/usr/share/doc/octave/octave.html/Creating-Sparse-Matrices.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Creating Sparse Matrices (GNU Octave)</title>
<meta name="description" content="Creating Sparse Matrices (GNU Octave)">
<meta name="keywords" content="Creating Sparse Matrices (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Basics.html#Basics" rel="up" title="Basics">
<link href="Information.html#Information" rel="next" title="Information">
<link href="Storage-of-Sparse-Matrices.html#Storage-of-Sparse-Matrices" rel="prev" title="Storage of Sparse Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Creating-Sparse-Matrices"></a>
<div class="header">
<p>
Next: <a href="Information.html#Information" accesskey="n" rel="next">Information</a>, Previous: <a href="Storage-of-Sparse-Matrices.html#Storage-of-Sparse-Matrices" accesskey="p" rel="prev">Storage of Sparse Matrices</a>, Up: <a href="Basics.html#Basics" accesskey="u" rel="up">Basics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Creating-Sparse-Matrices-1"></a>
<h4 class="subsection">22.1.2 Creating Sparse Matrices</h4>
<p>There are several means to create sparse matrix.
</p>
<dl compact="compact">
<dt>Returned from a function</dt>
<dd><p>There are many functions that directly return sparse matrices. These include
<em>speye</em>, <em>sprand</em>, <em>diag</em>, etc.
</p>
</dd>
<dt>Constructed from matrices or vectors</dt>
<dd><p>The function <em>sparse</em> allows a sparse matrix to be constructed from
three vectors representing the row, column and data. Alternatively, the
function <em>spconvert</em> uses a three column matrix format to allow easy
importation of data from elsewhere.
</p>
</dd>
<dt>Created and then filled</dt>
<dd><p>The function <em>sparse</em> or <em>spalloc</em> can be used to create an empty
matrix that is then filled by the user
</p>
</dd>
<dt>From a user binary program</dt>
<dd><p>The user can directly create the sparse matrix within an oct-file.
</p></dd>
</dl>
<p>There are several basic functions to return specific sparse
matrices. For example the sparse identity matrix, is a matrix that is
often needed. It therefore has its own function to create it as
<code>speye (<var>n</var>)</code> or <code>speye (<var>r</var>, <var>c</var>)</code>, which
creates an <var>n</var>-by-<var>n</var> or <var>r</var>-by-<var>c</var> sparse identity
matrix.
</p>
<p>Another typical sparse matrix that is often needed is a random distribution
of random elements. The functions <em>sprand</em> and <em>sprandn</em> perform
this for uniform and normal random distributions of elements. They have
exactly the same calling convention, where <code>sprand (<var>r</var>, <var>c</var>,
<var>d</var>)</code>, creates an <var>r</var>-by-<var>c</var> sparse matrix with a density of
filled elements of <var>d</var>.
</p>
<p>Other functions of interest that directly create sparse matrices, are
<em>diag</em> or its generalization <em>spdiags</em>, that can take the
definition of the diagonals of the matrix and create the sparse matrix
that corresponds to this. For example,
</p>
<div class="example">
<pre class="example">s = diag (sparse (randn (1,n)), -1);
</pre></div>
<p>creates a sparse (<var>n</var>+1)-by-(<var>n</var>+1) sparse matrix with a single
diagonal defined.
</p>
<a name="XREFspdiags"></a><dl>
<dt><a name="index-spdiags"></a>: <em><var>B</var> =</em> <strong>spdiags</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-spdiags-1"></a>: <em>[<var>B</var>, <var>d</var>] =</em> <strong>spdiags</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-spdiags-2"></a>: <em><var>B</var> =</em> <strong>spdiags</strong> <em>(<var>A</var>, <var>d</var>)</em></dt>
<dt><a name="index-spdiags-3"></a>: <em><var>A</var> =</em> <strong>spdiags</strong> <em>(<var>v</var>, <var>d</var>, <var>A</var>)</em></dt>
<dt><a name="index-spdiags-4"></a>: <em><var>A</var> =</em> <strong>spdiags</strong> <em>(<var>v</var>, <var>d</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>A generalization of the function <code>diag</code>.
</p>
<p>Called with a single input argument, the nonzero diagonals <var>d</var> of
<var>A</var> are extracted.
</p>
<p>With two arguments the diagonals to extract are given by the vector <var>d</var>.
</p>
<p>The other two forms of <code>spdiags</code> modify the input matrix by replacing
the diagonals. They use the columns of <var>v</var> to replace the diagonals
represented by the vector <var>d</var>. If the sparse matrix <var>A</var> is
defined then the diagonals of this matrix are replaced. Otherwise a
matrix of <var>m</var> by <var>n</var> is created with the diagonals given by the
columns of <var>v</var>.
</p>
<p>Negative values of <var>d</var> represent diagonals below the main diagonal, and
positive values of <var>d</var> diagonals above the main diagonal.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
⇒ 5 10 0 0
1 6 11 0
0 2 7 12
0 0 3 8
0 0 0 4
</pre></div>
<p><strong>See also:</strong> <a href="Rearranging-Matrices.html#XREFdiag">diag</a>.
</p></dd></dl>
<a name="XREFspeye"></a><dl>
<dt><a name="index-speye"></a>: <em><var>s</var> =</em> <strong>speye</strong> <em>(<var>m</var>, <var>n</var>)</em></dt>
<dt><a name="index-speye-1"></a>: <em><var>s</var> =</em> <strong>speye</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-speye-2"></a>: <em><var>s</var> =</em> <strong>speye</strong> <em>(<var>sz</var>)</em></dt>
<dd><p>Return a sparse identity matrix of size <var>m</var>x<var>n</var>.
</p>
<p>The implementation is significantly more efficient than
<code>sparse (eye (<var>m</var>))</code> as the full matrix is not constructed.
</p>
<p>Called with a single argument a square matrix of size
<var>m</var>-by-<var>m</var> is created. If called with a single vector argument
<var>sz</var>, this argument is taken to be the size of the matrix to create.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>, <a href="#XREFspdiags">spdiags</a>, <a href="Special-Utility-Matrices.html#XREFeye">eye</a>.
</p></dd></dl>
<a name="XREFspones"></a><dl>
<dt><a name="index-spones"></a>: <em><var>r</var> =</em> <strong>spones</strong> <em>(<var>S</var>)</em></dt>
<dd><p>Replace the nonzero entries of <var>S</var> with ones.
</p>
<p>This creates a sparse matrix with the same structure as <var>S</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>, <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandn">sprandn</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="Function-Application.html#XREFspfun">spfun</a>, <a href="Information.html#XREFspy">spy</a>.
</p></dd></dl>
<a name="XREFsprand"></a><dl>
<dt><a name="index-sprand"></a>: <em></em> <strong>sprand</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>)</em></dt>
<dt><a name="index-sprand-1"></a>: <em></em> <strong>sprand</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>, <var>rc</var>)</em></dt>
<dt><a name="index-sprand-2"></a>: <em></em> <strong>sprand</strong> <em>(<var>s</var>)</em></dt>
<dd><p>Generate a sparse matrix with uniformly distributed random values.
</p>
<p>The size of the matrix is <var>m</var>x<var>n</var> with a density of values <var>d</var>.
<var>d</var> must be between 0 and 1. Values will be uniformly distributed on
the interval (0, 1).
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var>s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var>rc</var>, a random sparse matrix
with reciprocal condition number <var>rc</var> is generated. If <var>rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code>length (<var>rc</var>) <= min (<var>m</var>, <var>n</var>)</code>).
</p>
<p><strong>See also:</strong> <a href="#XREFsprandn">sprandn</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="Special-Utility-Matrices.html#XREFrand">rand</a>.
</p></dd></dl>
<a name="XREFsprandn"></a><dl>
<dt><a name="index-sprandn"></a>: <em></em> <strong>sprandn</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>)</em></dt>
<dt><a name="index-sprandn-1"></a>: <em></em> <strong>sprandn</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>, <var>rc</var>)</em></dt>
<dt><a name="index-sprandn-2"></a>: <em></em> <strong>sprandn</strong> <em>(<var>s</var>)</em></dt>
<dd><p>Generate a sparse matrix with normally distributed random values.
</p>
<p>The size of the matrix is <var>m</var>x<var>n</var> with a density of values <var>d</var>.
<var>d</var> must be between 0 and 1. Values will be normally distributed with a
mean of 0 and a variance of 1.
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var>s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var>rc</var>, a random sparse matrix
with reciprocal condition number <var>rc</var> is generated. If <var>rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code>length (<var>rc</var>) <= min (<var>m</var>, <var>n</var>)</code>).
</p>
<p><strong>See also:</strong> <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="Special-Utility-Matrices.html#XREFrandn">randn</a>.
</p></dd></dl>
<a name="XREFsprandsym"></a><dl>
<dt><a name="index-sprandsym"></a>: <em></em> <strong>sprandsym</strong> <em>(<var>n</var>, <var>d</var>)</em></dt>
<dt><a name="index-sprandsym-1"></a>: <em></em> <strong>sprandsym</strong> <em>(<var>s</var>)</em></dt>
<dd><p>Generate a symmetric random sparse matrix.
</p>
<p>The size of the matrix will be <var>n</var>x<var>n</var>, with a density of values
given by <var>d</var>. <var>d</var> must be between 0 and 1 inclusive. Values will
be normally distributed with a mean of zero and a variance of 1.
</p>
<p>If called with a single matrix argument, a random sparse matrix is generated
wherever the matrix <var>s</var> is nonzero in its lower triangular part.
</p>
<p><strong>See also:</strong> <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandn">sprandn</a>, <a href="#XREFspones">spones</a>, <a href="#XREFsparse">sparse</a>.
</p></dd></dl>
<p>The recommended way for the user to create a sparse matrix, is to create
two vectors containing the row and column index of the data and a third
vector of the same size containing the data to be stored. For example,
</p>
<div class="example">
<pre class="example"> ri = ci = d = [];
for j = 1:c
ri = [ri; randperm(r,n)'];
ci = [ci; j*ones(n,1)];
d = [d; rand(n,1)];
endfor
s = sparse (ri, ci, d, r, c);
</pre></div>
<p>creates an <var>r</var>-by-<var>c</var> sparse matrix with a random distribution
of <var>n</var> (<<var>r</var>) elements per column. The elements of the vectors
do not need to be sorted in any particular order as Octave will sort
them prior to storing the data. However, pre-sorting the data will
make the creation of the sparse matrix faster.
</p>
<p>The function <em>spconvert</em> takes a three or four column real matrix.
The first two columns represent the row and column index respectively and
the third and four columns, the real and imaginary parts of the sparse
matrix. The matrix can contain zero elements and the elements can be
sorted in any order. Adding zero elements is a convenient way to define
the size of the sparse matrix. For example:
</p>
<div class="example">
<pre class="example">s = spconvert ([1 2 3 4; 1 3 4 4; 1 2 3 0]')
⇒ Compressed Column Sparse (rows=4, cols=4, nnz=3)
(1 , 1) -> 1
(2 , 3) -> 2
(3 , 4) -> 3
</pre></div>
<p>An example of creating and filling a matrix might be
</p>
<div class="example">
<pre class="example">k = 5;
nz = r * k;
s = spalloc (r, c, nz)
for j = 1:c
idx = randperm (r);
s (:, j) = [zeros(r - k, 1); ...
rand(k, 1)] (idx);
endfor
</pre></div>
<p>It should be noted, that due to the way that the Octave
assignment functions are written that the assignment will reallocate
the memory used by the sparse matrix at each iteration of the above loop.
Therefore the <em>spalloc</em> function ignores the <var>nz</var> argument and
does not pre-assign the memory for the matrix. Therefore, it is vitally
important that code using to above structure should be vectorized
as much as possible to minimize the number of assignments and reduce the
number of memory allocations.
</p>
<a name="XREFfull"></a><dl>
<dt><a name="index-full"></a>: <em><var>FM</var> =</em> <strong>full</strong> <em>(<var>SM</var>)</em></dt>
<dd><p>Return a full storage matrix from a sparse, diagonal, or permutation matrix,
or a range.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>, <a href="Information.html#XREFissparse">issparse</a>.
</p></dd></dl>
<a name="XREFspalloc"></a><dl>
<dt><a name="index-spalloc"></a>: <em><var>s</var> =</em> <strong>spalloc</strong> <em>(<var>m</var>, <var>n</var>, <var>nz</var>)</em></dt>
<dd><p>Create an <var>m</var>-by-<var>n</var> sparse matrix with pre-allocated space for at
most <var>nz</var> nonzero elements.
</p>
<p>This is useful for building a matrix incrementally by a sequence of indexed
assignments. Subsequent indexed assignments after <code>spalloc</code> will reuse
the pre-allocated memory, provided they are of one of the simple forms
</p>
<ul>
<li> <code><var>s</var>(I:J) = <var>x</var></code>
</li><li> <code><var>s</var>(:,I:J) = <var>x</var></code>
</li><li> <code><var>s</var>(K:L,I:J) = <var>x</var></code>
</li></ul>
<p><b>and</b> that the following conditions are met:
</p>
<ul>
<li> the assignment does not decrease nnz (<var>S</var>).
</li><li> after the assignment, nnz (<var>S</var>) does not exceed <var>nz</var>.
</li><li> no index is out of bounds.
</li></ul>
<p>Partial movement of data may still occur, but in general the assignment will
be more memory and time efficient under these circumstances. In particular,
it is possible to efficiently build a pre-allocated sparse matrix from a
contiguous block of columns.
</p>
<p>The amount of pre-allocated memory for a given matrix may be queried using
the function <code>nzmax</code>.
</p>
<p><strong>See also:</strong> <a href="Information.html#XREFnzmax">nzmax</a>, <a href="#XREFsparse">sparse</a>.
</p></dd></dl>
<a name="XREFsparse"></a><dl>
<dt><a name="index-sparse"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>a</var>)</em></dt>
<dt><a name="index-sparse-1"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>sv</var>, <var>m</var>, <var>n</var>)</em></dt>
<dt><a name="index-sparse-2"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>sv</var>)</em></dt>
<dt><a name="index-sparse-3"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>m</var>, <var>n</var>)</em></dt>
<dt><a name="index-sparse-4"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>s</var>, <var>m</var>, <var>n</var>, "unique")</em></dt>
<dt><a name="index-sparse-5"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>sv</var>, <var>m</var>, <var>n</var>, <var>nzmax</var>)</em></dt>
<dd><p>Create a sparse matrix from a full matrix, or row, column, value triplets.
</p>
<p>If <var>a</var> is a full matrix, convert it to a sparse matrix representation,
removing all zero values in the process.
</p>
<p>Given the integer index vectors <var>i</var> and <var>j</var>, and a 1-by-<code>nnz</code>
vector of real or complex values <var>sv</var>, construct the sparse matrix
<code>S(<var>i</var>(<var>k</var>),<var>j</var>(<var>k</var>)) = <var>sv</var>(<var>k</var>)</code> with overall
dimensions <var>m</var> and <var>n</var>. If any of <var>sv</var>, <var>i</var> or <var>j</var> are
scalars, they are expanded to have a common size.
</p>
<p>If <var>m</var> or <var>n</var> are not specified their values are derived from the
maximum index in the vectors <var>i</var> and <var>j</var> as given by
<code><var>m</var> = max (<var>i</var>)</code>, <code><var>n</var> = max (<var>j</var>)</code>.
</p>
<p><strong>Note</strong>: if multiple values are specified with the same <var>i</var>,
<var>j</var> indices, the corresponding value in <var>s</var> will be the sum of the
values at the repeated location. See <code>accumarray</code> for an example of
how to produce different behavior, such as taking the minimum instead.
</p>
<p>If the option <code>"unique"</code> is given, and more than one value is
specified at the same <var>i</var>, <var>j</var> indices, then the last specified
value will be used.
</p>
<p><code>sparse (<var>m</var>, <var>n</var>)</code> will create an empty <var>m</var>x<var>n</var> sparse
matrix and is equivalent to <code>sparse ([], [], [], <var>m</var>, <var>n</var>)</code>
</p>
<p>The argument <code>nzmax</code> is ignored but accepted for compatibility with
<small>MATLAB</small>.
</p>
<p>Example 1 (sum at repeated indices):
</p>
<div class="example">
<pre class="example"><var>i</var> = [1 1 2]; <var>j</var> = [1 1 2]; <var>sv</var> = [3 4 5];
sparse (<var>i</var>, <var>j</var>, <var>sv</var>, 3, 4)
⇒
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])
(1, 1) -> 7
(2, 2) -> 5
</pre></div>
<p>Example 2 ("unique" option):
</p>
<div class="example">
<pre class="example"><var>i</var> = [1 1 2]; <var>j</var> = [1 1 2]; <var>sv</var> = [3 4 5];
sparse (<var>i</var>, <var>j</var>, <var>sv</var>, 3, 4, "unique")
⇒
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])
(1, 1) -> 4
(2, 2) -> 5
</pre></div>
<p><strong>See also:</strong> <a href="#XREFfull">full</a>, <a href="Accumulation.html#XREFaccumarray">accumarray</a>, <a href="#XREFspalloc">spalloc</a>, <a href="#XREFspdiags">spdiags</a>, <a href="#XREFspeye">speye</a>, <a href="#XREFspones">spones</a>, <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandn">sprandn</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="#XREFspconvert">spconvert</a>, <a href="Function-Application.html#XREFspfun">spfun</a>.
</p></dd></dl>
<a name="XREFspconvert"></a><dl>
<dt><a name="index-spconvert"></a>: <em><var>x</var> =</em> <strong>spconvert</strong> <em>(<var>m</var>)</em></dt>
<dd><p>Convert a simple sparse matrix format easily generated by other programs
into Octave’s internal sparse format.
</p>
<p>The input <var>m</var> is either a 3 or 4 column real matrix, containing the
row, column, real, and imaginary parts of the elements of the sparse
matrix. An element with a zero real and imaginary part can be used to
force a particular matrix size.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>.
</p></dd></dl>
<p>The above problem of memory reallocation can be avoided in
oct-files. However, the construction of a sparse matrix from an oct-file
is more complex than can be discussed here. See <a href="External-Code-Interface.html#External-Code-Interface">External Code Interface</a>,
for a full description of the techniques involved.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Information.html#Information" accesskey="n" rel="next">Information</a>, Previous: <a href="Storage-of-Sparse-Matrices.html#Storage-of-Sparse-Matrices" accesskey="p" rel="prev">Storage of Sparse Matrices</a>, Up: <a href="Basics.html#Basics" accesskey="u" rel="up">Basics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|