This file is indexed.

/usr/share/doc/octave/octave.html/Special-Functions.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Special Functions (GNU Octave)</title>

<meta name="description" content="Special Functions (GNU Octave)">
<meta name="keywords" content="Special Functions (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html#Arithmetic" rel="up" title="Arithmetic">
<link href="Rational-Approximations.html#Rational-Approximations" rel="next" title="Rational Approximations">
<link href="Utility-Functions.html#Utility-Functions" rel="prev" title="Utility Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Special-Functions"></a>
<div class="header">
<p>
Next: <a href="Rational-Approximations.html#Rational-Approximations" accesskey="n" rel="next">Rational Approximations</a>, Previous: <a href="Utility-Functions.html#Utility-Functions" accesskey="p" rel="prev">Utility Functions</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Special-Functions-1"></a>
<h3 class="section">17.6 Special Functions</h3>

<a name="XREFairy"></a><dl>
<dt><a name="index-airy"></a>: <em>[<var>a</var>, <var>ierr</var>] =</em> <strong>airy</strong> <em>(<var>k</var>, <var>z</var>, <var>opt</var>)</em></dt>
<dd><p>Compute Airy functions of the first and second kind, and their derivatives.
</p>
<div class="example">
<pre class="example"> K   Function   Scale factor (if &quot;opt&quot; is supplied)
---  --------   ---------------------------------------
 0   Ai (Z)     exp ((2/3) * Z * sqrt (Z))
 1   dAi(Z)/dZ  exp ((2/3) * Z * sqrt (Z))
 2   Bi (Z)     exp (-abs (real ((2/3) * Z * sqrt (Z))))
 3   dBi(Z)/dZ  exp (-abs (real ((2/3) * Z * sqrt (Z))))
</pre></div>

<p>The function call <code>airy (<var>z</var>)</code> is equivalent to
<code>airy (0, <var>z</var>)</code>.
</p>
<p>The result is the same size as <var>z</var>.
</p>
<p>If requested, <var>ierr</var> contains the following status information and
is the same size as the result.
</p>
<ol start="0">
<li> Normal return.

</li><li> Input error, return <code>NaN</code>.

</li><li> Overflow, return <code>Inf</code>.

</li><li> Loss of significance by argument reduction results in less than half
 of machine accuracy.

</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.

</li><li> Error&mdash;no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>
</dd></dl>


<a name="XREFbesselj"></a><dl>
<dt><a name="index-besselj"></a>: <em>[<var>j</var>, <var>ierr</var>] =</em> <strong>besselj</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-bessely"></a>: <em>[<var>y</var>, <var>ierr</var>] =</em> <strong>bessely</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-besseli"></a>: <em>[<var>i</var>, <var>ierr</var>] =</em> <strong>besseli</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-besselk"></a>: <em>[<var>k</var>, <var>ierr</var>] =</em> <strong>besselk</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-besselh"></a>: <em>[<var>h</var>, <var>ierr</var>] =</em> <strong>besselh</strong> <em>(<var>alpha</var>, <var>k</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dd><p>Compute Bessel or Hankel functions of various kinds:
</p>
<dl compact="compact">
<dt><code>besselj</code></dt>
<dd><p>Bessel functions of the first kind.  If the argument <var>opt</var> is 1 or true,
the result is multiplied by <code>exp&nbsp;<span class="nolinebreak">(-abs</span>&nbsp;(imag&nbsp;(<var>x</var>)))</code><!-- /@w -->.
</p>
</dd>
<dt><code>bessely</code></dt>
<dd><p>Bessel functions of the second kind.  If the argument <var>opt</var> is 1 or
true, the result is multiplied by <code>exp (-abs (imag (<var>x</var>)))</code>.
</p>
</dd>
<dt><code>besseli</code></dt>
<dd>
<p>Modified Bessel functions of the first kind.  If the argument <var>opt</var> is 1
or true, the result is multiplied by <code>exp (-abs (real (<var>x</var>)))</code>.
</p>
</dd>
<dt><code>besselk</code></dt>
<dd>
<p>Modified Bessel functions of the second kind.  If the argument <var>opt</var> is
1 or true, the result is multiplied by <code>exp (<var>x</var>)</code>.
</p>
</dd>
<dt><code>besselh</code></dt>
<dd><p>Compute Hankel functions of the first (<var>k</var> = 1) or second (<var>k</var>
= 2) kind.  If the argument <var>opt</var> is 1 or true, the result is multiplied
by <code>exp (-I*<var>x</var>)</code> for <var>k</var> = 1 or <code>exp (I*<var>x</var>)</code> for
<var>k</var> = 2.
</p></dd>
</dl>

<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>.
If <var>x</var> is a scalar, the result is the same size as <var>alpha</var>.
If <var>alpha</var> is a row vector and <var>x</var> is a column vector, the
result is a matrix with <code>length (<var>x</var>)</code> rows and
<code>length (<var>alpha</var>)</code> columns.  Otherwise, <var>alpha</var> and
<var>x</var> must conform and the result will be the same size.
</p>
<p>The value of <var>alpha</var> must be real.  The value of <var>x</var> may be
complex.
</p>
<p>If requested, <var>ierr</var> contains the following status information
and is the same size as the result.
</p>
<ol start="0">
<li> Normal return.

</li><li> Input error, return <code>NaN</code>.

</li><li> Overflow, return <code>Inf</code>.

</li><li> Loss of significance by argument reduction results in less than
half of machine accuracy.

</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.

</li><li> Error&mdash;no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>
</dd></dl>


<a name="XREFbeta"></a><dl>
<dt><a name="index-beta"></a>: <em></em> <strong>beta</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd><p>Compute the Beta function for real inputs <var>a</var> and <var>b</var>.
</p>
<p>The Beta function definition is
</p>
<div class="example">
<pre class="example">beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
</pre></div>


<p>The Beta function can grow quite large and it is often more useful to work
with the logarithm of the output rather than the function directly.
See <a href="#XREFbetaln">betaln</a>, for computing the logarithm of the Beta function
in an efficient manner.
</p>
<p><strong>See also:</strong> <a href="#XREFbetaln">betaln</a>, <a href="#XREFbetainc">betainc</a>, <a href="#XREFbetaincinv">betaincinv</a>.
</p></dd></dl>


<a name="XREFbetainc"></a><dl>
<dt><a name="index-betainc"></a>: <em></em> <strong>betainc</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>Compute the regularized incomplete Beta function.
</p>
<p>The regularized incomplete Beta function is defined by
</p>
<div class="smallexample">
<pre class="smallexample">                                   x
                          1       /
betainc (x, a, b) = -----------   | t^(a-1) (1-t)^(b-1) dt.
                    beta (a, b)   /
                               t=0
</pre></div>


<p>If <var>x</var> has more than one component, both <var>a</var> and <var>b</var> must be
scalars.  If <var>x</var> is a scalar, <var>a</var> and <var>b</var> must be of
compatible dimensions.
</p>
<p><strong>See also:</strong> <a href="#XREFbetaincinv">betaincinv</a>, <a href="#XREFbeta">beta</a>, <a href="#XREFbetaln">betaln</a>.
</p></dd></dl>


<a name="XREFbetaincinv"></a><dl>
<dt><a name="index-betaincinv"></a>: <em></em> <strong>betaincinv</strong> <em>(<var>y</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>Compute the inverse of the incomplete Beta function.
</p>
<p>The inverse is the value <var>x</var> such that
</p>
<div class="example">
<pre class="example"><var>y</var> == betainc (<var>x</var>, <var>a</var>, <var>b</var>)
</pre></div>

<p><strong>See also:</strong> <a href="#XREFbetainc">betainc</a>, <a href="#XREFbeta">beta</a>, <a href="#XREFbetaln">betaln</a>.
</p></dd></dl>


<a name="XREFbetaln"></a><dl>
<dt><a name="index-betaln"></a>: <em></em> <strong>betaln</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd><p>Compute the natural logarithm of the Beta function for real inputs <var>a</var>
and <var>b</var>.
</p>
<p><code>betaln</code> is defined as
</p>
<div class="example">
<pre class="example">betaln (a, b) = log (beta (a, b))
</pre></div>

<p>and is calculated in a way to reduce the occurrence of underflow.
</p>
<p>The Beta function can grow quite large and it is often more useful to work
with the logarithm of the output rather than the function directly.
</p>
<p><strong>See also:</strong> <a href="#XREFbeta">beta</a>, <a href="#XREFbetainc">betainc</a>, <a href="#XREFbetaincinv">betaincinv</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>


<a name="XREFbincoeff"></a><dl>
<dt><a name="index-bincoeff"></a>: <em></em> <strong>bincoeff</strong> <em>(<var>n</var>, <var>k</var>)</em></dt>
<dd><p>Return the binomial coefficient of <var>n</var> and <var>k</var>, defined as
</p>
<div class="example">
<pre class="example"> /   \
 | n |    n (n-1) (n-2) &hellip; (n-k+1)
 |   |  = -------------------------
 | k |               k!
 \   /
</pre></div>

<p>For example:
</p>
<div class="example">
<pre class="example">bincoeff (5, 2)
   &rArr; 10
</pre></div>

<p>In most cases, the <code>nchoosek</code> function is faster for small
scalar integer arguments.  It also warns about loss of precision for
big arguments.
</p>

<p><strong>See also:</strong> <a href="Basic-Statistical-Functions.html#XREFnchoosek">nchoosek</a>.
</p></dd></dl>


<a name="XREFcommutation_005fmatrix"></a><dl>
<dt><a name="index-commutation_005fmatrix"></a>: <em></em> <strong>commutation_matrix</strong> <em>(<var>m</var>, <var>n</var>)</em></dt>
<dd><p>Return the commutation matrix
K(m,n)
which is the unique
<var>m</var>*<var>n</var> by <var>m</var>*<var>n</var>
matrix such that
<em>K(m,n) * vec(A) = vec(A')</em>
for all
<em>m</em> by <em>n</em>
matrices
<em>A</em>.
</p>
<p>If only one argument <var>m</var> is given,
<em>K(m,m)</em>
is returned.
</p>
<p>See Magnus and Neudecker (1988), <cite>Matrix Differential
Calculus with Applications in Statistics and Econometrics.</cite>
</p></dd></dl>


<a name="XREFduplication_005fmatrix"></a><dl>
<dt><a name="index-duplication_005fmatrix"></a>: <em></em> <strong>duplication_matrix</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the duplication matrix
<em>Dn</em>
which is the unique
<em>n^2</em> by <em>n*(n+1)/2</em>
matrix such that
<em>Dn vech (A) = vec (A)</em>
for all symmetric
<em>n</em> by <em>n</em>
matrices
<em>A</em>.
</p>
<p>See Magnus and Neudecker (1988), <cite>Matrix Differential
Calculus with Applications in Statistics and Econometrics.</cite>
</p></dd></dl>


<a name="XREFdawson"></a><dl>
<dt><a name="index-dawson"></a>: <em></em> <strong>dawson</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the Dawson (scaled imaginary error) function.
</p>
<p>The Dawson function is defined as
</p>
<div class="example">
<pre class="example">(sqrt (pi) / 2) * exp (-z^2) * erfi (z)
</pre></div>


<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>


<a name="XREFellipj"></a><dl>
<dt><a name="index-ellipj"></a>: <em>[<var>sn</var>, <var>cn</var>, <var>dn</var>, <var>err</var>] =</em> <strong>ellipj</strong> <em>(<var>u</var>, <var>m</var>)</em></dt>
<dt><a name="index-ellipj-1"></a>: <em>[<var>sn</var>, <var>cn</var>, <var>dn</var>, <var>err</var>] =</em> <strong>ellipj</strong> <em>(<var>u</var>, <var>m</var>, <var>tol</var>)</em></dt>
<dd><p>Compute the Jacobi elliptic functions <var>sn</var>, <var>cn</var>, and <var>dn</var>
of complex argument <var>u</var> and real parameter <var>m</var>.
</p>
<p>If <var>m</var> is a scalar, the results are the same size as <var>u</var>.
If <var>u</var> is a scalar, the results are the same size as <var>m</var>.
If <var>u</var> is a column vector and <var>m</var> is a row vector, the
results are matrices with <code>length (<var>u</var>)</code> rows and
<code>length (<var>m</var>)</code> columns.  Otherwise, <var>u</var> and
<var>m</var> must conform in size and the results will be the same size as the
inputs.
</p>
<p>The value of <var>u</var> may be complex.
The value of <var>m</var> must be 0 &le; <var>m</var> &le; 1.
</p>
<p>The optional input <var>tol</var> is currently ignored (<small>MATLAB</small> uses this to
allow faster, less accurate approximation).
</p>
<p>If requested, <var>err</var> contains the following status information
and is the same size as the result.
</p>
<ol start="0">
<li> Normal return.

</li><li> Error&mdash;no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>

<p>Reference: Milton Abramowitz and Irene A Stegun,
<cite>Handbook of Mathematical Functions</cite>, Chapter 16 (Sections 16.4, 16.13,
and 16.15), Dover, 1965.
</p>

<p><strong>See also:</strong> <a href="#XREFellipke">ellipke</a>.
</p></dd></dl>


<a name="XREFellipke"></a><dl>
<dt><a name="index-ellipke"></a>: <em><var>k</var> =</em> <strong>ellipke</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-ellipke-1"></a>: <em><var>k</var> =</em> <strong>ellipke</strong> <em>(<var>m</var>, <var>tol</var>)</em></dt>
<dt><a name="index-ellipke-2"></a>: <em>[<var>k</var>, <var>e</var>] =</em> <strong>ellipke</strong> <em>(&hellip;)</em></dt>
<dd><p>Compute complete elliptic integrals of the first K(<var>m</var>) and second
E(<var>m</var>) kind.
</p>
<p><var>m</var> must be a scalar or real array with -Inf &le; <var>m</var> &le; 1.
</p>
<p>The optional input <var>tol</var> controls the stopping tolerance of the
algorithm and defaults to <code>eps (class (<var>m</var>))</code>.  The tolerance can
be increased to compute a faster, less accurate approximation.
</p>
<p>When called with one output only elliptic integrals of the first kind are
returned.
</p>
<p>Mathematical Note:
</p>
<p>Elliptic integrals of the first kind are defined as
</p>

<div class="example">
<pre class="example">         1
        /               dt
K (m) = | ------------------------------
        / sqrt ((1 - t^2)*(1 - m*t^2))
       0
</pre></div>


<p>Elliptic integrals of the second kind are defined as
</p>

<div class="example">
<pre class="example">         1
        /  sqrt (1 - m*t^2)
E (m) = |  ------------------ dt
        /  sqrt (1 - t^2)
       0
</pre></div>


<p>Reference: Milton Abramowitz and Irene A. Stegun,
<cite>Handbook of Mathematical Functions</cite>, Chapter 17, Dover, 1965.
</p>
<p><strong>See also:</strong> <a href="#XREFellipj">ellipj</a>.
</p></dd></dl>


<a name="XREFerf"></a><dl>
<dt><a name="index-erf"></a>: <em></em> <strong>erf</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the error function.
</p>
<p>The error function is defined as
</p>
<div class="example">
<pre class="example">                        z
              2        /
erf (z) = --------- *  | e^(-t^2) dt
          sqrt (pi)    /
                    t=0
</pre></div>


<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>


<a name="XREFerfc"></a><dl>
<dt><a name="index-erfc"></a>: <em></em> <strong>erfc</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the complementary error function.
</p>
<p>The complementary error function is defined as
<code>1&nbsp;<span class="nolinebreak">-</span>&nbsp;erf&nbsp;(<var>z</var>)</code><!-- /@w -->.
</p>
<p><strong>See also:</strong> <a href="#XREFerfcinv">erfcinv</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfinv">erfinv</a>.
</p></dd></dl>


<a name="XREFerfcx"></a><dl>
<dt><a name="index-erfcx"></a>: <em></em> <strong>erfcx</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the scaled complementary error function.
</p>
<p>The scaled complementary error function is defined as
</p>
<div class="example">
<pre class="example">exp (z^2) * erfc (z)
</pre></div>


<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>


<a name="XREFerfi"></a><dl>
<dt><a name="index-erfi"></a>: <em></em> <strong>erfi</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the imaginary error function.
</p>
<p>The imaginary error function is defined as
</p>
<div class="example">
<pre class="example">-i * erf (i*z)
</pre></div>


<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>


<a name="XREFerfinv"></a><dl>
<dt><a name="index-erfinv"></a>: <em></em> <strong>erfinv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the inverse error function.
</p>
<p>The inverse error function is defined such that
</p>
<div class="example">
<pre class="example">erf (<var>y</var>) == <var>x</var>
</pre></div>

<p><strong>See also:</strong> <a href="#XREFerf">erf</a>, <a href="#XREFerfc">erfc</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>


<a name="XREFerfcinv"></a><dl>
<dt><a name="index-erfcinv"></a>: <em></em> <strong>erfcinv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the inverse complementary error function.
</p>
<p>The inverse complementary error function is defined such that
</p>
<div class="example">
<pre class="example">erfc (<var>y</var>) == <var>x</var>
</pre></div>

<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>.
</p></dd></dl>


<a name="XREFexpint"></a><dl>
<dt><a name="index-expint"></a>: <em></em> <strong>expint</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the exponential integral:
</p>
<div class="example">
<pre class="example">           infinity
          /
E_1 (x) = | exp (-t)/t dt
          /
         x
</pre></div>

<p>Note: For compatibility, this functions uses the <small>MATLAB</small> definition
of the exponential integral.  Most other sources refer to this particular
value as <em>E_1 (x)</em>, and the exponential integral as
</p>
<div class="example">
<pre class="example">            infinity
           /
Ei (x) = - | exp (-t)/t dt
           /
         -x
</pre></div>

<p>The two definitions are related, for positive real values of <var>x</var>, by
<code><span class="nolinebreak">E_1</span>&nbsp;<span class="nolinebreak">(-x)</span>&nbsp;=&nbsp;<span class="nolinebreak">-Ei</span>&nbsp;(x)&nbsp;<span class="nolinebreak">-</span>&nbsp;i*pi</code><!-- /@w -->.
</p></dd></dl>


<a name="XREFgamma"></a><dl>
<dt><a name="index-gamma"></a>: <em></em> <strong>gamma</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the Gamma function.
</p>
<p>The Gamma function is defined as
</p>
<div class="example">
<pre class="example">             infinity
            /
gamma (z) = | t^(z-1) exp (-t) dt.
            /
         t=0
</pre></div>


<p>Programming Note: The gamma function can grow quite large even for small
input values.  In many cases it may be preferable to use the natural
logarithm of the gamma function (<code>gammaln</code>) in calculations to minimize
loss of precision.  The final result is then
<code>exp (<var>result_using_gammaln</var>).</code>
</p>
<p><strong>See also:</strong> <a href="#XREFgammainc">gammainc</a>, <a href="#XREFgammaln">gammaln</a>, <a href="Utility-Functions.html#XREFfactorial">factorial</a>.
</p></dd></dl>


<a name="XREFgammainc"></a><dl>
<dt><a name="index-gammainc"></a>: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>)</em></dt>
<dt><a name="index-gammainc-1"></a>: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>, &quot;lower&quot;)</em></dt>
<dt><a name="index-gammainc-2"></a>: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>, &quot;upper&quot;)</em></dt>
<dd><p>Compute the normalized incomplete gamma function.
</p>
<p>This is defined as
</p>
<div class="example">
<pre class="example">                                x
                       1       /
gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
                  gamma (a)    /
                            t=0
</pre></div>

<p>with the limiting value of 1 as <var>x</var> approaches infinity.
The standard notation is <em>P(a,x)</em>, e.g., Abramowitz and
Stegun (6.5.1).
</p>
<p>If <var>a</var> is scalar, then <code>gammainc (<var>x</var>, <var>a</var>)</code> is returned
for each element of <var>x</var> and vice versa.
</p>
<p>If neither <var>x</var> nor <var>a</var> is scalar, the sizes of <var>x</var> and
<var>a</var> must agree, and <code>gammainc</code> is applied element-by-element.
</p>
<p>By default the incomplete gamma function integrated from 0 to <var>x</var> is
computed.  If <code>&quot;upper&quot;</code> is given then the complementary function
integrated from <var>x</var> to infinity is calculated.  It should be noted that
</p>
<div class="example">
<pre class="example">gammainc (<var>x</var>, <var>a</var>) &equiv; 1 - gammainc (<var>x</var>, <var>a</var>, &quot;upper&quot;)
</pre></div>

<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>


<a name="XREFlegendre"></a><dl>
<dt><a name="index-legendre"></a>: <em><var>l</var> =</em> <strong>legendre</strong> <em>(<var>n</var>, <var>x</var>)</em></dt>
<dt><a name="index-legendre-1"></a>: <em><var>l</var> =</em> <strong>legendre</strong> <em>(<var>n</var>, <var>x</var>, <var>normalization</var>)</em></dt>
<dd><p>Compute the associated Legendre function of degree <var>n</var> and order
<var>m</var> = 0 &hellip; <var>n</var>.
</p>
<p>The value <var>n</var> must be a real non-negative integer.
</p>
<p><var>x</var> is a vector with real-valued elements in the range [-1, 1].
</p>
<p>The optional argument <var>normalization</var> may be one of <code>&quot;unnorm&quot;</code>,
<code>&quot;sch&quot;</code>, or <code>&quot;norm&quot;</code>.  The default if no normalization is given
is <code>&quot;unnorm&quot;</code>.
</p>
<p>When the optional argument <var>normalization</var> is <code>&quot;unnorm&quot;</code>, compute
the associated Legendre function of degree <var>n</var> and order <var>m</var> and
return all values for <var>m</var> = 0 &hellip; <var>n</var>.  The return value has one
dimension more than <var>x</var>.
</p>
<p>The associated Legendre function of degree <var>n</var> and order <var>m</var>:
</p>

<div class="example">
<pre class="example"> m         m      2  m/2   d^m
P(x) = (-1) * (1-x  )    * ----  P(x)
 n                         dx^m   n
</pre></div>


<p>with Legendre polynomial of degree <var>n</var>:
</p>

<div class="example">
<pre class="example">          1    d^n   2    n
P(x) = ------ [----(x - 1) ]
 n     2^n n!  dx^n
</pre></div>


<p><code>legendre (3, [-1.0, -0.9, -0.8])</code> returns the matrix:
</p>
<div class="example">
<pre class="example"> x  |   -1.0   |   -0.9   |   -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 |  0.00000 | -1.99420 | -1.98000
m=2 |  0.00000 | -2.56500 | -4.32000
m=3 |  0.00000 | -1.24229 | -3.24000
</pre></div>

<p>When the optional argument <code>normalization</code> is <code>&quot;sch&quot;</code>, compute
the Schmidt semi-normalized associated Legendre function.  The Schmidt
semi-normalized associated Legendre function is related to the unnormalized
Legendre functions by the following:
</p>
<p>For Legendre functions of degree <var>n</var> and order 0:
</p>

<div class="example">
<pre class="example">  0      0
SP(x) = P(x)
  n      n
</pre></div>


<p>For Legendre functions of degree n and order m:
</p>

<div class="example">
<pre class="example">  m      m         m    2(n-m)! 0.5
SP(x) = P(x) * (-1)  * [-------]
  n      n              (n+m)!
</pre></div>


<p>When the optional argument <var>normalization</var> is <code>&quot;norm&quot;</code>, compute
the fully normalized associated Legendre function.  The fully normalized
associated Legendre function is related to the unnormalized associated
Legendre functions by the following:
</p>
<p>For Legendre functions of degree <var>n</var> and order <var>m</var>
</p>

<div class="example">
<pre class="example">  m      m         m    (n+0.5)(n-m)! 0.5
NP(x) = P(x) * (-1)  * [-------------]
  n      n                  (n+m)!
</pre></div>

</dd></dl>


<a name="XREFgammaln"></a><a name="XREFlgamma"></a><dl>
<dt><a name="index-gammaln"></a>: <em></em> <strong>gammaln</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-lgamma"></a>: <em></em> <strong>lgamma</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the natural logarithm of the gamma function of <var>x</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFgammainc">gammainc</a>.
</p></dd></dl>


<a name="XREFpsi"></a><dl>
<dt><a name="index-psi"></a>: <em></em> <strong>psi</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-psi-1"></a>: <em></em> <strong>psi</strong> <em>(<var>k</var>, <var>z</var>)</em></dt>
<dd><p>Compute the psi (polygamma) function.
</p>
<p>The polygamma functions are the <var>k</var>th derivative of the logarithm
of the gamma function.  If unspecified, <var>k</var> defaults to zero.  A value
of zero computes the digamma function, a value of 1, the trigamma function,
and so on.
</p>
<p>The digamma function is defined:
</p>

<div class="example">
<pre class="example">psi (z) = d (log (gamma (z))) / dx
</pre></div>


<p>When computing the digamma function (when <var>k</var> equals zero), <var>z</var>
can have any value real or complex value.  However, for polygamma functions
(<var>k</var> higher than 0), <var>z</var> must be real and non-negative.
</p>

<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFgammainc">gammainc</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Rational-Approximations.html#Rational-Approximations" accesskey="n" rel="next">Rational Approximations</a>, Previous: <a href="Utility-Functions.html#Utility-Functions" accesskey="p" rel="prev">Utility Functions</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>