This file is indexed.

/usr/share/doc/octave/octave.html/Advanced-Indexing.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Advanced Indexing (GNU Octave)</title>

<meta name="description" content="Advanced Indexing (GNU Octave)">
<meta name="keywords" content="Advanced Indexing (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Index-Expressions.html#Index-Expressions" rel="up" title="Index Expressions">
<link href="Calling-Functions.html#Calling-Functions" rel="next" title="Calling Functions">
<link href="Index-Expressions.html#Index-Expressions" rel="prev" title="Index Expressions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Advanced-Indexing"></a>
<div class="header">
<p>
Up: <a href="Index-Expressions.html#Index-Expressions" accesskey="u" rel="up">Index Expressions</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Advanced-Indexing-1"></a>
<h4 class="subsection">8.1.1 Advanced Indexing</h4>

<p>An array with &lsquo;<samp>nd</samp>&rsquo; dimensions can be indexed by a vector <var>idx</var> which
has from 1 to &lsquo;<samp>nd</samp>&rsquo; elements.  If any element of <var>idx</var> is not a
scalar then the complete set of index tuples will be generated from the
Cartesian product of the index elements.
</p>
<p>For the ordinary and most common case, the number of indices
(<code>nidx = numel (<var>idx</var>)</code>) matches the number of dimensions &lsquo;<samp>nd</samp>&rsquo;.
In this case, each element of <var>idx</var> corresponds to its respective dimension,
i.e., <code><var>idx</var>(1)</code> refers to dimension 1, <code><var>idx</var>(2)</code> refers to
dimension 2, etc.  If <code>nidx&nbsp;&lt;&nbsp;nd</code><!-- /@w -->, and every index is less than the
size of the array in the <em>i^{th}</em> dimension
(<code><var>idx</var>(i) &lt; size (<var>array</var>, i)</code>), then the index expression is
padded with <code>nd&nbsp;<span class="nolinebreak">-</span>&nbsp;nidx</code><!-- /@w --> trailing singleton dimensions.  If
<code>nidx&nbsp;&lt;&nbsp;nd</code><!-- /@w --> but one of the indices <code><var>idx</var>(i)</code> is outside the
size of the current array, then the last <code>nd&nbsp;<span class="nolinebreak">-</span>&nbsp;nidx&nbsp;+&nbsp;1</code><!-- /@w --> dimensions
are folded into a single dimension with an extent equal to the product of
extents of the original dimensions.  This is easiest to understand with an
example.  
</p>
<div class="example">
<pre class="example">A = reshape (1:8, 2, 2, 2)  # Create 3-D array
A =

ans(:,:,1) =

   1   3
   2   4

ans(:,:,2) =

   5   7
   6   8

A(2,1,2);   # Case (nidx == nd): ans = 6
A(2,1);     # Case (nidx &lt; nd), idx within array:
            # equivalent to A(2,1,1), ans = 2
A(2,4);     # Case (nidx &lt; nd), idx outside array:
            # Dimension 2 &amp; 3 folded into new dimension of size 2x2 = 4
            # Select 2nd row, 4th element of [2, 4, 6, 8], ans = 8
</pre></div>

<p>One advanced use of indexing is to create arrays filled with a single
value.  This can be done by using an index of ones on a scalar value.
The result is an object with the dimensions of the index expression
and every element equal to the original scalar.  For example, the
following statements
</p>
<div class="example">
<pre class="example">a = 13;
a(ones (1, 4))
</pre></div>

<p>produce a vector whose four elements are all equal to 13.
</p>
<p>Similarly, by indexing a scalar with two vectors of ones it is
possible to create a matrix.  The following statements
</p>
<div class="example">
<pre class="example">a = 13;
a(ones (1, 2), ones (1, 3))
</pre></div>

<p>create a 2x3 matrix with all elements equal to 13.
</p>
<p>The last example could also be written as
</p>
<div class="example">
<pre class="example">13(ones (2, 3))
</pre></div>

<p>It is more efficient to use indexing rather than the code construction
<code>scalar * ones (N, M, &hellip;)</code> because it avoids the unnecessary
multiplication operation.  Moreover, multiplication may not be
defined for the object to be replicated whereas indexing an array is
always defined.  The following code shows how to create a 2x3 cell
array from a base unit which is not itself a scalar.
</p>
<div class="example">
<pre class="example">{&quot;Hello&quot;}(ones (2, 3))
</pre></div>

<p>It should be, noted that <code>ones (1, n)</code> (a row vector of ones)
results in a range (with zero increment).  A range is stored
internally as a starting value, increment, end value, and total number
of values; hence, it is more efficient for storage than a vector or
matrix of ones whenever the number of elements is greater than 4.  In
particular, when &lsquo;<samp>r</samp>&rsquo; is a row vector, the expressions
</p>
<div class="example">
<pre class="example">  r(ones (1, n), :)
</pre></div>

<div class="example">
<pre class="example">  r(ones (n, 1), :)
</pre></div>

<p>will produce identical results, but the first one will be
significantly faster, at least for &lsquo;<samp>r</samp>&rsquo; and &lsquo;<samp>n</samp>&rsquo; large enough.
In the first case the index is held in compressed form as a range
which allows Octave to choose a more efficient algorithm to handle the
expression.
</p>
<p>A general recommendation, for a user unaware of these subtleties, is
to use the function <code>repmat</code> for replicating smaller arrays into
bigger ones.
</p>
<p>A second use of indexing is to speed up code.  Indexing is a fast
operation and judicious use of it can reduce the requirement for
looping over individual array elements which is a slow operation.
</p>
<p>Consider the following example which creates a 10-element row vector
<em>a</em> containing the values
a(i) = sqrt (i).
</p>
<div class="example">
<pre class="example">for i = 1:10
  a(i) = sqrt (i);
endfor
</pre></div>

<p>It is quite inefficient to create a vector using a loop like this.  In
this case, it would have been much more efficient to use the
expression
</p>
<div class="example">
<pre class="example">a = sqrt (1:10);
</pre></div>

<p>which avoids the loop entirely.
</p>
<p>In cases where a loop cannot be avoided, or a number of values must be
combined to form a larger matrix, it is generally faster to set the
size of the matrix first (pre-allocate storage), and then insert
elements using indexing commands.  For example, given a matrix
<code>a</code>,
</p>
<div class="example">
<pre class="example">[nr, nc] = size (a);
x = zeros (nr, n * nc);
for i = 1:n
  x(:,(i-1)*nc+1:i*nc) = a;
endfor
</pre></div>

<p>is considerably faster than
</p>
<div class="example">
<pre class="example">x = a;
for i = 1:n-1
  x = [x, a];
endfor
</pre></div>

<p>because Octave does not have to repeatedly resize the intermediate
result.
</p>
<a name="XREFsub2ind"></a><dl>
<dt><a name="index-sub2ind"></a>: <em><var>ind</var> =</em> <strong>sub2ind</strong> <em>(<var>dims</var>, <var>i</var>, <var>j</var>)</em></dt>
<dt><a name="index-sub2ind-1"></a>: <em><var>ind</var> =</em> <strong>sub2ind</strong> <em>(<var>dims</var>, <var>s1</var>, <var>s2</var>, &hellip;, <var>sN</var>)</em></dt>
<dd><p>Convert subscripts to linear indices.
</p>
<p>The input <var>dims</var> is a dimension vector where each element is the size of
the array in the respective dimension (see <a href="Object-Sizes.html#XREFsize">size</a>).  The remaining
inputs are scalars or vectors of subscripts to be converted.
</p>
<p>The output vector <var>ind</var> contains the converted linear indices.
</p>
<p>Background: Array elements can be specified either by a linear index which
starts at 1 and runs through the number of elements in the array, or they may
be specified with subscripts for the row, column, page, etc.  The functions
<code>ind2sub</code> and <code>sub2ind</code> interconvert between the two forms.
</p>
<p>The linear index traverses dimension 1 (rows), then dimension 2 (columns), then
dimension 3 (pages), etc. until it has numbered all of the elements.  Consider
the following 3-by-3 matrices:
</p>
<div class="example">
<pre class="example">[(1,1), (1,2), (1,3)]     [1, 4, 7]
[(2,1), (2,2), (2,3)] ==&gt; [2, 5, 8]
[(3,1), (3,2), (3,3)]     [3, 6, 9]
</pre></div>

<p>The left matrix contains the subscript tuples for each matrix element.  The
right matrix shows the linear indices for the same matrix.
</p>
<p>The following example shows how to convert the two-dimensional indices
<code>(2,1)</code> and <code>(2,3)</code> of a 3-by-3 matrix to linear indices with a
single call to <code>sub2ind</code>.
</p>
<div class="example">
<pre class="example">s1 = [2, 2];
s2 = [1, 3];
ind = sub2ind ([3, 3], s1, s2)
    &rArr; ind =  2   8
</pre></div>

<p><strong>See also:</strong> <a href="#XREFind2sub">ind2sub</a>, <a href="Object-Sizes.html#XREFsize">size</a>.
</p></dd></dl>


<a name="XREFind2sub"></a><dl>
<dt><a name="index-ind2sub"></a>: <em>[<var>s1</var>, <var>s2</var>, &hellip;, <var>sN</var>] =</em> <strong>ind2sub</strong> <em>(<var>dims</var>, <var>ind</var>)</em></dt>
<dd><p>Convert linear indices to subscripts.
</p>
<p>The input <var>dims</var> is a dimension vector where each element is the size of
the array in the respective dimension (see <a href="Object-Sizes.html#XREFsize">size</a>).  The second
input <var>ind</var> contains linear indies to be converted.
</p>
<p>The outputs <var>s1</var>, &hellip;, <var>sN</var> contain the converted subscripts.
</p>
<p>Background: Array elements can be specified either by a linear index which
starts at 1 and runs through the number of elements in the array, or they may
be specified with subscripts for the row, column, page, etc.  The functions
<code>ind2sub</code> and <code>sub2ind</code> interconvert between the two forms.
</p>
<p>The linear index traverses dimension 1 (rows), then dimension 2 (columns), then
dimension 3 (pages), etc. until it has numbered all of the elements.  Consider
the following 3-by-3 matrices:
</p>
<div class="example">
<pre class="example">[1, 4, 7]     [(1,1), (1,2), (1,3)]
[2, 5, 8] ==&gt; [(2,1), (2,2), (2,3)]
[3, 6, 9]     [(3,1), (3,2), (3,3)]
</pre></div>

<p>The left matrix contains the linear indices for each matrix element.  The right
matrix shows the subscript tuples for the same matrix.
</p>
<p>The following example shows how to convert the two-dimensional indices
<code>(2,1)</code> and <code>(2,3)</code> of a 3-by-3 matrix to linear indices with a
single call to <code>sub2ind</code>.
</p>
<p>The following example shows how to convert the linear indices <code>2</code> and
<code>8</code> in a 3-by-3 matrix into subscripts.
</p>
<div class="example">
<pre class="example">ind = [2, 8];
[r, c] = ind2sub ([3, 3], ind)
    &rArr; r =  2   2
    &rArr; c =  1   3
</pre></div>

<p>If the number of output subscripts exceeds the number of dimensions, the
exceeded dimensions are set to <code>1</code>.  On the other hand, if fewer
subscripts than dimensions are provided, the exceeding dimensions are merged
into the final requested dimension.  For clarity, consider the following
examples:
</p>
<div class="example">
<pre class="example">ind  = [2, 8];
dims = [3, 3];
## same as dims = [3, 3, 1]
[r, c, s] = ind2sub (dims, ind)
    &rArr; r =  2   2
    &rArr; c =  1   3
    &rArr; s =  1   1
## same as dims = [9]
r = ind2sub (dims, ind)
    &rArr; r =  2   8
</pre></div>

<p><strong>See also:</strong> <a href="#XREFind2sub">ind2sub</a>, <a href="Object-Sizes.html#XREFsize">size</a>.
</p></dd></dl>


<a name="XREFisindex"></a><dl>
<dt><a name="index-isindex"></a>: <em></em> <strong>isindex</strong> <em>(<var>ind</var>)</em></dt>
<dt><a name="index-isindex-1"></a>: <em></em> <strong>isindex</strong> <em>(<var>ind</var>, <var>n</var>)</em></dt>
<dd><p>Return true if <var>ind</var> is a valid index.
</p>
<p>Valid indices are either positive integers (although possibly of real data
type), or logical arrays.
</p>
<p>If present, <var>n</var> specifies the maximum extent of the dimension to be
indexed.  When possible the internal result is cached so that subsequent
indexing using <var>ind</var> will not perform the check again.
</p>
<p>Implementation Note: Strings are first converted to double values before the
checks for valid indices are made.  Unless a string contains the NULL
character &quot;\0&quot;, it will always be a valid index.
</p></dd></dl>


<a name="XREFallow_005fnoninteger_005frange_005fas_005findex"></a><dl>
<dt><a name="index-allow_005fnoninteger_005frange_005fas_005findex"></a>: <em><var>val</var> =</em> <strong>allow_noninteger_range_as_index</strong> <em>()</em></dt>
<dt><a name="index-allow_005fnoninteger_005frange_005fas_005findex-1"></a>: <em><var>old_val</var> =</em> <strong>allow_noninteger_range_as_index</strong> <em>(<var>new_val</var>)</em></dt>
<dt><a name="index-allow_005fnoninteger_005frange_005fas_005findex-2"></a>: <em></em> <strong>allow_noninteger_range_as_index</strong> <em>(<var>new_val</var>, &quot;local&quot;)</em></dt>
<dd><p>Query or set the internal variable that controls whether non-integer
ranges are allowed as indices.
</p>
<p>This might be useful for <small>MATLAB</small> compatibility; however, it is still not
entirely compatible because <small>MATLAB</small> treats the range expression
differently in different contexts.
</p>
<p>When called from inside a function with the <code>&quot;local&quot;</code> option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
</p></dd></dl>


<hr>
<div class="header">
<p>
Up: <a href="Index-Expressions.html#Index-Expressions" accesskey="u" rel="up">Index Expressions</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>