This file is indexed.

/usr/lib/nodejs/geographiclib/src/PolygonArea.js is in node-geographiclib 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*
 * PolygonArea.js
 * Transcription of PolygonArea.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

// Load AFTER GeographicLib/Math.js and GeographicLib/Geodesic.js

(function(
  /**
   * @exports GeographicLib/PolygonArea
   * @description Compute the area of geodesic polygons via the
   *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
   *   class.
   */
  p, g, m, a) {

  var transit, transitdirect;
  transit = function(lon1, lon2) {
    // Return 1 or -1 if crossing prime meridian in east or west direction.
    // Otherwise return zero.
    var lon12, cross;
    // Compute lon12 the same way as Geodesic::Inverse.
    lon1 = m.AngNormalize(lon1);
    lon2 = m.AngNormalize(lon2);
    lon12 = m.AngDiff(lon1, lon2).s;
    cross = lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
      (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
    return cross;
  };

  // an alternate version of transit to deal with longitudes in the direct
  // problem.
  transitdirect = function(lon1, lon2) {
    // We want to compute exactly
    //   int(floor(lon2 / 360)) - int(floor(lon1 / 360))
    // Since we only need the parity of the result we can use std::remquo but
    // this is buggy with g++ 4.8.3 and requires C++11.  So instead we do
    lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
    return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
             ((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
  };

  /**
   * @class
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   * @property {bool} polyline whether the PolygonArea object describes a
   *   polyline or a polygon.
   * @property {number} num the number of vertices so far.
   * @property {number} lat the current latitude (degrees).
   * @property {number} lon the current longitude (degrees).
   * @summary Initialize a PolygonArea object.
   * @classdesc Computes the area and perimeter of a geodesic polygon.
   *   This object is usually instantiated by
   *   {@link module:GeographicLib/Geodesic.Geodesic#Polygon Geodesic.Polygon}.
   * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
   *   Geodesic} object.
   * @param {bool} [polyline = false] if true the new PolygonArea object
   *   describes a polyline instead of a polygon.
   */
  p.PolygonArea = function(geod, polyline) {
    this._geod = geod;
    this.a = this._geod.a;
    this.f = this._geod.f;
    this._area0 = 4 * Math.PI * geod._c2;
    this.polyline = !polyline ? false : polyline;
    this._mask = g.LATITUDE | g.LONGITUDE | g.DISTANCE |
          (this.polyline ? g.NONE : g.AREA | g.LONG_UNROLL);
    if (!this.polyline)
      this._areasum = new a.Accumulator(0);
    this._perimetersum = new a.Accumulator(0);
    this.Clear();
  };

  /**
   * @summary Clear the PolygonArea object, setting the number of vertices to
   *   0.
   */
  p.PolygonArea.prototype.Clear = function() {
    this.num = 0;
    this._crossings = 0;
    if (!this.polyline)
      this._areasum.Set(0);
    this._perimetersum.Set(0);
    this._lat0 = this._lon0 = this.lat = this.lon = Number.NaN;
  };

  /**
   * @summary Add the next vertex to the polygon.
   * @param {number} lat the latitude of the point (degrees).
   * @param {number} lon the longitude of the point (degrees).
   * @description This adds an edge from the current vertex to the new vertex.
   */
  p.PolygonArea.prototype.AddPoint = function(lat, lon) {
    var t;
    if (this.num === 0) {
      this._lat0 = this.lat = lat;
      this._lon0 = this.lon = lon;
    } else {
      t = this._geod.Inverse(this.lat, this.lon, lat, lon, this._mask);
      this._perimetersum.Add(t.s12);
      if (!this.polyline) {
        this._areasum.Add(t.S12);
        this._crossings += transit(this.lon, lon);
      }
      this.lat = lat;
      this.lon = lon;
    }
    ++this.num;
  };

  /**
   * @summary Add the next edge to the polygon.
   * @param {number} azi the azimuth at the current the point (degrees).
   * @param {number} s the length of the edge (meters).
   * @description This specifies the new vertex in terms of the edge from the
   *   current vertex.
   */
  p.PolygonArea.prototype.AddEdge = function(azi, s) {
    var t;
    if (this.num) {
      t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
      this._perimetersum.Add(s);
      if (!this.polyline) {
        this._areasum.Add(t.S12);
        this._crossings += transitdirect(this.lon, t.lon2);
      }
      this.lat = t.lat2;
      this.lon = t.lon2;
    }
    ++this.num;
  };

  /**
   * @summary Compute the perimeter and area of the polygon.
   * @param {bool} reverse if true then clockwise (instead of
   *   counter-clockwise) traversal counts as a positive area.
   * @param {bool} sign if true then return a signed result for the area if the
   *   polygon is traversed in the "wrong" direction instead of returning the
   *   area for the rest of the earth.
   * @returns {object} r where r.number is the number of vertices, r.perimeter
   *   is the perimeter (meters), and r.area (only returned if polyline is
   *   false) is the area (meters<sup>2</sup>).
   * @description If the object is a polygon (and not a polygon), the perimeter
   *   includes the length of a final edge connecting the current point to the
   *   initial point.  If the object is a polyline, then area is nan.  More
   *   points can be added to the polygon after this call.
   */
  p.PolygonArea.prototype.Compute = function(reverse, sign) {
    var vals = {number: this.num}, t, tempsum, crossings;
    if (this.num < 2) {
      vals.perimeter = 0;
      if (!this.polyline)
        vals.area = 0;
      return vals;
    }
    if (this.polyline) {
      vals.perimeter = this._perimetersum.Sum();
      return vals;
    }
    t = this._geod.Inverse(this.lat, this.lon, this._lat0, this._lon0,
                           this._mask);
    vals.perimeter = this._perimetersum.Sum(t.s12);
    tempsum = new a.Accumulator(this._areasum);
    tempsum.Add(t.S12);
    crossings = this._crossings + transit(this.lon, this._lon0);
    if (crossings & 1)
      tempsum.Add( (tempsum.Sum() < 0 ? 1 : -1) * this._area0/2 );
    // area is with the clockwise sense.  If !reverse convert to
    // counter-clockwise convention.
    if (!reverse)
      tempsum.Negate();
    // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
    if (sign) {
      if (tempsum.Sum() > this._area0/2)
        tempsum.Add( -this._area0 );
      else if (tempsum.Sum() <= -this._area0/2)
        tempsum.Add( +this._area0 );
    } else {
      if (tempsum.Sum() >= this._area0)
        tempsum.Add( -this._area0 );
      else if (tempsum < 0)
        tempsum.Add( -this._area0 );
    }
    vals.area = tempsum.Sum();
    return vals;
  };

  /**
   * @summary Compute the perimeter and area of the polygon with a tentative
   *   new vertex.
   * @param {number} lat the latitude of the point (degrees).
   * @param {number} lon the longitude of the point (degrees).
   * @param {bool} reverse if true then clockwise (instead of
   *   counter-clockwise) traversal counts as a positive area.
   * @param {bool} sign if true then return a signed result for the area if the
   *   polygon is traversed in the "wrong" direction instead of returning the
   * @returns {object} r where r.number is the number of vertices, r.perimeter
   *   is the perimeter (meters), and r.area (only returned if polyline is
   *   false) is the area (meters<sup>2</sup>).
   * @description A new vertex is *not* added to the polygon.
   */
  p.PolygonArea.prototype.TestPoint = function(lat, lon, reverse, sign) {
    var vals = {number: this.num + 1}, t, tempsum, crossings, i;
    if (this.num === 0) {
      vals.perimeter = 0;
      if (!this.polyline)
        vals.area = 0;
      return vals;
    }
    vals.perimeter = this._perimetersum.Sum();
    tempsum = this.polyline ? 0 : this._areasum.Sum();
    crossings = this._crossings;
    for (i = 0; i < (this.polyline ? 1 : 2); ++i) {
      t = this._geod.Inverse(
       i === 0 ? this.lat : lat, i === 0 ? this.lon : lon,
       i !== 0 ? this._lat0 : lat, i !== 0 ? this._lon0 : lon,
       this._mask);
      vals.perimeter += t.s12;
      if (!this.polyline) {
        tempsum += t.S12;
        crossings += transit(i === 0 ? this.lon : lon,
                               i !== 0 ? this._lon0 : lon);
      }
    }

    if (this.polyline)
      return vals;

    if (crossings & 1)
      tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
    // area is with the clockwise sense.  If !reverse convert to
    // counter-clockwise convention.
    if (!reverse)
      tempsum *= -1;
    // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
    if (sign) {
      if (tempsum > this._area0/2)
        tempsum -= this._area0;
      else if (tempsum <= -this._area0/2)
        tempsum += this._area0;
    } else {
      if (tempsum >= this._area0)
        tempsum -= this._area0;
      else if (tempsum < 0)
        tempsum += this._area0;
    }
    vals.area = tempsum;
    return vals;
  };

  /**
   * @summary Compute the perimeter and area of the polygon with a tentative
   *   new edge.
   * @param {number} azi the azimuth of the edge (degrees).
   * @param {number} s the length of the edge (meters).
   * @param {bool} reverse if true then clockwise (instead of
   *   counter-clockwise) traversal counts as a positive area.
   * @param {bool} sign if true then return a signed result for the area if the
   *   polygon is traversed in the "wrong" direction instead of returning the
   * @returns {object} r where r.number is the number of vertices, r.perimeter
   *   is the perimeter (meters), and r.area (only returned if polyline is
   *   false) is the area (meters<sup>2</sup>).
   * @description A new vertex is *not* added to the polygon.
   */
  p.PolygonArea.prototype.TestEdge = function(azi, s, reverse, sign) {
    var vals = {number: this.num ? this.num + 1 : 0}, t, tempsum, crossings;
    if (this.num === 0)
      return vals;
    vals.perimeter = this._perimetersum.Sum() + s;
    if (this.polyline)
      return vals;

    tempsum = this._areasum.Sum();
    crossings = this._crossings;
    t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
    tempsum += t.S12;
    crossings += transitdirect(this.lon, t.lon2);
    t = this._geod.Inverse(t.lat2, t.lon2, this._lat0, this._lon0, this._mask);
    vals.perimeter += t.s12;
    tempsum += t.S12;
    crossings += transit(t.lon2, this._lon0);

    if (crossings & 1)
      tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
    // area is with the clockwise sense.  If !reverse convert to
    // counter-clockwise convention.
    if (!reverse)
      tempsum *= -1;
    // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
    if (sign) {
      if (tempsum > this._area0/2)
        tempsum -= this._area0;
      else if (tempsum <= -this._area0/2)
        tempsum += this._area0;
    } else {
      if (tempsum >= this._area0)
        tempsum -= this._area0;
      else if (tempsum < 0)
        tempsum += this._area0;
    }
    vals.area = tempsum;
    return vals;
  };

})(GeographicLib.PolygonArea, GeographicLib.Geodesic,
   GeographicLib.Math, GeographicLib.Accumulator);