/usr/share/doc/octave/octave.html/Nonlinear-Programming.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Nonlinear Programming (GNU Octave)</title>
<meta name="description" content="Nonlinear Programming (GNU Octave)">
<meta name="keywords" content="Nonlinear Programming (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Optimization.html#Optimization" rel="up" title="Optimization">
<link href="Linear-Least-Squares.html#Linear-Least-Squares" rel="next" title="Linear Least Squares">
<link href="Quadratic-Programming.html#Quadratic-Programming" rel="prev" title="Quadratic Programming">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Nonlinear-Programming"></a>
<div class="header">
<p>
Next: <a href="Linear-Least-Squares.html#Linear-Least-Squares" accesskey="n" rel="next">Linear Least Squares</a>, Previous: <a href="Quadratic-Programming.html#Quadratic-Programming" accesskey="p" rel="prev">Quadratic Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Nonlinear-Programming-1"></a>
<h3 class="section">25.3 Nonlinear Programming</h3>
<p>Octave can also perform general nonlinear minimization using a
successive quadratic programming solver.
</p>
<a name="XREFsqp"></a><dl>
<dt><a name="index-sqp"></a>: <em>[<var>x</var>, <var>obj</var>, <var>info</var>, <var>iter</var>, <var>nf</var>, <var>lambda</var>] =</em> <strong>sqp</strong> <em>(<var>x0</var>, <var>phi</var>)</em></dt>
<dt><a name="index-sqp-1"></a>: <em>[…] =</em> <strong>sqp</strong> <em>(<var>x0</var>, <var>phi</var>, <var>g</var>)</em></dt>
<dt><a name="index-sqp-2"></a>: <em>[…] =</em> <strong>sqp</strong> <em>(<var>x0</var>, <var>phi</var>, <var>g</var>, <var>h</var>)</em></dt>
<dt><a name="index-sqp-3"></a>: <em>[…] =</em> <strong>sqp</strong> <em>(<var>x0</var>, <var>phi</var>, <var>g</var>, <var>h</var>, <var>lb</var>, <var>ub</var>)</em></dt>
<dt><a name="index-sqp-4"></a>: <em>[…] =</em> <strong>sqp</strong> <em>(<var>x0</var>, <var>phi</var>, <var>g</var>, <var>h</var>, <var>lb</var>, <var>ub</var>, <var>maxiter</var>)</em></dt>
<dt><a name="index-sqp-5"></a>: <em>[…] =</em> <strong>sqp</strong> <em>(<var>x0</var>, <var>phi</var>, <var>g</var>, <var>h</var>, <var>lb</var>, <var>ub</var>, <var>maxiter</var>, <var>tol</var>)</em></dt>
<dd><p>Minimize an objective function using sequential quadratic programming (SQP).
</p>
<p>Solve the nonlinear program
</p>
<div class="example">
<pre class="example">min phi (x)
x
</pre></div>
<p>subject to
</p>
<div class="example">
<pre class="example">g(x) = 0
h(x) >= 0
lb <= x <= ub
</pre></div>
<p>using a sequential quadratic programming method.
</p>
<p>The first argument is the initial guess for the vector <var>x0</var>.
</p>
<p>The second argument is a function handle pointing to the objective function
<var>phi</var>. The objective function must accept one vector argument and
return a scalar.
</p>
<p>The second argument may also be a 2- or 3-element cell array of function
handles. The first element should point to the objective function, the
second should point to a function that computes the gradient of the
objective function, and the third should point to a function that computes
the Hessian of the objective function. If the gradient function is not
supplied, the gradient is computed by finite differences. If the Hessian
function is not supplied, a BFGS update formula is used to approximate the
Hessian.
</p>
<p>When supplied, the gradient function <code><var>phi</var>{2}</code> must accept one
vector argument and return a vector. When supplied, the Hessian function
<code><var>phi</var>{3}</code> must accept one vector argument and return a matrix.
</p>
<p>The third and fourth arguments <var>g</var> and <var>h</var> are function handles
pointing to functions that compute the equality constraints and the
inequality constraints, respectively. If the problem does not have
equality (or inequality) constraints, then use an empty matrix ([]) for
<var>g</var> (or <var>h</var>). When supplied, these equality and inequality
constraint functions must accept one vector argument and return a vector.
</p>
<p>The third and fourth arguments may also be 2-element cell arrays of
function handles. The first element should point to the constraint
function and the second should point to a function that computes the
gradient of the constraint function:
</p>
<div class="example">
<pre class="example"> [ d f(x) d f(x) d f(x) ]
transpose ( [ ------ ----- ... ------ ] )
[ dx_1 dx_2 dx_N ]
</pre></div>
<p>The fifth and sixth arguments, <var>lb</var> and <var>ub</var>, contain lower and
upper bounds on <var>x</var>. These must be consistent with the equality and
inequality constraints <var>g</var> and <var>h</var>. If the arguments are vectors
then <var>x</var>(i) is bound by <var>lb</var>(i) and <var>ub</var>(i). A bound can also
be a scalar in which case all elements of <var>x</var> will share the same
bound. If only one bound (lb, ub) is specified then the other will
default to (-<var>realmax</var>, +<var>realmax</var>).
</p>
<p>The seventh argument <var>maxiter</var> specifies the maximum number of
iterations. The default value is 100.
</p>
<p>The eighth argument <var>tol</var> specifies the tolerance for the stopping
criteria. The default value is <code>sqrt (eps)</code>.
</p>
<p>The value returned in <var>info</var> may be one of the following:
</p>
<dl compact="compact">
<dt>101</dt>
<dd><p>The algorithm terminated normally.
All constraints meet the specified tolerance.
</p>
</dd>
<dt>102</dt>
<dd><p>The BFGS update failed.
</p>
</dd>
<dt>103</dt>
<dd><p>The maximum number of iterations was reached.
</p>
</dd>
<dt>104</dt>
<dd><p>The stepsize has become too small, i.e.,
delta <var>x</var>,
is less than <code><var>tol</var> * norm (x)</code>.
</p></dd>
</dl>
<p>An example of calling <code>sqp</code>:
</p>
<div class="example">
<pre class="example">function r = g (x)
r = [ sumsq(x)-10;
x(2)*x(3)-5*x(4)*x(5);
x(1)^3+x(2)^3+1 ];
endfunction
function obj = phi (x)
obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
endfunction
x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
[x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])
x =
-1.71714
1.59571
1.82725
-0.76364
-0.76364
obj = 0.053950
info = 101
iter = 8
nf = 10
lambda =
-0.0401627
0.0379578
-0.0052227
</pre></div>
<p><strong>See also:</strong> <a href="Quadratic-Programming.html#XREFqp">qp</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Linear-Least-Squares.html#Linear-Least-Squares" accesskey="n" rel="next">Linear Least Squares</a>, Previous: <a href="Quadratic-Programming.html#Quadratic-Programming" accesskey="p" rel="prev">Quadratic Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|