/usr/share/doc/octave/octave.html/Evaluating-Polynomials.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Evaluating Polynomials (GNU Octave)</title>
<meta name="description" content="Evaluating Polynomials (GNU Octave)">
<meta name="keywords" content="Evaluating Polynomials (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="up" title="Polynomial Manipulations">
<link href="Finding-Roots.html#Finding-Roots" rel="next" title="Finding Roots">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="prev" title="Polynomial Manipulations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Evaluating-Polynomials"></a>
<div class="header">
<p>
Next: <a href="Finding-Roots.html#Finding-Roots" accesskey="n" rel="next">Finding Roots</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Evaluating-Polynomials-1"></a>
<h3 class="section">28.1 Evaluating Polynomials</h3>
<p>The value of a polynomial represented by the vector <var>c</var> can be evaluated
at the point <var>x</var> very easily, as the following example shows:
</p>
<div class="example">
<pre class="example">N = length (c) - 1;
val = dot (x.^(N:-1:0), c);
</pre></div>
<p>While the above example shows how easy it is to compute the value of a
polynomial, it isn’t the most stable algorithm. With larger polynomials
you should use more elegant algorithms, such as Horner’s Method, which
is exactly what the Octave function <code>polyval</code> does.
</p>
<p>In the case where <var>x</var> is a square matrix, the polynomial given by
<var>c</var> is still well-defined. As when <var>x</var> is a scalar the obvious
implementation is easily expressed in Octave, but also in this case
more elegant algorithms perform better. The <code>polyvalm</code> function
provides such an algorithm.
</p>
<a name="XREFpolyval"></a><dl>
<dt><a name="index-polyval"></a>: <em><var>y</var> =</em> <strong>polyval</strong> <em>(<var>p</var>, <var>x</var>)</em></dt>
<dt><a name="index-polyval-1"></a>: <em><var>y</var> =</em> <strong>polyval</strong> <em>(<var>p</var>, <var>x</var>, [], <var>mu</var>)</em></dt>
<dt><a name="index-polyval-2"></a>: <em>[<var>y</var>, <var>dy</var>] =</em> <strong>polyval</strong> <em>(<var>p</var>, <var>x</var>, <var>s</var>)</em></dt>
<dt><a name="index-polyval-3"></a>: <em>[<var>y</var>, <var>dy</var>] =</em> <strong>polyval</strong> <em>(<var>p</var>, <var>x</var>, <var>s</var>, <var>mu</var>)</em></dt>
<dd>
<p>Evaluate the polynomial <var>p</var> at the specified values of <var>x</var>.
</p>
<p>If <var>x</var> is a vector or matrix, the polynomial is evaluated for each of
the elements of <var>x</var>.
</p>
<p>When <var>mu</var> is present, evaluate the polynomial for
(<var>x</var>-<var>mu</var>(1))/<var>mu</var>(2).
</p>
<p>In addition to evaluating the polynomial, the second output represents the
prediction interval, <var>y</var> +/- <var>dy</var>, which contains at least 50% of
the future predictions. To calculate the prediction interval, the
structured variable <var>s</var>, originating from <code>polyfit</code>, must be
supplied.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyvalm">polyvalm</a>, <a href="Derivatives-_002f-Integrals-_002f-Transforms.html#XREFpolyaffine">polyaffine</a>, <a href="Polynomial-Interpolation.html#XREFpolyfit">polyfit</a>, <a href="Finding-Roots.html#XREFroots">roots</a>, <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>.
</p></dd></dl>
<a name="XREFpolyvalm"></a><dl>
<dt><a name="index-polyvalm"></a>: <em></em> <strong>polyvalm</strong> <em>(<var>c</var>, <var>x</var>)</em></dt>
<dd><p>Evaluate a polynomial in the matrix sense.
</p>
<p><code>polyvalm (<var>c</var>, <var>x</var>)</code> will evaluate the polynomial in the
matrix sense, i.e., matrix multiplication is used instead of element by
element multiplication as used in <code>polyval</code>.
</p>
<p>The argument <var>x</var> must be a square matrix.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyval">polyval</a>, <a href="Finding-Roots.html#XREFroots">roots</a>, <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Finding-Roots.html#Finding-Roots" accesskey="n" rel="next">Finding Roots</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|