/usr/share/octave/packages/data-smoothing-1.3.0/regdatasmooth.m is in octave-data-smoothing 1.3.0-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | ## Copyright (C) 2008 Jonathan Stickel <jonathan.stickel@nrel.gov>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##@deftypefn {Function File} {[@var{yhat}, @var{lambda}] =} regdatasmooth (@var{x}, @var{y}, [@var{options}])
##
## Smooths the @var{y} vs. @var{x} values of 1D data by Tikhonov
## regularization. The smooth y-values are returned as @var{yhat}. The
## regularization parameter @var{lambda} that was used for the smoothing
## may also be returned.
##
## Note: the options have changed!
## Currently supported input options are (multiple options are allowed):
##
##@table @code
##@item "d", @var{value}
## the smoothing derivative to use (default = 2)
##@item "lambda", @var{value}
## the regularization paramater to use
##@item "stdev", @var{value}
## the standard deviation of the measurement of @var{y}; an optimal
## value for lambda will be determined by matching the provided
## @var{value} with the standard devation of @var{yhat}-@var{y};
## if the option "relative" is also used, then a relative standard
## deviation is inferred
##@item "gcv"
## use generalized cross-validation to determine the optimal value for
## lambda; if neither "lambda" nor "stdev" options are given, this
## option is implied
##@item "lguess", @var{value}
## the initial value for lambda to use in the iterative minimization
## algorithm to find the optimal value (default = 1)
## @item "xhat", @var{vector}
## A vector of x-values to use for the smooth curve; must be
## monotonically increasing and must at least span the data
## @item "weights", @var{vector}
## A vector of weighting values for fitting each point in the data.
## @item "relative"
## use relative differences for the goodnes of fit term. Conflicts
## with the "weights" option.
##@item "midpointrule"
## use the midpoint rule for the integration terms rather than a direct
## sum; this option conflicts with the option "xhat"
##@end table
##
## Please run the demos for example usage.
##
## References: Anal. Chem. (2003) 75, 3631; AIChE J. (2006) 52, 325
## @seealso{rgdtsmcorewrap, rgdtsmcore}
## @end deftypefn
function [yhat, lambda] = regdatasmooth (x, y, varargin)
if (nargin < 2)
print_usage;
elseif ( length(x) != length(y) )
error("x and y must be equal length vectors")
endif
if ( isrow(x) ) x = x'; endif
if ( isrow(y) ) y = y'; endif
## defaults
d = 2;
lambda = 0;
stdev = 0;
guess = 0;
## parse options for d, lambda, stdev, gcv, lguess;
## remaining options (gridx, Nhat, range, relative, midpointrule)
## will be sent directly to the core function
idx = [];
if ( nargin > 2)
for i = 1:nargin-2
arg = varargin{i};
if ischar(arg)
switch arg
case "d"
d = varargin{i+1};
idx = [idx,i,i+1];
case "lambda"
lambda = varargin{i+1};
idx = [idx,i,i+1];
case "stdev"
stdev = varargin{i+1};
idx = [idx,i,i+1];
case "gcv"
idx = [idx,i];
case "lguess"
guess = log10(varargin{i+1});
idx = [idx,i,i+1];
endswitch
endif
endfor
endif
varargin(idx) = [];
options = varargin;
## add warning if more than one gcv, lambda, or stdev options provided?
maxiter = 50;
if (lambda)
## do nothing and use the provided lambda
else
## find the "optimal" lambda
if ( stdev )
## match standard deviation
fhandle = @(log10lambda) rgdtsmcorewrap (log10lambda, x, y, d, {"stdev", stdev}, options{:});
else
## perform cross-validation
fhandle = @(log10lambda) rgdtsmcorewrap (log10lambda, x, y, d, {"cve"}, options{:});
endif
## "fminunc" works OK, but a derivative-free method (below) is better for this problem
##opt = optimset("TolFun",1e-6,"MaxFunEvals",maxiter);
##[log10lambda,fout,exitflag] = fminunc (fhandle, guess, opt);
##[log10lambda,fout,exitflag] = fminunc_compat (fhandle, guess, opt);
## derivative-free optimization; should use "fminsearch" for Matlab
## compatibility, but fminsearch needs updates to be more compatible itself
[log10lambda, fout, niter] = nelder_mead_min (fhandle, guess, "ftol", 1e-6, "maxev", maxiter);
if (niter > maxiter)
exitflag = 0;
else
exitflag = 1;
endif
if (!exitflag)
warning("Iteration limit of %i exceeded\n",maxiter)
endif
lambda = 10^log10lambda;
endif
yhat = rgdtsmcore (x, y, d, lambda, options{:});
endfunction
%!demo
%! npts = 100;
%! x = linspace(0,2*pi,npts)';
%! x = x + 2*pi/npts*(rand(npts,1)-0.5);
%! y = sin(x);
%! y = y + 1e-1*randn(npts,1);
%! yp = ddmat(x,1)*y;
%! y2p = ddmat(x,2)*y;
%! [yh, lambda] = regdatasmooth (x, y, "d",4,"stdev",1e-1,"midpointrule");
%! lambda
%! yhp = ddmat(x,1)*yh;
%! yh2p = ddmat(x,2)*yh;
%! clf
%! subplot(221)
%! plot(x,y,'o','markersize',5,x,yh,x,sin(x))
%! title("y(x)")
%! legend("noisy","smoothed","sin(x)","location","northeast");
%! subplot(222)
%! plot(x(1:end-1),[yp,yhp,cos(x(1:end-1))])
%! axis([min(x),max(x),min(yhp)-abs(min(yhp)),max(yhp)*2])
%! title("y'(x)")
%! legend("noisy","smoothed","cos(x)","location","southeast");
%! subplot(223)
%! plot(x(2:end-1),[y2p,yh2p,-sin(x(2:end-1))])
%! axis([min(x),max(x),min(yh2p)-abs(min(yh2p)),max(yh2p)*2])
%! title("y''(x)")
%! legend("noisy","smoothed","-sin(x)","location","southeast");
%! %--------------------------------------------------------
%! % smoothing of monotonic data, using "stdev" to determine the optimal lambda
%!demo
%! npts = 20;
%! x = rand(npts,1)*2*pi;
%! y = sin(x);
%! y = y + 1e-1*randn(npts,1);
%! xh = linspace(0,2*pi,200)';
%! [yh, lambda] = regdatasmooth (x, y, "d", 3, "xhat", xh);
%! lambda
%! clf
%! figure(1);
%! plot(x,y,'o','markersize',10,xh,yh,xh,sin(xh))
%! title("y(x)")
%! legend("noisy","smoothed","sin(x)","location","northeast");
%! %--------------------------------------------------------
%! % smoothing of scattered data, using "gcv" to determine the optimal lambda
|