This file is indexed.

/usr/share/doc/octave/octave.html/Finding-Roots.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Finding Roots (GNU Octave)</title>

<meta name="description" content="Finding Roots (GNU Octave)">
<meta name="keywords" content="Finding Roots (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="up" title="Polynomial Manipulations">
<link href="Products-of-Polynomials.html#Products-of-Polynomials" rel="next" title="Products of Polynomials">
<link href="Evaluating-Polynomials.html#Evaluating-Polynomials" rel="prev" title="Evaluating Polynomials">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Finding-Roots"></a>
<div class="header">
<p>
Next: <a href="Products-of-Polynomials.html#Products-of-Polynomials" accesskey="n" rel="next">Products of Polynomials</a>, Previous: <a href="Evaluating-Polynomials.html#Evaluating-Polynomials" accesskey="p" rel="prev">Evaluating Polynomials</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Finding-Roots-1"></a>
<h3 class="section">28.2 Finding Roots</h3>

<p>Octave can find the roots of a given polynomial.  This is done by computing
the companion matrix of the polynomial (see the <code>compan</code> function
for a definition), and then finding its eigenvalues.
</p>
<a name="XREFroots"></a><dl>
<dt><a name="index-roots"></a>: <em></em> <strong>roots</strong> <em>(<var>c</var>)</em></dt>
<dd>
<p>Compute the roots of the polynomial <var>c</var>.
</p>
<p>For a vector <var>c</var> with <em>N</em> components, return the roots of the
polynomial
</p>
<div class="example">
<pre class="example">c(1) * x^(N-1) + &hellip; + c(N-1) * x + c(N)
</pre></div>


<p>As an example, the following code finds the roots of the quadratic
polynomial
</p>
<div class="example">
<pre class="example">p(x) = x^2 - 5.
</pre></div>


<div class="example">
<pre class="example">c = [1, 0, -5];
roots (c)
&rArr;  2.2361
&rArr; -2.2361
</pre></div>

<p>Note that the true result is
<em>+/- sqrt(5)</em>
which is roughly
<em>+/- 2.2361</em>.
</p>
<p><strong>See also:</strong> <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a href="#XREFcompan">compan</a>, <a href="Solvers.html#XREFfzero">fzero</a>.
</p></dd></dl>


<a name="XREFpolyeig"></a><dl>
<dt><a name="index-polyeig"></a>: <em><var>z</var> =</em> <strong>polyeig</strong> <em>(<var>C0</var>, <var>C1</var>, &hellip;, <var>Cl</var>)</em></dt>
<dt><a name="index-polyeig-1"></a>: <em>[<var>v</var>, <var>z</var>] =</em> <strong>polyeig</strong> <em>(<var>C0</var>, <var>C1</var>, &hellip;, <var>Cl</var>)</em></dt>
<dd>
<p>Solve the polynomial eigenvalue problem of degree <var>l</var>.
</p>
<p>Given an <var>n*n</var> matrix polynomial
</p>
<p><code><var>C</var>(s) = <var>C0</var> + <var>C1</var> s + &hellip; + <var>Cl</var> s^l</code>
</p>
<p><code>polyeig</code> solves the eigenvalue problem
</p>
<p><code>(<var>C0</var> + <var>C1</var> + &hellip; + <var>Cl</var>)v = 0</code>.
</p>
<p>Note that the eigenvalues <var>z</var> are the zeros of the matrix polynomial.
<var>z</var> is a row vector with <var>n*l</var> elements.  <var>v</var> is a matrix
(<var>n</var> x <var>n</var>*<var>l</var>) with columns that correspond to the
eigenvectors.
</p>

<p><strong>See also:</strong> <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a href="Sparse-Linear-Algebra.html#XREFeigs">eigs</a>, <a href="#XREFcompan">compan</a>.
</p></dd></dl>


<a name="XREFcompan"></a><dl>
<dt><a name="index-compan"></a>: <em></em> <strong>compan</strong> <em>(<var>c</var>)</em></dt>
<dd><p>Compute the companion matrix corresponding to polynomial coefficient vector
<var>c</var>.
</p>
<p>The companion matrix is
</p>
<div class="smallexample">
<pre class="smallexample">     _                                                        _
    |  -c(2)/c(1)   -c(3)/c(1)  &hellip;  -c(N)/c(1)  -c(N+1)/c(1)  |
    |       1            0      &hellip;       0             0      |
    |       0            1      &hellip;       0             0      |
A = |       .            .      .         .             .      |
    |       .            .       .        .             .      |
    |       .            .        .       .             .      |
    |_      0            0      &hellip;       1             0     _|
</pre></div>

<p>The eigenvalues of the companion matrix are equal to the roots of the
polynomial.
</p>
<p><strong>See also:</strong> <a href="#XREFroots">roots</a>, <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>


<a name="XREFmpoles"></a><dl>
<dt><a name="index-mpoles"></a>: <em>[<var>multp</var>, <var>idxp</var>] =</em> <strong>mpoles</strong> <em>(<var>p</var>)</em></dt>
<dt><a name="index-mpoles-1"></a>: <em>[<var>multp</var>, <var>idxp</var>] =</em> <strong>mpoles</strong> <em>(<var>p</var>, <var>tol</var>)</em></dt>
<dt><a name="index-mpoles-2"></a>: <em>[<var>multp</var>, <var>idxp</var>] =</em> <strong>mpoles</strong> <em>(<var>p</var>, <var>tol</var>, <var>reorder</var>)</em></dt>
<dd><p>Identify unique poles in <var>p</var> and their associated multiplicity.
</p>
<p>The output is ordered from largest pole to smallest pole.
</p>
<p>If the relative difference of two poles is less than <var>tol</var> then they are
considered to be multiples.  The default value for <var>tol</var> is 0.001.
</p>
<p>If the optional parameter <var>reorder</var> is zero, poles are not sorted.
</p>
<p>The output <var>multp</var> is a vector specifying the multiplicity of the poles.
<code><var>multp</var>(n)</code> refers to the multiplicity of the Nth pole
<code><var>p</var>(<var>idxp</var>(n))</code>.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">p = [2 3 1 1 2];
[m, n] = mpoles (p)
   &rArr; m = [1; 1; 2; 1; 2]
   &rArr; n = [2; 5; 1; 4; 3]
   &rArr; p(n) = [3, 2, 2, 1, 1]
</pre></div>


<p><strong>See also:</strong> <a href="Products-of-Polynomials.html#XREFresidue">residue</a>, <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a href="#XREFroots">roots</a>, <a href="Products-of-Polynomials.html#XREFconv">conv</a>, <a href="Products-of-Polynomials.html#XREFdeconv">deconv</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Products-of-Polynomials.html#Products-of-Polynomials" accesskey="n" rel="next">Products of Polynomials</a>, Previous: <a href="Evaluating-Polynomials.html#Evaluating-Polynomials" accesskey="p" rel="prev">Evaluating Polynomials</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>