     -1/5    12e6 1.2e9  69e6
        //     -1/10  123e3  12e6 765e3
        //     -1/20   1110 108e3  7155
        //     -1/50  18.63 200.9 27.12
        //     -1/100 18.63 23.78 23.37
        //     -1/150 18.63 21.05 20.26
        //      1/150 22.35 24.73 25.83
        //      1/100 22.35 25.03 25.31
        //      1/50  29.80 231.9 30.44
        //      1/20   5376 146e3  10e3
        //      1/10  829e3  22e6 1.5e6
        //      1/5   157e6 3.8e9 280e6
        ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
        csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
        serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
          s12_a12 / this._b;
        sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
        ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
        // Update B12 below
      }
    }

    // sig2 = sig1 + sig12
    ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
    csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
    dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
    if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      if (arcmode || Math.abs(this.f) > 0.01)
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
      AB1 = (1 + this._A1m1) * (B12 - this._B11);
    }
    // sin(bet2) = cos(alp0) * sin(sig2)
    sbet2 = this._calp0 * ssig2;
    // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
    cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
    if (cbet2 === 0)
      // I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
      cbet2 = csig2 = g.tiny_;
    // tan(alp0) = cos(sig2)*tan(alp2)
    salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize

    if (arcmode && (outmask & g.DISTANCE))
      vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);

    if (outmask & g.LONGITUDE) {
      // tan(omg2) = sin(alp0) * tan(sig2)
      somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
      E = m.copysign(1, this._salp0);
      // omg12 = omg2 - omg1
      omg12 = outmask & g.LONG_UNROLL ?
        E * (sig12 -
             (Math.atan2(ssig2, csig2) -
              Math.atan2(this._ssig1, this._csig1)) +
             (Math.atan2(E * somg2, comg2) -
              Math.atan2(E * this._somg1, this._comg1))) :
        Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
                     comg2 * this._comg1 + somg2 * this._somg1);
      lam12 = omg12 + this._A3c *
        ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
                   this._B31));
      lon12 = lam12 / m.degree;
      vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
        m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
    }

    if (outmask & g.LATITUDE)
      vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);

    if (outmask & g.AZIMUTH)
      vals.azi2 = m.atan2d(salp2, calp2);

    if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
      AB2 = (1 + this._A2m1) * (B22 - this._B21);
      J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
      if (outmask & g.REDUCEDLENGTH)
        // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
        // accurate cancellation in the case of coincident points.
        vals.m12 = this._b * ((      dn2 * (this._csig1 * ssig2) -
                               this._dn1 * (this._ssig1 * csig2)) -
                              this._csig1 * csig2 * J12);
      if (outmask & g.GEODESICSCALE) {
        t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
          (this._dn1 + dn2);
        vals.M12 = csig12 +
          (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
        vals.M21 = csig12 -
          (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
      }
    }

    if (outmask & g.AREA) {
      B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
      if (this._calp0 === 0 || this._salp0 === 0) {
        // alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * this.calp1 - calp2 * this.salp1;
        calp12 = calp2 * this.calp1 + salp2 * this.salp1;
      } else {
        // tan(alp) = tan(alp0) * sec(sig)
        // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
        // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
        // If csig12 > 0, write
        //   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
        // else
        //   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
        // No need to normalize
        salp12 = this._calp0 * this._salp0 *
          (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
           ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
        calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
      }
      vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
        this._A4 * (B42 - this._B41);
    }

    if (!arcmode)
      vals.a12 = sig12 / m.degree;
    return vals;
  };

  /**
   * @summary Find the position on the line given s12.
   * @param {number} s12 the distance from the first point to the second in
   *   meters.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.Position = function(s12, outmask) {
    return this.GenPosition(false, s12, outmask);
  };

  /**
   * @summary Find the position on the line given a12.
   * @param {number} a12 the arc length from the first point to the second in
   *   degrees.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set.  For details on the outmask parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
    return this.GenPosition(true, a12, outmask);
  };

  /**
   * @summary Specify position of point 3 in terms of either distance or arc
   *   length.
   * @param {bool} arcmode boolean flag determining the meaning of the second
   *   parameter; if arcmode is false, then the GeodesicLine object must have
   *   been constructed with caps |= DISTANCE_IN.
   * @param {number} s13_a13 if arcmode is false, this is the distance from
   *   point 1 to point 3 (meters); otherwise it is the arc length from
   *   point 1 to point 3 (degrees); it can be negative.
   **********************************************************************/
  l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
    if (arcmode)
      this.SetArc(s13_a13);
    else
      this.SetDistance(s13_a13);
  };

  /**
   * @summary Specify position of point 3 in terms distance.
   * @param {number} s13 the distance from point 1 to point 3 (meters); it
   *   can be negative.
   **********************************************************************/
  l.GeodesicLine.prototype.SetDistance = function(s13) {
    var r;
    this.s13 = s13;
    r = this.GenPosition(false, this.s13, g.ARC);
    this.a13 = 0 + r.a12;       // the 0+ converts undefined into NaN
  };

  /**
   * @summary Specify position of point 3 in terms of arc length.
   * @param {number} a13 the arc length from point 1 to point 3 (degrees);
   *   it can be negative.
   **********************************************************************/
  l.GeodesicLine.prototype.SetArc = function(a13) {
    var r;
    this.a13 = a13;
    r = this.GenPosition(true, this.a13, g.DISTANCE);
    this.s13 = 0 + r.s12;       // the 0+ converts undefined into NaN
  };

})(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);