This file is indexed.

/usr/share/doc/octave/octave.html/Ordinary-Differential-Equations.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Ordinary Differential Equations (GNU Octave)</title>

<meta name="description" content="Ordinary Differential Equations (GNU Octave)">
<meta name="keywords" content="Ordinary Differential Equations (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Differential-Equations.html#Differential-Equations" rel="up" title="Differential Equations">
<link href="Matlab_002dcompatible-solvers.html#Matlab_002dcompatible-solvers" rel="next" title="Matlab-compatible solvers">
<link href="Differential-Equations.html#Differential-Equations" rel="prev" title="Differential Equations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Ordinary-Differential-Equations"></a>
<div class="header">
<p>
Next: <a href="Differential_002dAlgebraic-Equations.html#Differential_002dAlgebraic-Equations" accesskey="n" rel="next">Differential-Algebraic Equations</a>, Up: <a href="Differential-Equations.html#Differential-Equations" accesskey="u" rel="up">Differential Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Ordinary-Differential-Equations-1"></a>
<h3 class="section">24.1 Ordinary Differential Equations</h3>

<p>The function <code>lsode</code> can be used to solve ODEs of the form
</p>
<div class="example">
<pre class="example">dx
-- = f (x, t)
dt
</pre></div>


<p>using Hindmarsh&rsquo;s ODE solver <small>LSODE</small>.
</p>


<a name="XREFlsode"></a><dl>
<dt><a name="index-lsode"></a>: <em>[<var>x</var>, <var>istate</var>, <var>msg</var>] =</em> <strong>lsode</strong> <em>(<var>fcn</var>, <var>x_0</var>, <var>t</var>)</em></dt>
<dt><a name="index-lsode-1"></a>: <em>[<var>x</var>, <var>istate</var>, <var>msg</var>] =</em> <strong>lsode</strong> <em>(<var>fcn</var>, <var>x_0</var>, <var>t</var>, <var>t_crit</var>)</em></dt>
<dd><p>Ordinary Differential Equation (ODE) solver.
</p>
<p>The set of differential equations to solve is
</p>
<div class="example">
<pre class="example">dx
-- = f (x, t)
dt
</pre></div>

<p>with
</p>
<div class="example">
<pre class="example">x(t_0) = x_0
</pre></div>

<p>The solution is returned in the matrix <var>x</var>, with each row
corresponding to an element of the vector <var>t</var>.  The first element
of <var>t</var> should be <em>t_0</em> and should correspond to the initial
state of the system <var>x_0</var>, so that the first row of the output
is <var>x_0</var>.
</p>
<p>The first argument, <var>fcn</var>, is a string, inline, or function handle
that names the function <em>f</em> to call to compute the vector of right
hand sides for the set of equations.  The function must have the form
</p>
<div class="example">
<pre class="example"><var>xdot</var> = f (<var>x</var>, <var>t</var>)
</pre></div>

<p>in which <var>xdot</var> and <var>x</var> are vectors and <var>t</var> is a scalar.
</p>
<p>If <var>fcn</var> is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function <em>f</em> described above, and the second element names a
function to compute the Jacobian of <em>f</em>.  The Jacobian function
must have the form
</p>
<div class="example">
<pre class="example"><var>jac</var> = j (<var>x</var>, <var>t</var>)
</pre></div>

<p>in which <var>jac</var> is the matrix of partial derivatives
</p>
<div class="example">
<pre class="example">             | df_1  df_1       df_1 |
             | ----  ----  ...  ---- |
             | dx_1  dx_2       dx_N |
             |                       |
             | df_2  df_2       df_2 |
             | ----  ----  ...  ---- |
      df_i   | dx_1  dx_2       dx_N |
jac = ---- = |                       |
      dx_j   |  .    .     .    .    |
             |  .    .      .   .    |
             |  .    .       .  .    |
             |                       |
             | df_N  df_N       df_N |
             | ----  ----  ...  ---- |
             | dx_1  dx_2       dx_N |
</pre></div>


<p>The second argument specifies the initial state of the system <em>x_0</em>.  The
third argument is a vector, <var>t</var>, specifying the time values for which a
solution is sought.
</p>
<p>The fourth argument is optional, and may be used to specify a set of
times that the ODE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
</p>
<p>After a successful computation, the value of <var>istate</var> will be 2
(consistent with the Fortran version of <small>LSODE</small>).
</p>
<p>If the computation is not successful, <var>istate</var> will be something
other than 2 and <var>msg</var> will contain additional information.
</p>
<p>You can use the function <code>lsode_options</code> to set optional
parameters for <code>lsode</code>.
</p>
<p><strong>See also:</strong> <a href="Differential_002dAlgebraic-Equations.html#XREFdaspk">daspk</a>, <a href="Differential_002dAlgebraic-Equations.html#XREFdassl">dassl</a>, <a href="Differential_002dAlgebraic-Equations.html#XREFdasrt">dasrt</a>.
</p></dd></dl>


<a name="XREFlsode_005foptions"></a><dl>
<dt><a name="index-lsode_005foptions"></a>: <em></em> <strong>lsode_options</strong> <em>()</em></dt>
<dt><a name="index-lsode_005foptions-1"></a>: <em>val =</em> <strong>lsode_options</strong> <em>(<var>opt</var>)</em></dt>
<dt><a name="index-lsode_005foptions-2"></a>: <em></em> <strong>lsode_options</strong> <em>(<var>opt</var>, <var>val</var>)</em></dt>
<dd><p>Query or set options for the function <code>lsode</code>.
</p>
<p>When called with no arguments, the names of all available options and
their current values are displayed.
</p>
<p>Given one argument, return the value of the option <var>opt</var>.
</p>
<p>When called with two arguments, <code>lsode_options</code> sets the option
<var>opt</var> to value <var>val</var>.
</p>
<p>Options include
</p>
<dl compact="compact">
<dt><code>&quot;absolute tolerance&quot;</code></dt>
<dd><p>Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector.
</p>
</dd>
<dt><code>&quot;relative tolerance&quot;</code></dt>
<dd><p>Relative tolerance parameter.  Unlike the absolute tolerance, this
parameter may only be a scalar.
</p>
<p>The local error test applied at each integration step is
</p>
<div class="example">
<pre class="example">  abs (local error in x(i)) &lt;= ...
      rtol * abs (y(i)) + atol(i)
</pre></div>

</dd>
<dt><code>&quot;integration method&quot;</code></dt>
<dd><p>A string specifying the method of integration to use to solve the ODE
system.  Valid values are
</p>
<dl compact="compact">
<dt><code>&quot;adams&quot;</code></dt>
<dt><code>&quot;non-stiff&quot;</code></dt>
<dd><p>No Jacobian used (even if it is available).
</p>
</dd>
<dt><code>&quot;bdf&quot;</code></dt>
<dt><code>&quot;stiff&quot;</code></dt>
<dd><p>Use stiff backward differentiation formula (BDF) method.  If a
function to compute the Jacobian is not supplied, <code>lsode</code> will
compute a finite difference approximation of the Jacobian matrix.
</p></dd>
</dl>

</dd>
<dt><code>&quot;initial step size&quot;</code></dt>
<dd><p>The step size to be attempted on the first step (default is determined
automatically).
</p>
</dd>
<dt><code>&quot;maximum order&quot;</code></dt>
<dd><p>Restrict the maximum order of the solution method.  If using the Adams
method, this option must be between 1 and 12.  Otherwise, it must be
between 1 and 5, inclusive.
</p>
</dd>
<dt><code>&quot;maximum step size&quot;</code></dt>
<dd><p>Setting the maximum stepsize will avoid passing over very large
regions  (default is not specified).
</p>
</dd>
<dt><code>&quot;minimum step size&quot;</code></dt>
<dd><p>The minimum absolute step size allowed (default is 0).
</p>
</dd>
<dt><code>&quot;step limit&quot;</code></dt>
<dd><p>Maximum number of steps allowed (default is 100000).
</p></dd>
</dl>
</dd></dl>


<p>Here is an example of solving a set of three differential equations using
<code>lsode</code>.  Given the function
</p>
<a name="index-oregonator"></a>

<div class="example">
<pre class="example">## oregonator differential equation
function xdot = f (x, t)

  xdot = zeros (3,1);

  xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) ...
            - 8.375e-06*x(1)^2);
  xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;
  xdot(3) = 0.161*(x(1) - x(3));

endfunction
</pre></div>

<p>and the initial condition <code>x0 = [ 4; 1.1; 4 ]</code>, the set of
equations can be integrated using the command
</p>
<div class="example">
<pre class="example">t = linspace (0, 500, 1000);

y = lsode (&quot;f&quot;, x0, t);
</pre></div>

<p>If you try this, you will see that the value of the result changes
dramatically between <var>t</var> = 0 and 5, and again around <var>t</var> = 305.
A more efficient set of output points might be
</p>
<div class="example">
<pre class="example">t = [0, logspace(-1, log10(303), 150), ...
        logspace(log10(304), log10(500), 150)];
</pre></div>

<p>See Alan C. Hindmarsh,
<cite>ODEPACK, A Systematized Collection of ODE Solvers</cite>,
in Scientific Computing, R. S. Stepleman, editor, (1983)
for more information about the inner workings of <code>lsode</code>.
</p>
<p>An m-file for the differential equation used above is included with the
Octave distribution in the examples directory under the name
<samp>oregonator.m</samp>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="Matlab_002dcompatible-solvers.html#Matlab_002dcompatible-solvers" accesskey="1">Matlab-compatible solvers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<div class="header">
<p>
Next: <a href="Differential_002dAlgebraic-Equations.html#Differential_002dAlgebraic-Equations" accesskey="n" rel="next">Differential-Algebraic Equations</a>, Up: <a href="Differential-Equations.html#Differential-Equations" accesskey="u" rel="up">Differential Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>