/usr/share/doc/octave/octave.html/Descriptive-Statistics.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Descriptive Statistics (GNU Octave)</title>
<meta name="description" content="Descriptive Statistics (GNU Octave)">
<meta name="keywords" content="Descriptive Statistics (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" rel="next" title="Basic Statistical Functions">
<link href="Statistics.html#Statistics" rel="prev" title="Statistics">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Descriptive-Statistics"></a>
<div class="header">
<p>
Next: <a href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" accesskey="n" rel="next">Basic Statistical Functions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Descriptive-Statistics-1"></a>
<h3 class="section">26.1 Descriptive Statistics</h3>
<p>One principal goal of descriptive statistics is to represent the essence of a
large data set concisely. Octave provides the mean, median, and mode functions
which all summarize a data set with just a single number corresponding to
the central tendency of the data.
</p>
<a name="XREFmean"></a><dl>
<dt><a name="index-mean"></a>: <em></em> <strong>mean</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-mean-1"></a>: <em></em> <strong>mean</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dt><a name="index-mean-2"></a>: <em></em> <strong>mean</strong> <em>(<var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-mean-3"></a>: <em></em> <strong>mean</strong> <em>(<var>x</var>, <var>dim</var>, <var>opt</var>)</em></dt>
<dd><p>Compute the mean of the elements of the vector <var>x</var>.
</p>
<p>The mean is defined as
</p>
<div class="example">
<pre class="example">mean (<var>x</var>) = SUM_i <var>x</var>(i) / N
</pre></div>
<p>where <em>N</em> is the length of the <var>x</var> vector.
</p>
<p>If <var>x</var> is a matrix, compute the mean for each column and return them
in a row vector.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p>The optional argument <var>opt</var> selects the type of mean to compute.
The following options are recognized:
</p>
<dl compact="compact">
<dt><code>"a"</code></dt>
<dd><p>Compute the (ordinary) arithmetic mean. [default]
</p>
</dd>
<dt><code>"g"</code></dt>
<dd><p>Compute the geometric mean.
</p>
</dd>
<dt><code>"h"</code></dt>
<dd><p>Compute the harmonic mean.
</p></dd>
</dl>
<p>Both <var>dim</var> and <var>opt</var> are optional. If both are supplied, either
may appear first.
</p>
<p><strong>See also:</strong> <a href="#XREFmedian">median</a>, <a href="#XREFmode">mode</a>.
</p></dd></dl>
<a name="XREFmedian"></a><dl>
<dt><a name="index-median"></a>: <em></em> <strong>median</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-median-1"></a>: <em></em> <strong>median</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the median value of the elements of the vector <var>x</var>.
</p>
<p>When the elements of <var>x</var> are sorted, say <code><var>s</var> = sort (<var>x</var>)</code>,
the median is defined as
</p>
<div class="example">
<pre class="example"> | <var>s</var>(ceil(N/2)) N odd
median (<var>x</var>) = |
| (<var>s</var>(N/2) + <var>s</var>(N/2+1))/2 N even
</pre></div>
<p>If <var>x</var> is of a discrete type such as integer or logical, then
the case of even <em>N</em> rounds up (or toward <code>true</code>).
</p>
<p>If <var>x</var> is a matrix, compute the median value for each column and
return them in a row vector.
</p>
<p>If the optional <var>dim</var> argument is given, operate along this dimension.
</p>
<p><strong>See also:</strong> <a href="#XREFmean">mean</a>, <a href="#XREFmode">mode</a>.
</p></dd></dl>
<a name="XREFmode"></a><dl>
<dt><a name="index-mode"></a>: <em></em> <strong>mode</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-mode-1"></a>: <em></em> <strong>mode</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dt><a name="index-mode-2"></a>: <em>[<var>m</var>, <var>f</var>, <var>c</var>] =</em> <strong>mode</strong> <em>(…)</em></dt>
<dd><p>Compute the most frequently occurring value in a dataset (mode).
</p>
<p><code>mode</code> determines the frequency of values along the first non-singleton
dimension and returns the value with the highest frequency. If two, or
more, values have the same frequency <code>mode</code> returns the smallest.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p>The return variable <var>f</var> is the number of occurrences of the mode in
the dataset.
</p>
<p>The cell array <var>c</var> contains all of the elements with the maximum
frequency.
</p>
<p><strong>See also:</strong> <a href="#XREFmean">mean</a>, <a href="#XREFmedian">median</a>.
</p></dd></dl>
<p>Using just one number, such as the mean, to represent an entire data set may
not give an accurate picture of the data. One way to characterize the fit is
to measure the dispersion of the data. Octave provides several functions for
measuring dispersion.
</p>
<a name="XREFrange"></a><dl>
<dt><a name="index-range"></a>: <em></em> <strong>range</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-range-1"></a>: <em></em> <strong>range</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Return the range, i.e., the difference between the maximum and the minimum
of the input data.
</p>
<p>If <var>x</var> is a vector, the range is calculated over the elements of
<var>x</var>. If <var>x</var> is a matrix, the range is calculated over each column
of <var>x</var>.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p>The range is a quickly computed measure of the dispersion of a data set, but
is less accurate than <code>iqr</code> if there are outlying data points.
</p>
<p><strong>See also:</strong> <a href="#XREFiqr">iqr</a>, <a href="#XREFstd">std</a>.
</p></dd></dl>
<a name="XREFiqr"></a><dl>
<dt><a name="index-iqr"></a>: <em></em> <strong>iqr</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-iqr-1"></a>: <em></em> <strong>iqr</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Return the interquartile range, i.e., the difference between the upper
and lower quartile of the input data.
</p>
<p>If <var>x</var> is a matrix, do the above for first non-singleton dimension of
<var>x</var>.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p>As a measure of dispersion, the interquartile range is less affected by
outliers than either <code>range</code> or <code>std</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFrange">range</a>, <a href="#XREFstd">std</a>.
</p></dd></dl>
<a name="XREFmeansq"></a><dl>
<dt><a name="index-meansq"></a>: <em></em> <strong>meansq</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-meansq-1"></a>: <em></em> <strong>meansq</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the mean square of the elements of the vector <var>x</var>.
</p>
<p>The mean square is defined as
</p>
<div class="example">
<pre class="example">meansq (<var>x</var>) = 1/N SUM_i <var>x</var>(i)^2
</pre></div>
<p>where <em>N</em> is the length of the <var>x</var> vector.
</p>
<p>If <var>x</var> is a matrix, return a row vector containing the mean square
of each column.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p><strong>See also:</strong> <a href="#XREFvar">var</a>, <a href="#XREFstd">std</a>, <a href="#XREFmoment">moment</a>.
</p></dd></dl>
<a name="XREFstd"></a><dl>
<dt><a name="index-std"></a>: <em></em> <strong>std</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-std-1"></a>: <em></em> <strong>std</strong> <em>(<var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-std-2"></a>: <em></em> <strong>std</strong> <em>(<var>x</var>, <var>opt</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the standard deviation of the elements of the vector <var>x</var>.
</p>
<p>The standard deviation is defined as
</p>
<div class="example">
<pre class="example">std (<var>x</var>) = sqrt ( 1/(N-1) SUM_i (<var>x</var>(i) - mean(<var>x</var>))^2 )
</pre></div>
<p>where <em>N</em> is the number of elements of the <var>x</var> vector.
</p>
<p>If <var>x</var> is a matrix, compute the standard deviation for each column and
return them in a row vector.
</p>
<p>The argument <var>opt</var> determines the type of normalization to use.
Valid values are
</p>
<dl compact="compact">
<dt>0:</dt>
<dd><p>normalize with <em>N-1</em>, provides the square root of the best unbiased
estimator of the variance [default]
</p>
</dd>
<dt>1:</dt>
<dd><p>normalize with <em>N</em>, this provides the square root of the second
moment around the mean
</p></dd>
</dl>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p><strong>See also:</strong> <a href="#XREFvar">var</a>, <a href="#XREFrange">range</a>, <a href="#XREFiqr">iqr</a>, <a href="#XREFmean">mean</a>, <a href="#XREFmedian">median</a>.
</p></dd></dl>
<p>In addition to knowing the size of a dispersion it is useful to know the shape
of the data set. For example, are data points massed to the left or right
of the mean? Octave provides several common measures to describe the shape
of the data set. Octave can also calculate moments allowing arbitrary shape
measures to be developed.
</p>
<a name="XREFvar"></a><dl>
<dt><a name="index-var"></a>: <em></em> <strong>var</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-var-1"></a>: <em></em> <strong>var</strong> <em>(<var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-var-2"></a>: <em></em> <strong>var</strong> <em>(<var>x</var>, <var>opt</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the variance of the elements of the vector <var>x</var>.
</p>
<p>The variance is defined as
</p>
<div class="example">
<pre class="example">var (<var>x</var>) = 1/(N-1) SUM_i (<var>x</var>(i) - mean(<var>x</var>))^2
</pre></div>
<p>where <em>N</em> is the length of the <var>x</var> vector.
</p>
<p>If <var>x</var> is a matrix, compute the variance for each column and return
them in a row vector.
</p>
<p>The argument <var>opt</var> determines the type of normalization to use.
Valid values are
</p>
<dl compact="compact">
<dt>0:</dt>
<dd><p>normalize with <em>N-1</em>, provides the best unbiased estimator of the
variance [default]
</p>
</dd>
<dt>1:</dt>
<dd><p>normalizes with <em>N</em>, this provides the second moment around the mean
</p></dd>
</dl>
<p>If <em>N</em> is equal to 1 the value of <var>opt</var> is ignored and
normalization by <em>N</em> is used.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p><strong>See also:</strong> <a href="Correlation-and-Regression-Analysis.html#XREFcov">cov</a>, <a href="#XREFstd">std</a>, <a href="#XREFskewness">skewness</a>, <a href="#XREFkurtosis">kurtosis</a>, <a href="#XREFmoment">moment</a>.
</p></dd></dl>
<a name="XREFskewness"></a><dl>
<dt><a name="index-skewness"></a>: <em></em> <strong>skewness</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-skewness-1"></a>: <em></em> <strong>skewness</strong> <em>(<var>x</var>, <var>flag</var>)</em></dt>
<dt><a name="index-skewness-2"></a>: <em></em> <strong>skewness</strong> <em>(<var>x</var>, <var>flag</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the sample skewness of the elements of <var>x</var>.
</p>
<p>The sample skewness is defined as
</p>
<div class="example">
<pre class="example"> mean ((<var>x</var> - mean (<var>x</var>)).^3)
skewness (<var>X</var>) = ------------------------.
std (<var>x</var>).^3
</pre></div>
<p>The optional argument <var>flag</var> controls which normalization is used.
If <var>flag</var> is equal to 1 (default value, used when <var>flag</var> is omitted
or empty), return the sample skewness as defined above. If <var>flag</var> is
equal to 0, return the adjusted skewness coefficient instead:
</p>
<div class="example">
<pre class="example"> sqrt (N*(N-1)) mean ((<var>x</var> - mean (<var>x</var>)).^3)
skewness (<var>X</var>, 0) = -------------- * ------------------------.
(N - 2) std (<var>x</var>).^3
</pre></div>
<p>where <em>N</em> is the length of the <var>x</var> vector.
</p>
<p>The adjusted skewness coefficient is obtained by replacing the sample second
and third central moments by their bias-corrected versions.
</p>
<p>If <var>x</var> is a matrix, or more generally a multi-dimensional array, return
the skewness along the first non-singleton dimension. If the optional
<var>dim</var> argument is given, operate along this dimension.
</p>
<p><strong>See also:</strong> <a href="#XREFvar">var</a>, <a href="#XREFkurtosis">kurtosis</a>, <a href="#XREFmoment">moment</a>.
</p></dd></dl>
<a name="XREFkurtosis"></a><dl>
<dt><a name="index-kurtosis"></a>: <em></em> <strong>kurtosis</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-kurtosis-1"></a>: <em></em> <strong>kurtosis</strong> <em>(<var>x</var>, <var>flag</var>)</em></dt>
<dt><a name="index-kurtosis-2"></a>: <em></em> <strong>kurtosis</strong> <em>(<var>x</var>, <var>flag</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the sample kurtosis of the elements of <var>x</var>.
</p>
<p>The sample kurtosis is defined as
</p>
<div class="example">
<pre class="example"> mean ((<var>x</var> - mean (<var>x</var>)).^4)
k1 = ------------------------
std (<var>x</var>).^4
</pre></div>
<p>The optional argument <var>flag</var> controls which normalization is used.
If <var>flag</var> is equal to 1 (default value, used when <var>flag</var> is omitted
or empty), return the sample kurtosis as defined above. If <var>flag</var> is
equal to 0, return the <span class="nolinebreak">"bias-corrected"</span><!-- /@w --> kurtosis coefficient instead:
</p>
<div class="example">
<pre class="example"> N - 1
k0 = 3 + -------------- * ((N + 1) * k1 - 3 * (N - 1))
(N - 2)(N - 3)
</pre></div>
<p>where <em>N</em> is the length of the <var>x</var> vector.
</p>
<p>The bias-corrected kurtosis coefficient is obtained by replacing the sample
second and fourth central moments by their unbiased versions. It is an
unbiased estimate of the population kurtosis for normal populations.
</p>
<p>If <var>x</var> is a matrix, or more generally a multi-dimensional array, return
the kurtosis along the first non-singleton dimension. If the optional
<var>dim</var> argument is given, operate along this dimension.
</p>
<p><strong>See also:</strong> <a href="#XREFvar">var</a>, <a href="#XREFskewness">skewness</a>, <a href="#XREFmoment">moment</a>.
</p></dd></dl>
<a name="XREFmoment"></a><dl>
<dt><a name="index-moment"></a>: <em></em> <strong>moment</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dt><a name="index-moment-1"></a>: <em></em> <strong>moment</strong> <em>(<var>x</var>, <var>p</var>, <var>type</var>)</em></dt>
<dt><a name="index-moment-2"></a>: <em></em> <strong>moment</strong> <em>(<var>x</var>, <var>p</var>, <var>dim</var>)</em></dt>
<dt><a name="index-moment-3"></a>: <em></em> <strong>moment</strong> <em>(<var>x</var>, <var>p</var>, <var>type</var>, <var>dim</var>)</em></dt>
<dt><a name="index-moment-4"></a>: <em></em> <strong>moment</strong> <em>(<var>x</var>, <var>p</var>, <var>dim</var>, <var>type</var>)</em></dt>
<dd><p>Compute the <var>p</var>-th central moment of the vector <var>x</var>:
</p>
<div class="example">
<pre class="example">1/N SUM_i (<var>x</var>(i) - mean(<var>x</var>))^<var>p</var>
</pre></div>
<p>where <em>N</em> is the length of the <var>x</var> vector.
</p>
<p>If <var>x</var> is a matrix, return the row vector containing the <var>p</var>-th
central moment of each column.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p>The optional string <var>type</var> specifies the type of moment to be computed.
Valid options are:
</p>
<dl compact="compact">
<dt><code>"c"</code></dt>
<dd><p>Central Moment (default).
</p>
</dd>
<dt><code>"a"</code></dt>
<dt><code>"ac"</code></dt>
<dd><p>Absolute Central Moment. The moment about the mean ignoring sign
defined as
</p>
<div class="example">
<pre class="example">1/N SUM_i (abs (<var>x</var>(i) - mean(<var>x</var>)))^<var>p</var>
</pre></div>
</dd>
<dt><code>"r"</code></dt>
<dd><p>Raw Moment. The moment about zero defined as
</p>
<div class="example">
<pre class="example">moment (<var>x</var>) = 1/N SUM_i <var>x</var>(i)^<var>p</var>
</pre></div>
</dd>
<dt><code>"ar"</code></dt>
<dd><p>Absolute Raw Moment. The moment about zero ignoring sign defined as
</p>
<div class="example">
<pre class="example">1/N SUM_i ( abs (<var>x</var>(i)) )^<var>p</var>
</pre></div>
</dd>
</dl>
<p>If both <var>type</var> and <var>dim</var> are given they may appear in any order.
</p>
<p><strong>See also:</strong> <a href="#XREFvar">var</a>, <a href="#XREFskewness">skewness</a>, <a href="#XREFkurtosis">kurtosis</a>.
</p></dd></dl>
<a name="XREFquantile"></a><dl>
<dt><a name="index-quantile"></a>: <em><var>q</var> =</em> <strong>quantile</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-quantile-1"></a>: <em><var>q</var> =</em> <strong>quantile</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dt><a name="index-quantile-2"></a>: <em><var>q</var> =</em> <strong>quantile</strong> <em>(<var>x</var>, <var>p</var>, <var>dim</var>)</em></dt>
<dt><a name="index-quantile-3"></a>: <em><var>q</var> =</em> <strong>quantile</strong> <em>(<var>x</var>, <var>p</var>, <var>dim</var>, <var>method</var>)</em></dt>
<dd><p>For a sample, <var>x</var>, calculate the quantiles, <var>q</var>, corresponding to
the cumulative probability values in <var>p</var>. All non-numeric values (NaNs)
of <var>x</var> are ignored.
</p>
<p>If <var>x</var> is a matrix, compute the quantiles for each column and
return them in a matrix, such that the i-th row of <var>q</var> contains
the <var>p</var>(i)th quantiles of each column of <var>x</var>.
</p>
<p>If <var>p</var> is unspecified, return the quantiles for
<code>[0.00 0.25 0.50 0.75 1.00]</code>.
The optional argument <var>dim</var> determines the dimension along which
the quantiles are calculated. If <var>dim</var> is omitted it defaults to
the first non-singleton dimension.
</p>
<p>The methods available to calculate sample quantiles are the nine methods
used by R (<a href="http://www.r-project.org/">http://www.r-project.org/</a>). The default value is
<var>method</var> = 5<!-- /@w -->.
</p>
<p>Discontinuous sample quantile methods 1, 2, and 3
</p>
<ol>
<li> Method 1: Inverse of empirical distribution function.
</li><li> Method 2: Similar to method 1 but with averaging at discontinuities.
</li><li> Method 3: SAS definition: nearest even order statistic.
</li></ol>
<p>Continuous sample quantile methods 4 through 9, where
<var>p</var>(k)
is the linear
interpolation function respecting each method’s representative cdf.
</p>
<ol start="4">
<li> Method 4:
<var>p</var>(k) = k / N.
That is, linear interpolation of the empirical cdf, where <em>N</em> is the
length of <var>P</var>.
</li><li> Method 5:
<var>p</var>(k) = (k - 0.5) / N.
That is, a piecewise linear function where the knots are the values midway
through the steps of the empirical cdf.
</li><li> Method 6:
<var>p</var>(k) = k / (N + 1).
</li><li> Method 7:
<var>p</var>(k) = (k - 1) / (N - 1).
</li><li> Method 8:
<var>p</var>(k) = (k - 1/3) / (N + 1/3).
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of <var>x</var>.
</li><li> Method 9:
<var>p</var>(k) = (k - 3/8) / (N + 1/4).
The resulting quantile estimates are approximately unbiased for the
expected order statistics if <var>x</var> is normally distributed.
</li></ol>
<p>Hyndman and Fan (1996) recommend method 8. Maxima, S, and R
(versions prior to 2.0.0) use 7 as their default. Minitab and SPSS
use method 6. <small>MATLAB</small> uses method 5.
</p>
<p>References:
</p>
<ul>
<li> Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
The New S Language. Wadsworth & Brooks/Cole.
</li><li> Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in
statistical packages, American Statistician, 50, 361–365.
</li><li> R: A Language and Environment for Statistical Computing;
<a href="http://cran.r-project.org/doc/manuals/fullrefman.pdf">http://cran.r-project.org/doc/manuals/fullrefman.pdf</a>.
</li></ul>
<p>Examples:
</p>
<div class="smallexample">
<pre class="smallexample">x = randi (1000, [10, 1]); # Create empirical data in range 1-1000
q = quantile (x, [0, 1]); # Return minimum, maximum of distribution
q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution
</pre></div>
<p><strong>See also:</strong> <a href="#XREFprctile">prctile</a>.
</p></dd></dl>
<a name="XREFprctile"></a><dl>
<dt><a name="index-prctile"></a>: <em><var>q</var> =</em> <strong>prctile</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-prctile-1"></a>: <em><var>q</var> =</em> <strong>prctile</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dt><a name="index-prctile-2"></a>: <em><var>q</var> =</em> <strong>prctile</strong> <em>(<var>x</var>, <var>p</var>, <var>dim</var>)</em></dt>
<dd><p>For a sample <var>x</var>, compute the quantiles, <var>q</var>, corresponding
to the cumulative probability values, <var>p</var>, in percent.
</p>
<p>If <var>x</var> is a matrix, compute the percentiles for each column and return
them in a matrix, such that the i-th row of <var>q</var> contains the
<var>p</var>(i)th percentiles of each column of <var>x</var>.
</p>
<p>If <var>p</var> is unspecified, return the quantiles for <code>[0 25 50 75 100]</code>.
</p>
<p>The optional argument <var>dim</var> determines the dimension along which the
percentiles are calculated. If <var>dim</var> is omitted it defaults to the
first non-singleton dimension.
</p>
<p>Programming Note: All non-numeric values (NaNs) of <var>x</var> are ignored.
</p>
<p><strong>See also:</strong> <a href="#XREFquantile">quantile</a>.
</p></dd></dl>
<p>A summary view of a data set can be generated quickly with the
<code>statistics</code> function.
</p>
<a name="XREFstatistics"></a><dl>
<dt><a name="index-statistics"></a>: <em></em> <strong>statistics</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-statistics-1"></a>: <em></em> <strong>statistics</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Return a vector with the minimum, first quartile, median, third quartile,
maximum, mean, standard deviation, skewness, and kurtosis of the elements of
the vector <var>x</var>.
</p>
<p>If <var>x</var> is a matrix, calculate statistics over the first non-singleton
dimension.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p><strong>See also:</strong> <a href="Utility-Functions.html#XREFmin">min</a>, <a href="Utility-Functions.html#XREFmax">max</a>, <a href="#XREFmedian">median</a>, <a href="#XREFmean">mean</a>, <a href="#XREFstd">std</a>, <a href="#XREFskewness">skewness</a>, <a href="#XREFkurtosis">kurtosis</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" accesskey="n" rel="next">Basic Statistical Functions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|