This file is indexed.

/usr/share/doc/octave/octave.html/Linear-Programming.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Linear Programming (GNU Octave)</title>

<meta name="description" content="Linear Programming (GNU Octave)">
<meta name="keywords" content="Linear Programming (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Optimization.html#Optimization" rel="up" title="Optimization">
<link href="Quadratic-Programming.html#Quadratic-Programming" rel="next" title="Quadratic Programming">
<link href="Optimization.html#Optimization" rel="prev" title="Optimization">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Linear-Programming"></a>
<div class="header">
<p>
Next: <a href="Quadratic-Programming.html#Quadratic-Programming" accesskey="n" rel="next">Quadratic Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Linear-Programming-1"></a>
<h3 class="section">25.1 Linear Programming</h3>

<p>Octave can solve Linear Programming problems using the <code>glpk</code>
function.  That is, Octave can solve
</p>

<div class="example">
<pre class="example">min C'*x
</pre></div>

<p>subject to the linear constraints
<em>A*x = b</em> where <em>x &ge; 0</em>.
</p>
<p>The <code>glpk</code> function also supports variations of this problem.
</p>
<a name="XREFglpk"></a><dl>
<dt><a name="index-glpk"></a>: <em>[<var>xopt</var>, <var>fmin</var>, <var>errnum</var>, <var>extra</var>] =</em> <strong>glpk</strong> <em>(<var>c</var>, <var>A</var>, <var>b</var>, <var>lb</var>, <var>ub</var>, <var>ctype</var>, <var>vartype</var>, <var>sense</var>, <var>param</var>)</em></dt>
<dd><p>Solve a linear program using the GNU <small>GLPK</small> library.
</p>
<p>Given three arguments, <code>glpk</code> solves the following standard LP:
</p>
<div class="example">
<pre class="example">min C'*x
</pre></div>

<p>subject to
</p>
<div class="example">
<pre class="example">A*x  = b
  x &gt;= 0
</pre></div>

<p>but may also solve problems of the form
</p>
<div class="example">
<pre class="example">[ min | max ] C'*x
</pre></div>

<p>subject to
</p>
<div class="example">
<pre class="example">A*x [ &quot;=&quot; | &quot;&lt;=&quot; | &quot;&gt;=&quot; ] b
  x &gt;= LB
  x &lt;= UB
</pre></div>


<p>Input arguments:
</p>
<dl compact="compact">
<dt><var>c</var></dt>
<dd><p>A column array containing the objective function coefficients.
</p>
</dd>
<dt><var>A</var></dt>
<dd><p>A matrix containing the constraints coefficients.
</p>
</dd>
<dt><var>b</var></dt>
<dd><p>A column array containing the right-hand side value for each constraint in
the constraint matrix.
</p>
</dd>
<dt><var>lb</var></dt>
<dd><p>An array containing the lower bound on each of the variables.  If <var>lb</var>
is not supplied, the default lower bound for the variables is zero.
</p>
</dd>
<dt><var>ub</var></dt>
<dd><p>An array containing the upper bound on each of the variables.  If <var>ub</var>
is not supplied, the default upper bound is assumed to be infinite.
</p>
</dd>
<dt><var>ctype</var></dt>
<dd><p>An array of characters containing the sense of each constraint in the
constraint matrix.  Each element of the array may be one of the following
values
</p>
<dl compact="compact">
<dt><code>&quot;F&quot;</code></dt>
<dd><p>A free (unbounded) constraint (the constraint is ignored).
</p>
</dd>
<dt><code>&quot;U&quot;</code></dt>
<dd><p>An inequality constraint with an upper bound (<code>A(i,:)*x &lt;= b(i)</code>).
</p>
</dd>
<dt><code>&quot;S&quot;</code></dt>
<dd><p>An equality constraint (<code>A(i,:)*x = b(i)</code>).
</p>
</dd>
<dt><code>&quot;L&quot;</code></dt>
<dd><p>An inequality with a lower bound (<code>A(i,:)*x &gt;= b(i)</code>).
</p>
</dd>
<dt><code>&quot;D&quot;</code></dt>
<dd><p>An inequality constraint with both upper and lower bounds
(<code>A(i,:)*x &gt;= -b(i)</code>) <em>and</em> (<code>A(i,:)*x &lt;= b(i)</code>).
</p></dd>
</dl>

</dd>
<dt><var>vartype</var></dt>
<dd><p>A column array containing the types of the variables.
</p>
<dl compact="compact">
<dt><code>&quot;C&quot;</code></dt>
<dd><p>A continuous variable.
</p>
</dd>
<dt><code>&quot;I&quot;</code></dt>
<dd><p>An integer variable.
</p></dd>
</dl>

</dd>
<dt><var>sense</var></dt>
<dd><p>If <var>sense</var> is 1, the problem is a minimization.  If <var>sense</var> is -1,
the problem is a maximization.  The default value is 1.
</p>
</dd>
<dt><var>param</var></dt>
<dd><p>A structure containing the following parameters used to define the
behavior of solver.  Missing elements in the structure take on default
values, so you only need to set the elements that you wish to change from
the default.
</p>
<p>Integer parameters:
</p>
<dl compact="compact">
<dt><code>msglev (default: 1)</code></dt>
<dd><p>Level of messages output by solver routines:
</p>
<dl compact="compact">
<dt>0 (<code><span class="nolinebreak">GLP_MSG_OFF</span></code><!-- /@w -->)</dt>
<dd><p>No output.
</p>
</dd>
<dt>1 (<code><span class="nolinebreak">GLP_MSG_ERR</span></code><!-- /@w -->)</dt>
<dd><p>Error and warning messages only.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_MSG_ON</span></code><!-- /@w -->)</dt>
<dd><p>Normal output.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_MSG_ALL</span></code><!-- /@w -->)</dt>
<dd><p>Full output (includes informational messages).
</p></dd>
</dl>

</dd>
<dt><code>scale (default: 16)</code></dt>
<dd><p>Scaling option.  The values can be combined with the bitwise OR operator and
may be the following:
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_SF_GM</span></code><!-- /@w -->)</dt>
<dd><p>Geometric mean scaling.
</p>
</dd>
<dt>16 (<code><span class="nolinebreak">GLP_SF_EQ</span></code><!-- /@w -->)</dt>
<dd><p>Equilibration scaling.
</p>
</dd>
<dt>32 (<code><span class="nolinebreak">GLP_SF_2N</span></code><!-- /@w -->)</dt>
<dd><p>Round scale factors to power of two.
</p>
</dd>
<dt>64 (<code><span class="nolinebreak">GLP_SF_SKIP</span></code><!-- /@w -->)</dt>
<dd><p>Skip if problem is well scaled.
</p></dd>
</dl>

<p>Alternatively, a value of 128 (<code><span class="nolinebreak">GLP_SF_AUTO</span></code><!-- /@w -->) may be also
specified, in which case the routine chooses the scaling options
automatically.
</p>
</dd>
<dt><code>dual (default: 1)</code></dt>
<dd><p>Simplex method option:
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_PRIMAL</span></code><!-- /@w -->)</dt>
<dd><p>Use two-phase primal simplex.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_DUALP</span></code><!-- /@w -->)</dt>
<dd><p>Use two-phase dual simplex, and if it fails, switch to the primal simplex.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_DUAL</span></code><!-- /@w -->)</dt>
<dd><p>Use two-phase dual simplex.
</p></dd>
</dl>

</dd>
<dt><code>price (default: 34)</code></dt>
<dd><p>Pricing option (for both primal and dual simplex):
</p>
<dl compact="compact">
<dt>17 (<code><span class="nolinebreak">GLP_PT_STD</span></code><!-- /@w -->)</dt>
<dd><p>Textbook pricing.
</p>
</dd>
<dt>34 (<code><span class="nolinebreak">GLP_PT_PSE</span></code><!-- /@w -->)</dt>
<dd><p>Steepest edge pricing.
</p></dd>
</dl>

</dd>
<dt><code>itlim (default: intmax)</code></dt>
<dd><p>Simplex iterations limit.  It is decreased by one each time when one simplex
iteration has been performed, and reaching zero value signals the solver to
stop the search.
</p>
</dd>
<dt><code>outfrq (default: 200)</code></dt>
<dd><p>Output frequency, in iterations.  This parameter specifies how frequently
the solver sends information about the solution to the standard output.
</p>
</dd>
<dt><code>branch (default: 4)</code></dt>
<dd><p>Branching technique option (for MIP only):
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_BR_FFV</span></code><!-- /@w -->)</dt>
<dd><p>First fractional variable.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_BR_LFV</span></code><!-- /@w -->)</dt>
<dd><p>Last fractional variable.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_BR_MFV</span></code><!-- /@w -->)</dt>
<dd><p>Most fractional variable.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_BR_DTH</span></code><!-- /@w -->)</dt>
<dd><p>Heuristic by Driebeck and Tomlin.
</p>
</dd>
<dt>5 (<code><span class="nolinebreak">GLP_BR_PCH</span></code><!-- /@w -->)</dt>
<dd><p>Hybrid pseudocost heuristic.
</p></dd>
</dl>

</dd>
<dt><code>btrack (default: 4)</code></dt>
<dd><p>Backtracking technique option (for MIP only):
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_BT_DFS</span></code><!-- /@w -->)</dt>
<dd><p>Depth first search.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_BT_BFS</span></code><!-- /@w -->)</dt>
<dd><p>Breadth first search.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_BT_BLB</span></code><!-- /@w -->)</dt>
<dd><p>Best local bound.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_BT_BPH</span></code><!-- /@w -->)</dt>
<dd><p>Best projection heuristic.
</p></dd>
</dl>

</dd>
<dt><code>presol (default: 1)</code></dt>
<dd><p>If this flag is set, the simplex solver uses the built-in LP presolver.
Otherwise the LP presolver is not used.
</p>
</dd>
<dt><code>lpsolver (default: 1)</code></dt>
<dd><p>Select which solver to use.  If the problem is a MIP problem this flag
will be ignored.
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Revised simplex method.
</p>
</dd>
<dt>2</dt>
<dd><p>Interior point method.
</p></dd>
</dl>

</dd>
<dt><code>rtest (default: 34)</code></dt>
<dd><p>Ratio test technique:
</p>
<dl compact="compact">
<dt>17 (<code><span class="nolinebreak">GLP_RT_STD</span></code><!-- /@w -->)</dt>
<dd><p>Standard (&quot;textbook&quot;).
</p>
</dd>
<dt>34 (<code><span class="nolinebreak">GLP_RT_HAR</span></code><!-- /@w -->)</dt>
<dd><p>Harris&rsquo; two-pass ratio test.
</p></dd>
</dl>

</dd>
<dt><code>tmlim (default: intmax)</code></dt>
<dd><p>Searching time limit, in milliseconds.
</p>
</dd>
<dt><code>outdly (default: 0)</code></dt>
<dd><p>Output delay, in seconds.  This parameter specifies how long the solver
should delay sending information about the solution to the standard output.
</p>
</dd>
<dt><code>save (default: 0)</code></dt>
<dd><p>If this parameter is nonzero, save a copy of the problem in CPLEX LP
format to the file <samp>&quot;outpb.lp&quot;</samp>.  There is currently no way to change
the name of the output file.
</p></dd>
</dl>

<p>Real parameters:
</p>
<dl compact="compact">
<dt><code>tolbnd (default: 1e-7)</code></dt>
<dd><p>Relative tolerance used to check if the current basic solution is primal
feasible.  It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code>toldj (default: 1e-7)</code></dt>
<dd><p>Absolute tolerance used to check if the current basic solution is dual
feasible.  It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code>tolpiv (default: 1e-10)</code></dt>
<dd><p>Relative tolerance used to choose eligible pivotal elements of the simplex
table.  It is not recommended that you change this parameter unless you have
a detailed understanding of its purpose.
</p>
</dd>
<dt><code>objll (default: -DBL_MAX)</code></dt>
<dd><p>Lower limit of the objective function.  If the objective function reaches
this limit and continues decreasing, the solver stops the search.  This
parameter is used in the dual simplex method only.
</p>
</dd>
<dt><code>objul (default: +DBL_MAX)</code></dt>
<dd><p>Upper limit of the objective function.  If the objective function reaches
this limit and continues increasing, the solver stops the search.  This
parameter is used in the dual simplex only.
</p>
</dd>
<dt><code>tolint (default: 1e-5)</code></dt>
<dd><p>Relative tolerance used to check if the current basic solution is integer
feasible.  It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code>tolobj (default: 1e-7)</code></dt>
<dd><p>Relative tolerance used to check if the value of the objective function is
not better than in the best known integer feasible solution.  It is not
recommended that you change this parameter unless you have a detailed
understanding of its purpose.
</p></dd>
</dl>
</dd>
</dl>

<p>Output values:
</p>
<dl compact="compact">
<dt><var>xopt</var></dt>
<dd><p>The optimizer (the value of the decision variables at the optimum).
</p>
</dd>
<dt><var>fopt</var></dt>
<dd><p>The optimum value of the objective function.
</p>
</dd>
<dt><var>errnum</var></dt>
<dd><p>Error code.
</p>
<dl compact="compact">
<dt>0</dt>
<dd><p>No error.
</p>
</dd>
<dt>1 (<code><span class="nolinebreak">GLP_EBADB</span></code><!-- /@w -->)</dt>
<dd><p>Invalid basis.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_ESING</span></code><!-- /@w -->)</dt>
<dd><p>Singular matrix.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_ECOND</span></code><!-- /@w -->)</dt>
<dd><p>Ill-conditioned matrix.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_EBOUND</span></code><!-- /@w -->)</dt>
<dd><p>Invalid bounds.
</p>
</dd>
<dt>5 (<code><span class="nolinebreak">GLP_EFAIL</span></code><!-- /@w -->)</dt>
<dd><p>Solver failed.
</p>
</dd>
<dt>6 (<code><span class="nolinebreak">GLP_EOBJLL</span></code><!-- /@w -->)</dt>
<dd><p>Objective function lower limit reached.
</p>
</dd>
<dt>7 (<code><span class="nolinebreak">GLP_EOBJUL</span></code><!-- /@w -->)</dt>
<dd><p>Objective function upper limit reached.
</p>
</dd>
<dt>8 (<code><span class="nolinebreak">GLP_EITLIM</span></code><!-- /@w -->)</dt>
<dd><p>Iterations limit exhausted.
</p>
</dd>
<dt>9 (<code><span class="nolinebreak">GLP_ETMLIM</span></code><!-- /@w -->)</dt>
<dd><p>Time limit exhausted.
</p>
</dd>
<dt>10 (<code><span class="nolinebreak">GLP_ENOPFS</span></code><!-- /@w -->)</dt>
<dd><p>No primal feasible solution.
</p>
</dd>
<dt>11 (<code><span class="nolinebreak">GLP_ENODFS</span></code><!-- /@w -->)</dt>
<dd><p>No dual feasible solution.
</p>
</dd>
<dt>12 (<code><span class="nolinebreak">GLP_EROOT</span></code><!-- /@w -->)</dt>
<dd><p>Root LP optimum not provided.
</p>
</dd>
<dt>13 (<code><span class="nolinebreak">GLP_ESTOP</span></code><!-- /@w -->)</dt>
<dd><p>Search terminated by application.
</p>
</dd>
<dt>14 (<code><span class="nolinebreak">GLP_EMIPGAP</span></code><!-- /@w -->)</dt>
<dd><p>Relative MIP gap tolerance reached.
</p>
</dd>
<dt>15 (<code><span class="nolinebreak">GLP_ENOFEAS</span></code><!-- /@w -->)</dt>
<dd><p>No primal/dual feasible solution.
</p>
</dd>
<dt>16 (<code><span class="nolinebreak">GLP_ENOCVG</span></code><!-- /@w -->)</dt>
<dd><p>No convergence.
</p>
</dd>
<dt>17 (<code><span class="nolinebreak">GLP_EINSTAB</span></code><!-- /@w -->)</dt>
<dd><p>Numerical instability.
</p>
</dd>
<dt>18 (<code><span class="nolinebreak">GLP_EDATA</span></code><!-- /@w -->)</dt>
<dd><p>Invalid data.
</p>
</dd>
<dt>19 (<code><span class="nolinebreak">GLP_ERANGE</span></code><!-- /@w -->)</dt>
<dd><p>Result out of range.
</p></dd>
</dl>

</dd>
<dt><var>extra</var></dt>
<dd><p>A data structure containing the following fields:
</p>
<dl compact="compact">
<dt><code>lambda</code></dt>
<dd><p>Dual variables.
</p>
</dd>
<dt><code>redcosts</code></dt>
<dd><p>Reduced Costs.
</p>
</dd>
<dt><code>time</code></dt>
<dd><p>Time (in seconds) used for solving LP/MIP problem.
</p>
</dd>
<dt><code>status</code></dt>
<dd><p>Status of the optimization.
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_UNDEF</span></code><!-- /@w -->)</dt>
<dd><p>Solution status is undefined.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_FEAS</span></code><!-- /@w -->)</dt>
<dd><p>Solution is feasible.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_INFEAS</span></code><!-- /@w -->)</dt>
<dd><p>Solution is infeasible.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_NOFEAS</span></code><!-- /@w -->)</dt>
<dd><p>Problem has no feasible solution.
</p>
</dd>
<dt>5 (<code><span class="nolinebreak">GLP_OPT</span></code><!-- /@w -->)</dt>
<dd><p>Solution is optimal.
</p>
</dd>
<dt>6 (<code><span class="nolinebreak">GLP_UNBND</span></code><!-- /@w -->)</dt>
<dd><p>Problem has no unbounded solution.
</p></dd>
</dl>
</dd>
</dl>
</dd>
</dl>

<p>Example:
</p>
<div class="example">
<pre class="example">c = [10, 6, 4]';
A = [ 1, 1, 1;
     10, 4, 5;
      2, 2, 6];
b = [100, 600, 300]';
lb = [0, 0, 0]';
ub = [];
ctype = &quot;UUU&quot;;
vartype = &quot;CCC&quot;;
s = -1;

param.msglev = 1;
param.itlim = 100;

[xmin, fmin, status, extra] = ...
   glpk (c, A, b, lb, ub, ctype, vartype, s, param);
</pre></div>
</dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Quadratic-Programming.html#Quadratic-Programming" accesskey="n" rel="next">Quadratic Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>