/usr/share/doc/octave/octave.html/Basic-Usage.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Basic Usage (GNU Octave)</title>
<meta name="description" content="Basic Usage (GNU Octave)">
<meta name="keywords" content="Basic Usage (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" rel="up" title="Diagonal and Permutation Matrices">
<link href="Creating-Diagonal-Matrices.html#Creating-Diagonal-Matrices" rel="next" title="Creating Diagonal Matrices">
<link href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" rel="prev" title="Diagonal and Permutation Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Basic-Usage"></a>
<div class="header">
<p>
Next: <a href="Matrix-Algebra.html#Matrix-Algebra" accesskey="n" rel="next">Matrix Algebra</a>, Up: <a href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" accesskey="u" rel="up">Diagonal and Permutation Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Creating-and-Manipulating-Diagonal_002fPermutation-Matrices"></a>
<h3 class="section">21.1 Creating and Manipulating Diagonal/Permutation Matrices</h3>
<p>A diagonal matrix is defined as a matrix that has zero entries outside the main
diagonal; that is,
<code>D(i,j) == 0</code> if <code>i != j</code>.
Most often, square diagonal matrices are considered; however, the definition
can equally be applied to non-square matrices, in which case we usually speak
of a rectangular diagonal matrix.
</p>
<p>A permutation matrix is defined as a square matrix that has a single element
equal to unity in each row and each column; all other elements are zero. That
is, there exists a permutation (vector)
<code>p</code> such that <code>P(i,j) == 1</code> if <code>j == p(i)</code> and
<code>P(i,j) == 0</code> otherwise.
</p>
<p>Octave provides special treatment of real and complex rectangular diagonal
matrices, as well as permutation matrices. They are stored as special objects,
using efficient storage and algorithms, facilitating writing both readable and
efficient matrix algebra expressions in the Octave language. The special
treatment may be disabled by using the functions <em>disable_diagonal_matrix</em>
and <em>disable_permutation_matrix</em>.
</p>
<a name="XREFdisable_005fdiagonal_005fmatrix"></a><dl>
<dt><a name="index-disable_005fdiagonal_005fmatrix"></a>: <em><var>val</var> =</em> <strong>disable_diagonal_matrix</strong> <em>()</em></dt>
<dt><a name="index-disable_005fdiagonal_005fmatrix-1"></a>: <em><var>old_val</var> =</em> <strong>disable_diagonal_matrix</strong> <em>(<var>new_val</var>)</em></dt>
<dt><a name="index-disable_005fdiagonal_005fmatrix-2"></a>: <em></em> <strong>disable_diagonal_matrix</strong> <em>(<var>new_val</var>, "local")</em></dt>
<dd><p>Query or set the internal variable that controls whether diagonal
matrices are stored in a special space-efficient format.
</p>
<p>The default value is true. If this option is disabled Octave will store
diagonal matrices as full matrices.
</p>
<p>When called from inside a function with the <code>"local"</code> option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
</p>
<p><strong>See also:</strong> <a href="Ranges.html#XREFdisable_005frange">disable_range</a>, <a href="#XREFdisable_005fpermutation_005fmatrix">disable_permutation_matrix</a>.
</p></dd></dl>
<a name="XREFdisable_005fpermutation_005fmatrix"></a><dl>
<dt><a name="index-disable_005fpermutation_005fmatrix"></a>: <em><var>val</var> =</em> <strong>disable_permutation_matrix</strong> <em>()</em></dt>
<dt><a name="index-disable_005fpermutation_005fmatrix-1"></a>: <em><var>old_val</var> =</em> <strong>disable_permutation_matrix</strong> <em>(<var>new_val</var>)</em></dt>
<dt><a name="index-disable_005fpermutation_005fmatrix-2"></a>: <em></em> <strong>disable_permutation_matrix</strong> <em>(<var>new_val</var>, "local")</em></dt>
<dd><p>Query or set the internal variable that controls whether permutation
matrices are stored in a special space-efficient format.
</p>
<p>The default value is true. If this option is disabled Octave will store
permutation matrices as full matrices.
</p>
<p>When called from inside a function with the <code>"local"</code> option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
</p>
<p><strong>See also:</strong> <a href="Ranges.html#XREFdisable_005frange">disable_range</a>, <a href="#XREFdisable_005fdiagonal_005fmatrix">disable_diagonal_matrix</a>.
</p></dd></dl>
<p>The space savings are significant as demonstrated by the following code.
</p>
<div class="example">
<pre class="example">x = diag (rand (10, 1));
xf = full (x);
sizeof (x)
⇒ 80
sizeof (xf)
⇒ 800
</pre></div>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Creating-Diagonal-Matrices.html#Creating-Diagonal-Matrices" accesskey="1">Creating Diagonal Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Creating-Permutation-Matrices.html#Creating-Permutation-Matrices" accesskey="2">Creating Permutation Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Explicit-and-Implicit-Conversions.html#Explicit-and-Implicit-Conversions" accesskey="3">Explicit and Implicit Conversions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="Matrix-Algebra.html#Matrix-Algebra" accesskey="n" rel="next">Matrix Algebra</a>, Up: <a href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" accesskey="u" rel="up">Diagonal and Permutation Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|