This file is indexed.

/usr/lib/nodejs/geographiclib/src/Math.js is in node-geographiclib 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
 * Math.js
 * Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
 * JavaScript.
 *
 * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

/**
 * @namespace GeographicLib
 * @description The parent namespace for the following modules:
 * - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
 *   engine for solving geodesic problems via the
 *   {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
 * - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
 *   computes points along a single geodesic line via the
 *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
 *   class.
 * - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
 *   computes the area of a geodesic polygon via the
 *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
 *   class.
 * - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
 *   and encoding of angles in degree, minutes, and seconds, via static
 *   functions in this module.
 * - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
 *   constants specifying the version numbers and the parameters for the WGS84
 *   ellipsoid.
 *
 * The following modules are used internally by the package:
 * - {@link module:GeographicLib/Math GeographicLib/Math} defines various
 *   mathematical functions.
 * - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
 *   interally used by
 *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
 *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
 *   for summing the contributions to the area of a polygon.
 */
"use strict";
var GeographicLib = {};
GeographicLib.Constants = {};
GeographicLib.Math = {};
GeographicLib.Accumulator = {};

(function(
  /**
   * @exports GeographicLib/Constants
   * @description Define constants defining the version and WGS84 parameters.
   */
  c) {

  /**
   * @constant
   * @summary WGS84 parameters.
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   */
  c.WGS84 = { a: 6378137, f: 1/298.257223563 };
  /**
   * @constant
   * @summary an array of version numbers.
   * @property {number} major the major version number.
   * @property {number} minor the minor version number.
   * @property {number} patch the patch number.
   */
  c.version = { major: 1, minor: 49, patch: 0 };
  /**
   * @constant
   * @summary version string
   */
  c.version_string = "1.49";
})(GeographicLib.Constants);

(function(
  /**
   * @exports GeographicLib/Math
   * @description Some useful mathematical constants and functions (mainly for
   *   internal use).
   */
  m) {

  /**
   * @summary The number of digits of precision in floating-point numbers.
   * @constant {number}
   */
  m.digits = 53;
  /**
   * @summary The machine epsilon.
   * @constant {number}
   */
  m.epsilon = Math.pow(0.5, m.digits - 1);
  /**
   * @summary The factor to convert degrees to radians.
   * @constant {number}
   */
  m.degree = Math.PI/180;

  /**
   * @summary Square a number.
   * @param {number} x the number.
   * @returns {number} the square.
   */
  m.sq = function(x) { return x * x; };

  /**
   * @summary The hypotenuse function.
   * @param {number} x the first side.
   * @param {number} y the second side.
   * @returns {number} the hypotenuse.
   */
  m.hypot = function(x, y) {
    var a, b;
    x = Math.abs(x);
    y = Math.abs(y);
    a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
    return a * Math.sqrt(1 + b * b);
  };

  /**
   * @summary Cube root function.
   * @param {number} x the argument.
   * @returns {number} the real cube root.
   */
  m.cbrt = function(x) {
    var y = Math.pow(Math.abs(x), 1/3);
    return x < 0 ? -y : y;
  };

  /**
   * @summary The log1p function.
   * @param {number} x the argument.
   * @returns {number} log(1 + x).
   */
  m.log1p = function(x) {
    var y = 1 + x,
        z = y - 1;
    // Here's the explanation for this magic: y = 1 + z, exactly, and z
    // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
    // a good approximation to the true log(1 + x)/x.  The multiplication x *
    // (log(y)/z) introduces little additional error.
    return z === 0 ? x : x * Math.log(y) / z;
  };

  /**
   * @summary Inverse hyperbolic tangent.
   * @param {number} x the argument.
   * @returns {number} tanh<sup>&minus;1</sup> x.
   */
  m.atanh = function(x) {
    var y = Math.abs(x);          // Enforce odd parity
    y = m.log1p(2 * y/(1 - y))/2;
    return x < 0 ? -y : y;
  };

  /**
   * @summary Copy the sign.
   * @param {number} x gives the magitude of the result.
   * @param {number} y gives the sign of the result.
   * @returns {number} value with the magnitude of x and with the sign of y.
   */
  m.copysign = function(x, y) {
    return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
  };

  /**
   * @summary An error-free sum.
   * @param {number} u
   * @param {number} v
   * @returns {object} sum with sum.s = round(u + v) and sum.t is u + v &minus;
   *   round(u + v)
   */
  m.sum = function(u, v) {
    var s = u + v,
        up = s - v,
        vpp = s - up,
        t;
    up -= u;
    vpp -= v;
    t = -(up + vpp);
    // u + v =       s      + t
    //       = round(u + v) + t
    return {s: s, t: t};
  };

  /**
   * @summary Evaluate a polynomial.
   * @param {integer} N the order of the polynomial.
   * @param {array} p the coefficient array (of size N + 1) (leading
   *   order coefficient first)
   * @param {number} x the variable.
   * @returns {number} the value of the polynomial.
   */
  m.polyval = function(N, p, s, x) {
    var y = N < 0 ? 0 : p[s++];
    while (--N >= 0) y = y * x + p[s++];
    return y;
  };

  /**
   * @summary Coarsen a value close to zero.
   * @param {number} x
   * @returns {number} the coarsened value.
   */
  m.AngRound = function(x) {
    // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
    // reals = 0.7 pm on the earth if x is an angle in degrees.  (This is about
    // 1000 times more resolution than we get with angles around 90 degrees.)
    // We use this to avoid having to deal with near singular cases when x is
    // non-zero but tiny (e.g., 1.0e-200).  This converts -0 to +0; however
    // tiny negative numbers get converted to -0.
    if (x === 0) return x;
    var z = 1/16,
        y = Math.abs(x);
    // The compiler mustn't "simplify" z - (z - y) to y
    y = y < z ? z - (z - y) : y;
    return x < 0 ? -y : y;
  };

  /**
   * @summary Normalize an angle.
   * @param {number} x the angle in degrees.
   * @returns {number} the angle reduced to the range (&minus;180&deg;,
   *   180&deg;].
   */
  m.AngNormalize = function(x) {
    // Place angle in [-180, 180).
    x = x % 360;
    return x <= -180 ? x + 360 : (x <= 180 ? x : x - 360);
  };

  /**
   * @summary Normalize a latitude.
   * @param {number} x the angle in degrees.
   * @returns {number} x if it is in the range [&minus;90&deg;, 90&deg;],
   *   otherwise return NaN.
   */
  m.LatFix = function(x) {
    // Replace angle with NaN if outside [-90, 90].
    return Math.abs(x) > 90 ? Number.NaN : x;
  };

  /**
   * @summary The exact difference of two angles reduced to (&minus;180&deg;,
   *   180&deg;]
   * @param {number} x the first angle in degrees.
   * @param {number} y the second angle in degrees.
   * @return {object} diff the exact difference, y &minus; x.
   *
   * This computes z = y &minus; x exactly, reduced to (&minus;180&deg;,
   * 180&deg;]; and then sets diff.s = d = round(z) and diff.t = e = z &minus;
   * round(z).  If d = &minus;180, then e &gt; 0; If d = 180, then e &le; 0.
   */
  m.AngDiff = function(x, y) {
    // Compute y - x and reduce to [-180,180] accurately.
    var r = m.sum(m.AngNormalize(-x), m.AngNormalize(y)),
        d = m.AngNormalize(r.s),
        t = r.t;
    return m.sum(d === 180 && t > 0 ? -180 : d, t);
  };

  /**
   * @summary Evaluate the sine and cosine function with the argument in
   *   degrees
   * @param {number} x in degrees.
   * @returns {object} r with r.s = sin(x) and r.c = cos(x).
   */
  m.sincosd = function(x) {
    // In order to minimize round-off errors, this function exactly reduces
    // the argument to the range [-45, 45] before converting it to radians.
    var r, q, s, c, sinx, cosx;
    r = x % 360;
    q = Math.floor(r / 90 + 0.5);
    r -= 90 * q;
    // now abs(r) <= 45
    r *= this.degree;
    // Possibly could call the gnu extension sincos
    s = Math.sin(r); c = Math.cos(r);
    switch (q & 3) {
      case 0:  sinx =  s; cosx =  c; break;
      case 1:  sinx =  c; cosx = -s; break;
      case 2:  sinx = -s; cosx = -c; break;
      default: sinx = -c; cosx =  s; break; // case 3
    }
    if (x !== 0) { sinx += 0; cosx += 0; }
    return {s: sinx, c: cosx};
  };

  /**
   * @summary Evaluate the atan2 function with the result in degrees
   * @param {number} y
   * @param {number} x
   * @returns atan2(y, x) in degrees, in the range (&minus;180&deg;
   *   180&deg;].
   */
  m.atan2d = function(y, x) {
    // In order to minimize round-off errors, this function rearranges the
    // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
    // converting it to degrees and mapping the result to the correct
    // quadrant.
    var q = 0, t, ang;
    if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
    if (x < 0) { x = -x; ++q; }
    // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
    ang = Math.atan2(y, x) / this.degree;
    switch (q) {
      // Note that atan2d(-0.0, 1.0) will return -0.  However, we expect that
      // atan2d will not be called with y = -0.  If need be, include
      //
      //   case 0: ang = 0 + ang; break;
      //
      // and handle mpfr as in AngRound.
      case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
      case 2: ang =  90 - ang; break;
      case 3: ang = -90 + ang; break;
    }
    return ang;
  };
})(GeographicLib.Math);

(function(
  /**
   * @exports GeographicLib/Accumulator
   * @description Accurate summation via the
   *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
   *   (mainly for internal use).
   */
  a, m) {

  /**
   * @class
   * @summary Accurate summation of many numbers.
   * @classdesc This allows many numbers to be added together with twice the
   *   normal precision.  In the documentation of the member functions, sum
   *   stands for the value currently held in the accumulator.
   * @param {number | Accumulator} [y = 0]  set sum = y.
   */
  a.Accumulator = function(y) {
    this.Set(y);
  };

  /**
   * @summary Set the accumulator to a number.
   * @param {number | Accumulator} [y = 0] set sum = y.
   */
  a.Accumulator.prototype.Set = function(y) {
    if (!y) y = 0;
    if (y.constructor === a.Accumulator) {
      this._s = y._s;
      this._t = y._t;
    } else {
      this._s = y;
      this._t = 0;
    }
  };

  /**
   * @summary Add a number to the accumulator.
   * @param {number} [y = 0] set sum += y.
   */
  a.Accumulator.prototype.Add = function(y) {
    // Here's Shewchuk's solution...
    // Accumulate starting at least significant end
    var u = m.sum(y, this._t),
        v = m.sum(u.s, this._s);
    u = u.t;
    this._s = v.s;
    this._t = v.t;
    // Start is _s, _t decreasing and non-adjacent.  Sum is now (s + t + u)
    // exactly with s, t, u non-adjacent and in decreasing order (except
    // for possible zeros).  The following code tries to normalize the
    // result.  Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
    // _s).  The follow does an approximate job (and maintains the
    // decreasing non-adjacent property).  Here are two "failures" using
    // 3-bit floats:
    //
    // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
    // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
    //
    // Case 2: _s+_t is not as close to s+t+u as it shold be
    // [64, 5] + 4 -> [64, 8, 1] -> [64,  8] = 72 (off by 1)
    //                    should be [80, -7] = 73 (exact)
    //
    // "Fixing" these problems is probably not worth the expense.  The
    // representation inevitably leads to small errors in the accumulated
    // values.  The additional errors illustrated here amount to 1 ulp of
    // the less significant word during each addition to the Accumulator
    // and an additional possible error of 1 ulp in the reported sum.
    //
    // Incidentally, the "ideal" representation described above is not
    // canonical, because _s = round(_s + _t) may not be true.  For
    // example, with 3-bit floats:
    //
    // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
    // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
    //
    if (this._s === 0)          // This implies t == 0,
      this._s = u;              // so result is u
    else
      this._t += u;             // otherwise just accumulate u to t.
  };

  /**
   * @summary Return the result of adding a number to sum (but
   *   don't change sum).
   * @param {number} [y = 0] the number to be added to the sum.
   * @return sum + y.
   */
  a.Accumulator.prototype.Sum = function(y) {
    var b;
    if (!y)
      return this._s;
    else {
      b = new a.Accumulator(this);
      b.Add(y);
      return b._s;
    }
  };

  /**
   * @summary Set sum = &minus;sum.
   */
  a.Accumulator.prototype.Negate = function() {
    this._s *= -1;
    this._t *= -1;
  };
})(GeographicLib.Accumulator, GeographicLib.Math);