This file is indexed.

/usr/share/doc/octave/octave.html/Iterative-Techniques.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Iterative Techniques (GNU Octave)</title>

<meta name="description" content="Iterative Techniques (GNU Octave)">
<meta name="keywords" content="Iterative Techniques (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Sparse-Matrices.html#Sparse-Matrices" rel="up" title="Sparse Matrices">
<link href="Real-Life-Example.html#Real-Life-Example" rel="next" title="Real Life Example">
<link href="Sparse-Linear-Algebra.html#Sparse-Linear-Algebra" rel="prev" title="Sparse Linear Algebra">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Iterative-Techniques"></a>
<div class="header">
<p>
Next: <a href="Real-Life-Example.html#Real-Life-Example" accesskey="n" rel="next">Real Life Example</a>, Previous: <a href="Sparse-Linear-Algebra.html#Sparse-Linear-Algebra" accesskey="p" rel="prev">Sparse Linear Algebra</a>, Up: <a href="Sparse-Matrices.html#Sparse-Matrices" accesskey="u" rel="up">Sparse Matrices</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Iterative-Techniques-Applied-to-Sparse-Matrices"></a>
<h3 class="section">22.3 Iterative Techniques Applied to Sparse Matrices</h3>

<p>The left division <code>\</code> and right division <code>/</code> operators,
discussed in the previous section, use direct solvers to resolve a
linear equation of the form <code><var>x</var> = <var>A</var> \ <var>b</var></code> or
<code><var>x</var> = <var>b</var> / <var>A</var></code>.  Octave also includes a number of
functions to solve sparse linear equations using iterative techniques.
</p>
<a name="XREFpcg"></a><dl>
<dt><a name="index-pcg"></a>: <em><var>x</var> =</em> <strong>pcg</strong> <em>(<var>A</var>, <var>b</var>, <var>tol</var>, <var>maxit</var>, <var>m1</var>, <var>m2</var>, <var>x0</var>, &hellip;)</em></dt>
<dt><a name="index-pcg-1"></a>: <em>[<var>x</var>, <var>flag</var>, <var>relres</var>, <var>iter</var>, <var>resvec</var>, <var>eigest</var>] =</em> <strong>pcg</strong> <em>(&hellip;)</em></dt>
<dd>
<p>Solve the linear system of equations <code><var>A</var>&nbsp;*&nbsp;<var>x</var>&nbsp;=&nbsp;<var>b</var></code><!-- /@w -->
by means of the Preconditioned Conjugate Gradient iterative method.
</p>
<p>The input arguments are
</p>
<ul>
<li> <var>A</var> can be either a square (preferably sparse) matrix or a function
handle, inline function or string containing the name of a function which
computes <code><var>A</var>&nbsp;*&nbsp;<var>x</var></code><!-- /@w -->.  In principle, <var>A</var> should be
symmetric and positive definite; if <code>pcg</code> finds <var>A</var> not to be
positive definite, a warning is printed and the <var>flag</var> output will be
set.

</li><li> <var>b</var> is the right-hand side vector.

</li><li> <var>tol</var> is the required relative tolerance for the residual error,
<code><var>b</var>&nbsp;<span class="nolinebreak">-</span>&nbsp;<var>A</var>&nbsp;*&nbsp;<var>x</var></code><!-- /@w -->.  The iteration stops if
<code>norm&nbsp;(<var>b</var>&nbsp;<span class="nolinebreak">-</span>&nbsp;<var>A</var>&nbsp;*&nbsp;<var>x</var>)</code>&nbsp;&le;&nbsp;<var>tol</var>&nbsp;*&nbsp;norm&nbsp;(<var>b</var>)<!-- /@w --><!-- /@w -->.
If <var>tol</var> is omitted or empty then a tolerance of 1e-6 is used.

</li><li> <var>maxit</var> is the maximum allowable number of iterations; if <var>maxit</var>
is omitted or empty then a value of 20 is used.

</li><li> <var>m</var> = <var>m1</var> * <var>m2</var> is the (left) preconditioning matrix, so that
the iteration is (theoretically) equivalent to solving by <code>pcg</code>
<code><var>P</var>&nbsp;*&nbsp;<var>x</var>&nbsp;=&nbsp;<var>m</var>&nbsp;\&nbsp;<var>b</var></code><!-- /@w -->, with
<code><var>P</var>&nbsp;=&nbsp;<var>m</var>&nbsp;\&nbsp;<var>A</var></code><!-- /@w -->.
Note that a proper choice of the preconditioner may dramatically improve
the overall performance of the method.  Instead of matrices <var>m1</var> and
<var>m2</var>, the user may pass two functions which return the results of
applying the inverse of <var>m1</var> and <var>m2</var> to a vector (usually this is
the preferred way of using the preconditioner).  If <var>m1</var> is omitted or
empty <code>[]</code> then no preconditioning is applied.  If <var>m2</var> is
omitted, <var>m</var> = <var>m1</var> will be used as a preconditioner.

</li><li> <var>x0</var> is the initial guess.  If <var>x0</var> is omitted or empty then the
function sets <var>x0</var> to a zero vector by default.
</li></ul>

<p>The arguments which follow <var>x0</var> are treated as parameters, and passed in
a proper way to any of the functions (<var>A</var> or <var>m</var>) which are passed
to <code>pcg</code>.  See the examples below for further details.  The output
arguments are
</p>
<ul>
<li> <var>x</var> is the computed approximation to the solution of
<code><var>A</var>&nbsp;*&nbsp;<var>x</var>&nbsp;=&nbsp;<var>b</var></code><!-- /@w -->.

</li><li> <var>flag</var> reports on the convergence.  A value of 0 means the solution
converged and the tolerance criterion given by <var>tol</var> is satisfied.
A value of 1 means that the <var>maxit</var> limit for the iteration count was
reached.  A value of 3 indicates that the (preconditioned) matrix was found
not to be positive definite.

</li><li> <var>relres</var> is the ratio of the final residual to its initial value,
measured in the Euclidean norm.

</li><li> <var>iter</var> is the actual number of iterations performed.

</li><li> <var>resvec</var> describes the convergence history of the method.
<code><var>resvec</var>(i,1)</code> is the Euclidean norm of the residual, and
<code><var>resvec</var>(i,2)</code> is the preconditioned residual norm, after the
(<var>i</var>-1)-th iteration, <code><var>i</var> = 1, 2, &hellip;, <var>iter</var>+1</code>.
The preconditioned residual norm is defined as
<code>norm (<var>r</var>) ^ 2 = <var>r</var>' * (<var>m</var> \ <var>r</var>)</code> where
<code><var>r</var> = <var>b</var> - <var>A</var> * <var>x</var></code>, see also the
description of <var>m</var>.  If <var>eigest</var> is not required, only
<code><var>resvec</var>(:,1)</code> is returned.

</li><li> <var>eigest</var> returns the estimate for the smallest <code><var>eigest</var>(1)</code>
and largest <code><var>eigest</var>(2)</code> eigenvalues of the preconditioned matrix
<code><var>P</var>&nbsp;=&nbsp;<var>m</var>&nbsp;\&nbsp;<var>A</var></code><!-- /@w -->.  In particular, if no
preconditioning is used, the estimates for the extreme eigenvalues of
<var>A</var> are returned.  <code><var>eigest</var>(1)</code> is an overestimate and
<code><var>eigest</var>(2)</code> is an underestimate, so that
<code><var>eigest</var>(2) / <var>eigest</var>(1)</code> is a lower bound for
<code>cond (<var>P</var>, 2)</code>, which nevertheless in the limit should
theoretically be equal to the actual value of the condition number.
The method which computes <var>eigest</var> works only for symmetric positive
definite <var>A</var> and <var>m</var>, and the user is responsible for verifying this
assumption.
</li></ul>

<p>Let us consider a trivial problem with a diagonal matrix (we exploit the
sparsity of A)
</p>
<div class="example">
<pre class="example">n = 10;
A = diag (sparse (1:n));
b = rand (n, 1);
[l, u, p] = ilu (A, struct (&quot;droptol&quot;, 1.e-3));
</pre></div>

<p><small>EXAMPLE 1:</small> Simplest use of <code>pcg</code>
</p>
<div class="example">
<pre class="example">x = pcg (A, b)
</pre></div>

<p><small>EXAMPLE 2:</small> <code>pcg</code> with a function which computes
<code><var>A</var> * <var>x</var></code>
</p>
<div class="example">
<pre class="example">function y = apply_a (x)
  y = [1:N]' .* x;
endfunction

x = pcg (&quot;apply_a&quot;, b)
</pre></div>

<p><small>EXAMPLE 3:</small> <code>pcg</code> with a preconditioner: <var>l</var> * <var>u</var>
</p>
<div class="example">
<pre class="example">x = pcg (A, b, 1.e-6, 500, l*u)
</pre></div>

<p><small>EXAMPLE 4:</small> <code>pcg</code> with a preconditioner: <var>l</var> * <var>u</var>.
Faster than <small>EXAMPLE 3</small> since lower and upper triangular matrices are
easier to invert
</p>
<div class="example">
<pre class="example">x = pcg (A, b, 1.e-6, 500, l, u)
</pre></div>

<p><small>EXAMPLE 5:</small> Preconditioned iteration, with full diagnostics.  The
preconditioner (quite strange, because even the original matrix <var>A</var> is
trivial) is defined as a function
</p>
<div class="example">
<pre class="example">function y = apply_m (x)
  k = floor (length (x) - 2);
  y = x;
  y(1:k) = x(1:k) ./ [1:k]';
endfunction

[x, flag, relres, iter, resvec, eigest] = ...
                   pcg (A, b, [], [], &quot;apply_m&quot;);
semilogy (1:iter+1, resvec);
</pre></div>

<p><small>EXAMPLE 6:</small> Finally, a preconditioner which depends on a parameter
<var>k</var>.
</p>
<div class="example">
<pre class="example">function y = apply_M (x, varargin)
  K = varargin{1};
  y = x;
  y(1:K) = x(1:K) ./ [1:K]';
endfunction

[x, flag, relres, iter, resvec, eigest] = ...
     pcg (A, b, [], [], &quot;apply_m&quot;, [], [], 3)
</pre></div>

<p>References:
</p>
<ol>
<li> C.T. Kelley, <cite>Iterative Methods for Linear and Nonlinear Equations</cite>,
SIAM, 1995. (the base PCG algorithm)

</li><li> Y. Saad, <cite>Iterative Methods for Sparse Linear Systems</cite>,
PWS 1996. (condition number estimate from PCG)
Revised version of this book is available online at
<a href="http://www-users.cs.umn.edu/~saad/books.html">http://www-users.cs.umn.edu/~saad/books.html</a>
</li></ol>


<p><strong>See also:</strong> <a href="Creating-Sparse-Matrices.html#XREFsparse">sparse</a>, <a href="#XREFpcr">pcr</a>.
</p></dd></dl>


<a name="XREFpcr"></a><dl>
<dt><a name="index-pcr"></a>: <em><var>x</var> =</em> <strong>pcr</strong> <em>(<var>A</var>, <var>b</var>, <var>tol</var>, <var>maxit</var>, <var>m</var>, <var>x0</var>, &hellip;)</em></dt>
<dt><a name="index-pcr-1"></a>: <em>[<var>x</var>, <var>flag</var>, <var>relres</var>, <var>iter</var>, <var>resvec</var>] =</em> <strong>pcr</strong> <em>(&hellip;)</em></dt>
<dd>
<p>Solve the linear system of equations <code><var>A</var> * <var>x</var> = <var>b</var></code> by
means of the Preconditioned Conjugate Residuals iterative method.
</p>
<p>The input arguments are
</p>
<ul>
<li> <var>A</var> can be either a square (preferably sparse) matrix or a function
handle, inline function or string containing the name of a function which
computes <code><var>A</var> * <var>x</var></code>.  In principle <var>A</var> should be
symmetric and non-singular; if <code>pcr</code> finds <var>A</var> to be numerically
singular, you will get a warning message and the <var>flag</var> output
parameter will be set.

</li><li> <var>b</var> is the right hand side vector.

</li><li> <var>tol</var> is the required relative tolerance for the residual error,
<code><var>b</var> - <var>A</var> * <var>x</var></code>.  The iteration stops if
<code>norm (<var>b</var> - <var>A</var> * <var>x</var>) &lt;=
<var>tol</var> * norm (<var>b</var> - <var>A</var> * <var>x0</var>)</code>.
If <var>tol</var> is empty or is omitted, the function sets
<code><var>tol</var> = 1e-6</code> by default.

</li><li> <var>maxit</var> is the maximum allowable number of iterations; if <code>[]</code> is
supplied for <code>maxit</code>, or <code>pcr</code> has less arguments, a default
value equal to 20 is used.

</li><li> <var>m</var> is the (left) preconditioning matrix, so that the iteration is
(theoretically) equivalent to solving by
<code>pcr</code> <code><var>P</var> * <var>x</var> = <var>m</var> \ <var>b</var></code>, with
<code><var>P</var> = <var>m</var> \ <var>A</var></code>.  Note that a proper choice of the
preconditioner may dramatically improve the overall performance of the
method.  Instead of matrix <var>m</var>, the user may pass a function which
returns the results of applying the inverse of <var>m</var> to a vector
(usually this is the preferred way of using the preconditioner).  If
<code>[]</code> is supplied for <var>m</var>, or <var>m</var> is omitted, no
preconditioning is applied.

</li><li> <var>x0</var> is the initial guess.  If <var>x0</var> is empty or omitted, the
function sets <var>x0</var> to a zero vector by default.
</li></ul>

<p>The arguments which follow <var>x0</var> are treated as parameters, and passed
in a proper way to any of the functions (<var>A</var> or <var>m</var>) which are
passed to <code>pcr</code>.  See the examples below for further details.
</p>
<p>The output arguments are
</p>
<ul>
<li> <var>x</var> is the computed approximation to the solution of
<code><var>A</var> * <var>x</var> = <var>b</var></code>.

</li><li> <var>flag</var> reports on the convergence.  <code><var>flag</var> = 0</code> means the
solution converged and the tolerance criterion given by <var>tol</var> is
satisfied.  <code><var>flag</var> = 1</code> means that the <var>maxit</var> limit for the
iteration count was reached.  <code><var>flag</var> = 3</code> reports a <code>pcr</code>
breakdown, see [1] for details.

</li><li> <var>relres</var> is the ratio of the final residual to its initial value,
measured in the Euclidean norm.

</li><li> <var>iter</var> is the actual number of iterations performed.

</li><li> <var>resvec</var> describes the convergence history of the method, so that
<code><var>resvec</var> (i)</code> contains the Euclidean norms of the residual after
the (<var>i</var>-1)-th iteration, <code><var>i</var> = 1,2, &hellip;, <var>iter</var>+1</code>.
</li></ul>

<p>Let us consider a trivial problem with a diagonal matrix (we exploit the
sparsity of A)
</p>
<div class="example">
<pre class="example">n = 10;
A = sparse (diag (1:n));
b = rand (N, 1);
</pre></div>

<p><small>EXAMPLE 1:</small> Simplest use of <code>pcr</code>
</p>
<div class="example">
<pre class="example">x = pcr (A, b)
</pre></div>

<p><small>EXAMPLE 2:</small> <code>pcr</code> with a function which computes
<code><var>A</var> * <var>x</var></code>.
</p>
<div class="example">
<pre class="example">function y = apply_a (x)
  y = [1:10]' .* x;
endfunction

x = pcr (&quot;apply_a&quot;, b)
</pre></div>

<p><small>EXAMPLE 3:</small>  Preconditioned iteration, with full diagnostics.  The
preconditioner (quite strange, because even the original matrix
<var>A</var> is trivial) is defined as a function
</p>
<div class="example">
<pre class="example">function y = apply_m (x)
  k = floor (length (x) - 2);
  y = x;
  y(1:k) = x(1:k) ./ [1:k]';
endfunction

[x, flag, relres, iter, resvec] = ...
                   pcr (A, b, [], [], &quot;apply_m&quot;)
semilogy ([1:iter+1], resvec);
</pre></div>

<p><small>EXAMPLE 4:</small> Finally, a preconditioner which depends on a
parameter <var>k</var>.
</p>
<div class="example">
<pre class="example">function y = apply_m (x, varargin)
  k = varargin{1};
  y = x;
  y(1:k) = x(1:k) ./ [1:k]';
endfunction

[x, flag, relres, iter, resvec] = ...
                   pcr (A, b, [], [], &quot;apply_m&quot;', [], 3)
</pre></div>

<p>References:
</p>
<p>[1] W. Hackbusch, <cite>Iterative Solution of Large Sparse
Systems of Equations</cite>, section 9.5.4; Springer, 1994
</p>

<p><strong>See also:</strong> <a href="Creating-Sparse-Matrices.html#XREFsparse">sparse</a>, <a href="#XREFpcg">pcg</a>.
</p></dd></dl>


<p>The speed with which an iterative solver converges to a solution can be
accelerated with the use of a pre-conditioning matrix <var>M</var>.  In this
case the linear equation <code><var>M</var>^-1 * <var>x</var> = <var>M</var>^-1 *
<var>A</var> \ <var>b</var></code> is solved instead.  Typical pre-conditioning matrices
are partial factorizations of the original matrix.
</p>
<a name="XREFichol"></a><dl>
<dt><a name="index-ichol"></a>: <em><var>L</var> =</em> <strong>ichol</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-ichol-1"></a>: <em><var>L</var> =</em> <strong>ichol</strong> <em>(<var>A</var>, <var>opts</var>)</em></dt>
<dd>
<p>Compute the incomplete Cholesky factorization of the sparse square matrix
<var>A</var>.
</p>
<p>By default, <code>ichol</code> uses only the lower triangle of <var>A</var> and
produces a lower triangular factor <var>L</var> such that <code>L*L'</code>
approximates <var>A</var>.
</p>
<p>The factor given by this routine may be useful as a preconditioner for a
system of linear equations being solved by iterative methods such as
PCG (Preconditioned Conjugate Gradient).
</p>
<p>The factorization may be modified by passing options in a structure
<var>opts</var>.  The option name is a field of the structure and the setting
is the value of field.  Names and specifiers are case sensitive.
</p>
<dl compact="compact">
<dt>type</dt>
<dd><p>Type of factorization.
</p>
<dl compact="compact">
<dt><code>&quot;nofill&quot;</code> (default)</dt>
<dd><p>Incomplete Cholesky factorization with no fill-in (IC(0)).
</p>
</dd>
<dt><code>&quot;ict&quot;</code></dt>
<dd><p>Incomplete Cholesky factorization with threshold dropping (ICT).
</p></dd>
</dl>

</dd>
<dt>diagcomp</dt>
<dd><p>A non-negative scalar <var>alpha</var> for incomplete Cholesky factorization of
<code><var>A</var> + <var>alpha</var> * diag (diag (<var>A</var>))</code> instead of <var>A</var>.
This can be useful when <var>A</var> is not positive definite.  The default value
is 0.
</p>
</dd>
<dt>droptol</dt>
<dd><p>A non-negative scalar specifying the drop tolerance for factorization if
performing ICT.  The default value is 0 which produces the
complete Cholesky factorization.
</p>
<p>Non-diagonal entries of <var>L</var> are set to 0 unless
</p>
<p><code>abs (<var>L</var>(i,j)) &gt;= droptol * norm (<var>A</var>(j:end, j), 1)</code>.
</p>
</dd>
<dt>michol</dt>
<dd><p>Modified incomplete Cholesky factorization:
</p>
<dl compact="compact">
<dt><code>&quot;off&quot;</code> (default)</dt>
<dd><p>Row and column sums are not necessarily preserved.
</p>
</dd>
<dt><code>&quot;on&quot;</code></dt>
<dd><p>The diagonal of <var>L</var> is modified so that row (and column) sums are
preserved even when elements have been dropped during the factorization.
The relationship preserved is: <code><var>A</var> * e = <var>L</var> * <var>L</var>' * e</code>,
where e is a vector of ones.
</p></dd>
</dl>

</dd>
<dt>shape</dt>
<dd>
<dl compact="compact">
<dt><code>&quot;lower&quot;</code> (default)</dt>
<dd><p>Use only the lower triangle of <var>A</var> and return a lower triangular factor
<var>L</var> such that <code>L*L'</code> approximates <var>A</var>.
</p>
</dd>
<dt><code>&quot;upper&quot;</code></dt>
<dd><p>Use only the upper triangle of <var>A</var> and return an upper triangular factor
<var>U</var> such that <code>U'*U</code> approximates <var>A</var>.
</p></dd>
</dl>
</dd>
</dl>

<p>EXAMPLES
</p>
<p>The following problem demonstrates how to factorize a sample symmetric
positive definite matrix with the full Cholesky decomposition and with the
incomplete one.
</p>
<div class="example">
<pre class="example">A = [ 0.37, -0.05,  -0.05,  -0.07;
     -0.05,  0.116,  0.0,   -0.05;
     -0.05,  0.0,    0.116, -0.05;
     -0.07, -0.05,  -0.05,   0.202];
A = sparse (A);
nnz (tril (A))
ans =  9
L = chol (A, &quot;lower&quot;);
nnz (L)
ans =  10
norm (A - L * L', &quot;fro&quot;) / norm (A, &quot;fro&quot;)
ans =  1.1993e-16
opts.type = &quot;nofill&quot;;
L = ichol (A, opts);
nnz (L)
ans =  9
norm (A - L * L', &quot;fro&quot;) / norm (A, &quot;fro&quot;)
ans =  0.019736
</pre></div>

<p>Another example for decomposition is a finite difference matrix used to
solve a boundary value problem on the unit square.
</p>
<div class="example">
<pre class="example">nx = 400; ny = 200;
hx = 1 / (nx + 1); hy = 1 / (ny + 1);
Dxx = spdiags ([ones(nx, 1), -2*ones(nx, 1), ones(nx, 1)],
               [-1 0 1 ], nx, nx) / (hx ^ 2);
Dyy = spdiags ([ones(ny, 1), -2*ones(ny, 1), ones(ny, 1)],
               [-1 0 1 ], ny, ny) / (hy ^ 2);
A = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
nnz (tril (A))
ans =  239400
opts.type = &quot;nofill&quot;;
L = ichol (A, opts);
nnz (tril (A))
ans =  239400
norm (A - L * L', &quot;fro&quot;) / norm (A, &quot;fro&quot;)
ans =  0.062327
</pre></div>

<p>References for implemented algorithms:
</p>
<p>[1] Y. Saad. &quot;Preconditioning Techniques.&quot; <cite>Iterative
Methods for Sparse Linear Systems</cite>, PWS Publishing Company, 1996.
</p>
<p>[2] M. Jones, P. Plassmann: <cite>An Improved Incomplete
Cholesky Factorization</cite>, 1992.
</p>
<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFchol">chol</a>, <a href="#XREFilu">ilu</a>, <a href="#XREFpcg">pcg</a>.
</p></dd></dl>


<a name="XREFilu"></a><dl>
<dt><a name="index-ilu"></a>: <em></em> <strong>ilu</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-ilu-1"></a>: <em></em> <strong>ilu</strong> <em>(<var>A</var>, <var>opts</var>)</em></dt>
<dt><a name="index-ilu-2"></a>: <em>[<var>L</var>, <var>U</var>] =</em> <strong>ilu</strong> <em>(&hellip;)</em></dt>
<dt><a name="index-ilu-3"></a>: <em>[<var>L</var>, <var>U</var>, <var>P</var>] =</em> <strong>ilu</strong> <em>(&hellip;)</em></dt>
<dd>
<p>Compute the incomplete LU factorization of the sparse square matrix <var>A</var>.
</p>
<p><code>ilu</code> returns a unit lower triangular matrix <var>L</var>, an upper
triangular matrix <var>U</var>, and optionally a permutation matrix <var>P</var>, such
that <code><var>L</var>*<var>U</var></code> approximates <code><var>P</var>*<var>A</var></code>.
</p>
<p>The factors given by this routine may be useful as preconditioners for a
system of linear equations being solved by iterative methods such as BICG
(BiConjugate Gradients) or GMRES (Generalized Minimum Residual Method).
</p>
<p>The factorization may be modified by passing options in a structure
<var>opts</var>.  The option name is a field of the structure and the setting
is the value of field.  Names and specifiers are case sensitive.
</p>
<dl compact="compact">
<dt><code>type</code></dt>
<dd><p>Type of factorization.
</p>
<dl compact="compact">
<dt><code>&quot;nofill&quot;</code></dt>
<dd><p>ILU factorization with no fill-in (ILU(0)).
</p>
<p>Additional supported options: <code>milu</code>.
</p>
</dd>
<dt><code>&quot;crout&quot;</code></dt>
<dd><p>Crout version of ILU factorization (ILUC).
</p>
<p>Additional supported options: <code>milu</code>, <code>droptol</code>.
</p>
</dd>
<dt><code>&quot;ilutp&quot;</code> (default)</dt>
<dd><p>ILU factorization with threshold and pivoting.
</p>
<p>Additional supported options: <code>milu</code>, <code>droptol</code>, <code>udiag</code>,
<code>thresh</code>.
</p></dd>
</dl>

</dd>
<dt><code>droptol</code></dt>
<dd><p>A non-negative scalar specifying the drop tolerance for factorization.  The
default value is 0 which produces the complete LU factorization.
</p>
<p>Non-diagonal entries of <var>U</var> are set to 0 unless
</p>
<p><code>abs (<var>U</var>(i,j)) &gt;= droptol * norm (<var>A</var>(:,j))</code>.
</p>
<p>Non-diagonal entries of <var>L</var> are set to 0 unless
</p>
<p><code>abs (<var>L</var>(i,j)) &gt;= droptol * norm (<var>A</var>(:,j))/<var>U</var>(j,j)</code>.
</p>
</dd>
<dt><code>milu</code></dt>
<dd><p>Modified incomplete LU factorization:
</p>
<dl compact="compact">
<dt><code>&quot;row&quot;</code></dt>
<dd><p>Row-sum modified incomplete LU factorization.
The factorization preserves row sums:
<code><var>A</var> * e = <var>L</var> * <var>U</var> * e</code>, where e is a vector of ones.
</p>
</dd>
<dt><code>&quot;col&quot;</code></dt>
<dd><p>Column-sum modified incomplete LU factorization.
The factorization preserves column sums:
<code>e' * <var>A</var> = e' * <var>L</var> * <var>U</var></code>.
</p>
</dd>
<dt><code>&quot;off&quot;</code> (default)</dt>
<dd><p>Row and column sums are not necessarily preserved.
</p></dd>
</dl>

</dd>
<dt><code>udiag</code></dt>
<dd><p>If true, any zeros on the diagonal of the upper triangular factor are
replaced by the local drop tolerance
<code>droptol * norm (<var>A</var>(:,j))/<var>U</var>(j,j)</code>.  The default is false.
</p>
</dd>
<dt><code>thresh</code></dt>
<dd><p>Pivot threshold for factorization.  It can range between 0 (diagonal
pivoting) and 1 (default), where the maximum magnitude entry in the column
is chosen to be the pivot.
</p></dd>
</dl>

<p>If <code>ilu</code> is called with just one output, the returned matrix is
<code><var>L</var> + <var>U</var> - speye (size (<var>A</var>))</code>, where <var>L</var> is unit
lower triangular and <var>U</var> is upper triangular.
</p>
<p>With two outputs, <code>ilu</code> returns a unit lower triangular matrix <var>L</var>
and an upper triangular matrix <var>U</var>.  For <var>opts</var>.type ==
<code>&quot;ilutp&quot;</code>, one of the factors is permuted based on the value of
<var>opts</var>.milu.  When <var>opts</var>.milu == <code>&quot;row&quot;</code>, <var>U</var> is a
column permuted upper triangular factor.  Otherwise, <var>L</var> is a
row-permuted unit lower triangular factor.
</p>
<p>If there are three named outputs and <var>opts</var>.milu != <code>&quot;row&quot;</code>,
<var>P</var> is returned such that <var>L</var> and <var>U</var> are incomplete factors
of <code><var>P</var>*<var>A</var></code>.  When <var>opts</var>.milu == <code>&quot;row&quot;</code>, <var>P</var>
is returned such that <var>L</var> and <var>U</var> are incomplete factors of
<code><var>A</var>*<var>P</var></code>.
</p>
<p>EXAMPLES
</p>
<div class="example">
<pre class="example">A = gallery (&quot;neumann&quot;, 1600) + speye (1600);
opts.type = &quot;nofill&quot;;
nnz (A)
ans = 7840

nnz (lu (A))
ans = 126478

nnz (ilu (A, opts))
ans = 7840
</pre></div>

<p>This shows that <var>A</var> has 7,840 nonzeros, the complete LU factorization
has 126,478 nonzeros, and the incomplete LU factorization, with 0 level of
fill-in, has 7,840 nonzeros, the same amount as <var>A</var>.  Taken from:
http://www.mathworks.com/help/matlab/ref/ilu.html
</p>
<div class="example">
<pre class="example">A = gallery (&quot;wathen&quot;, 10, 10);
b = sum (A, 2);
tol = 1e-8;
maxit = 50;
opts.type = &quot;crout&quot;;
opts.droptol = 1e-4;
[L, U] = ilu (A, opts);
x = bicg (A, b, tol, maxit, L, U);
norm (A * x - b, inf)
</pre></div>

<p>This example uses ILU as preconditioner for a random FEM-Matrix, which has a
large condition number.  Without <var>L</var> and <var>U</var> BICG would not
converge.
</p>

<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFlu">lu</a>, <a href="#XREFichol">ichol</a>, <a href="Specialized-Solvers.html#XREFbicg">bicg</a>, <a href="Specialized-Solvers.html#XREFgmres">gmres</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Real-Life-Example.html#Real-Life-Example" accesskey="n" rel="next">Real Life Example</a>, Previous: <a href="Sparse-Linear-Algebra.html#Sparse-Linear-Algebra" accesskey="p" rel="prev">Sparse Linear Algebra</a>, Up: <a href="Sparse-Matrices.html#Sparse-Matrices" accesskey="u" rel="up">Sparse Matrices</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>