/usr/share/doc/octave/octave.html/Tests.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Tests (GNU Octave)</title>
<meta name="description" content="Tests (GNU Octave)">
<meta name="keywords" content="Tests (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Random-Number-Generation.html#Random-Number-Generation" rel="next" title="Random Number Generation">
<link href="Distributions.html#Distributions" rel="prev" title="Distributions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Tests"></a>
<div class="header">
<p>
Next: <a href="Random-Number-Generation.html#Random-Number-Generation" accesskey="n" rel="next">Random Number Generation</a>, Previous: <a href="Distributions.html#Distributions" accesskey="p" rel="prev">Distributions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Tests-1"></a>
<h3 class="section">26.6 Tests</h3>
<p>Octave can perform many different statistical tests. The following
table summarizes the available tests.
</p>
<table>
<thead><tr><th width="40%">Hypothesis</th><th width="50%">Test Functions</th></tr></thead>
<tr><td width="40%">Equal mean values</td><td width="50%"><code>anova</code>, <code>hotelling_test2</code>, <code>t_test_2</code>,
<code>welch_test</code>, <code>wilcoxon_test</code>, <code>z_test_2</code></td></tr>
<tr><td width="40%">Equal medians</td><td width="50%"><code>kruskal_wallis_test</code>, <code>sign_test</code></td></tr>
<tr><td width="40%">Equal variances</td><td width="50%"><code>bartlett_test</code>, <code>manova</code>, <code>var_test</code></td></tr>
<tr><td width="40%">Equal distributions</td><td width="50%"><code>chisquare_test_homogeneity</code>, <code>kolmogorov_smirnov_test_2</code>,
<code>u_test</code></td></tr>
<tr><td width="40%">Equal marginal frequencies</td><td width="50%"><code>mcnemar_test</code></td></tr>
<tr><td width="40%">Equal success probabilities</td><td width="50%"><code>prop_test_2</code></td></tr>
<tr><td width="40%">Independent observations</td><td width="50%"><code>chisquare_test_independence</code>, <code>run_test</code></td></tr>
<tr><td width="40%">Uncorrelated observations</td><td width="50%"><code>cor_test</code></td></tr>
<tr><td width="40%">Given mean value</td><td width="50%"><code>hotelling_test</code>, <code>t_test</code>, <code>z_test</code></td></tr>
<tr><td width="40%">Observations from given distribution</td><td width="50%"><code>kolmogorov_smirnov_test</code></td></tr>
<tr><td width="40%">Regression</td><td width="50%"><code>f_test_regression</code>, <code>t_test_regression</code></td></tr>
</table>
<p>The tests return a p-value that describes the outcome of the test.
Assuming that the test hypothesis is true, the p-value is the probability
of obtaining a worse result than the observed one. So large p-values
corresponds to a successful test. Usually a test hypothesis is accepted
if the p-value exceeds 0.05.
</p>
<a name="XREFanova"></a><dl>
<dt><a name="index-anova"></a>: <em>[<var>pval</var>, <var>f</var>, <var>df_b</var>, <var>df_w</var>] =</em> <strong>anova</strong> <em>(<var>y</var>, <var>g</var>)</em></dt>
<dd><p>Perform a one-way analysis of variance (ANOVA).
</p>
<p>The goal is to test whether the population means of data taken from
<var>k</var> different groups are all equal.
</p>
<p>Data may be given in a single vector <var>y</var> with groups specified by a
corresponding vector of group labels <var>g</var> (e.g., numbers from 1 to
<var>k</var>). This is the general form which does not impose any restriction
on the number of data in each group or the group labels.
</p>
<p>If <var>y</var> is a matrix and <var>g</var> is omitted, each column of <var>y</var> is
treated as a group. This form is only appropriate for balanced ANOVA in
which the numbers of samples from each group are all equal.
</p>
<p>Under the null of constant means, the statistic <var>f</var> follows an F
distribution with <var>df_b</var> and <var>df_w</var> degrees of freedom.
</p>
<p>The p-value (1 minus the CDF of this distribution at <var>f</var>) is returned
in <var>pval</var>.
</p>
<p>If no output argument is given, the standard one-way ANOVA table is printed.
</p>
<p><strong>See also:</strong> <a href="#XREFmanova">manova</a>.
</p></dd></dl>
<a name="XREFbartlett_005ftest"></a><dl>
<dt><a name="index-bartlett_005ftest"></a>: <em>[<var>pval</var>, <var>chisq</var>, <var>df</var>] =</em> <strong>bartlett_test</strong> <em>(<var>x1</var>, …)</em></dt>
<dd><p>Perform a Bartlett test for the homogeneity of variances in the data
vectors <var>x1</var>, <var>x2</var>, …, <var>xk</var>, where <var>k</var> > 1.
</p>
<p>Under the null of equal variances, the test statistic <var>chisq</var>
approximately follows a chi-square distribution with <var>df</var> degrees of
freedom.
</p>
<p>The p-value (1 minus the CDF of this distribution at <var>chisq</var>) is
returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFchisquare_005ftest_005fhomogeneity"></a><dl>
<dt><a name="index-chisquare_005ftest_005fhomogeneity"></a>: <em>[<var>pval</var>, <var>chisq</var>, <var>df</var>] =</em> <strong>chisquare_test_homogeneity</strong> <em>(<var>x</var>, <var>y</var>, <var>c</var>)</em></dt>
<dd><p>Given two samples <var>x</var> and <var>y</var>, perform a chisquare test for
homogeneity of the null hypothesis that <var>x</var> and <var>y</var> come from
the same distribution, based on the partition induced by the
(strictly increasing) entries of <var>c</var>.
</p>
<p>For large samples, the test statistic <var>chisq</var> approximately follows a
chisquare distribution with <var>df</var> = <code>length (<var>c</var>)</code> degrees of
freedom.
</p>
<p>The p-value (1 minus the CDF of this distribution at <var>chisq</var>) is
returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFchisquare_005ftest_005findependence"></a><dl>
<dt><a name="index-chisquare_005ftest_005findependence"></a>: <em>[<var>pval</var>, <var>chisq</var>, <var>df</var>] =</em> <strong>chisquare_test_independence</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Perform a chi-square test for independence based on the contingency table
<var>x</var>.
</p>
<p>Under the null hypothesis of independence, <var>chisq</var> approximately has a
chi-square distribution with <var>df</var> degrees of freedom.
</p>
<p>The p-value (1 minus the CDF of this distribution at chisq) of the test is
returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFcor_005ftest"></a><dl>
<dt><a name="index-cor_005ftest"></a>: <em></em> <strong>cor_test</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>, <var>method</var>)</em></dt>
<dd><p>Test whether two samples <var>x</var> and <var>y</var> come from uncorrelated
populations.
</p>
<p>The optional argument string <var>alt</var> describes the alternative
hypothesis, and can be <code>"!="</code> or <code>"<>"</code> (nonzero), <code>">"</code>
(greater than 0), or <code>"<"</code> (less than 0). The default is the
two-sided case.
</p>
<p>The optional argument string <var>method</var> specifies which correlation
coefficient to use for testing. If <var>method</var> is <code>"pearson"</code>
(default), the (usual) Pearson’s product moment correlation coefficient is
used. In this case, the data should come from a bivariate normal
distribution. Otherwise, the other two methods offer nonparametric
alternatives. If <var>method</var> is <code>"kendall"</code>, then Kendall’s rank
correlation tau is used. If <var>method</var> is <code>"spearman"</code>, then
Spearman’s rank correlation rho is used. Only the first character is
necessary.
</p>
<p>The output is a structure with the following elements:
</p>
<dl compact="compact">
<dt><var>pval</var></dt>
<dd><p>The p-value of the test.
</p>
</dd>
<dt><var>stat</var></dt>
<dd><p>The value of the test statistic.
</p>
</dd>
<dt><var>dist</var></dt>
<dd><p>The distribution of the test statistic.
</p>
</dd>
<dt><var>params</var></dt>
<dd><p>The parameters of the null distribution of the test statistic.
</p>
</dd>
<dt><var>alternative</var></dt>
<dd><p>The alternative hypothesis.
</p>
</dd>
<dt><var>method</var></dt>
<dd><p>The method used for testing.
</p></dd>
</dl>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFf_005ftest_005fregression"></a><dl>
<dt><a name="index-f_005ftest_005fregression"></a>: <em>[<var>pval</var>, <var>f</var>, <var>df_num</var>, <var>df_den</var>] =</em> <strong>f_test_regression</strong> <em>(<var>y</var>, <var>x</var>, <var>rr</var>, <var>r</var>)</em></dt>
<dd><p>Perform an F test for the null hypothesis rr * b = r in a
classical normal regression model y = X * b + e.
</p>
<p>Under the null, the test statistic <var>f</var> follows an F distribution with
<var>df_num</var> and <var>df_den</var> degrees of freedom.
</p>
<p>The p-value (1 minus the CDF of this distribution at <var>f</var>) is returned
in <var>pval</var>.
</p>
<p>If not given explicitly, <var>r</var> = 0.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFhotelling_005ftest"></a><dl>
<dt><a name="index-hotelling_005ftest"></a>: <em>[<var>pval</var>, <var>tsq</var>] =</em> <strong>hotelling_test</strong> <em>(<var>x</var>, <var>m</var>)</em></dt>
<dd><p>For a sample <var>x</var> from a multivariate normal distribution with unknown
mean and covariance matrix, test the null hypothesis that
<code>mean (<var>x</var>) == <var>m</var></code>.
</p>
<p>Hotelling’s <em>T^2</em> is returned in <var>tsq</var>. Under the null,
<em>(n-p) T^2 / (p(n-1))</em> has an F distribution with <em>p</em> and
<em>n-p</em> degrees of freedom, where <em>n</em> and <em>p</em> are the
numbers of samples and variables, respectively.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFhotelling_005ftest_005f2"></a><dl>
<dt><a name="index-hotelling_005ftest_005f2"></a>: <em>[<var>pval</var>, <var>tsq</var>] =</em> <strong>hotelling_test_2</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>For two samples <var>x</var> from multivariate normal distributions with
the same number of variables (columns), unknown means and unknown
equal covariance matrices, test the null hypothesis <code>mean
(<var>x</var>) == mean (<var>y</var>)</code>.
</p>
<p>Hotelling’s two-sample <em>T^2</em> is returned in <var>tsq</var>. Under the null,
</p>
<div class="example">
<pre class="example">(n_x+n_y-p-1) T^2 / (p(n_x+n_y-2))
</pre></div>
<p>has an F distribution with <em>p</em> and <em>n_x+n_y-p-1</em> degrees of
freedom, where <em>n_x</em> and <em>n_y</em> are the sample sizes and
<em>p</em> is the number of variables.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFkolmogorov_005fsmirnov_005ftest"></a><dl>
<dt><a name="index-kolmogorov_005fsmirnov_005ftest"></a>: <em>[<var>pval</var>, <var>ks</var>] =</em> <strong>kolmogorov_smirnov_test</strong> <em>(<var>x</var>, <var>dist</var>, <var>params</var>, <var>alt</var>)</em></dt>
<dd><p>Perform a Kolmogorov-Smirnov test of the null hypothesis that the
sample <var>x</var> comes from the (continuous) distribution <var>dist</var>.
</p>
<p>if F and G are the CDFs corresponding to the sample and dist,
respectively, then the null is that F == G.
</p>
<p>The optional argument <var>params</var> contains a list of parameters of
<var>dist</var>. For example, to test whether a sample <var>x</var> comes from
a uniform distribution on [2,4], use
</p>
<div class="example">
<pre class="example">kolmogorov_smirnov_test (x, "unif", 2, 4)
</pre></div>
<p><var>dist</var> can be any string for which a function <var>distcdf</var>
that calculates the CDF of distribution <var>dist</var> exists.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative F != G. In this case, the
test statistic <var>ks</var> follows a two-sided Kolmogorov-Smirnov
distribution. If <var>alt</var> is <code>">"</code>, the one-sided alternative F >
G is considered. Similarly for <code>"<"</code>, the one-sided alternative F >
G is considered. In this case, the test statistic <var>ks</var> has a
one-sided Kolmogorov-Smirnov distribution. The default is the two-sided
case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFkolmogorov_005fsmirnov_005ftest_005f2"></a><dl>
<dt><a name="index-kolmogorov_005fsmirnov_005ftest_005f2"></a>: <em>[<var>pval</var>, <var>ks</var>, <var>d</var>] =</em> <strong>kolmogorov_smirnov_test_2</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>)</em></dt>
<dd><p>Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the
samples <var>x</var> and <var>y</var> come from the same (continuous) distribution.
</p>
<p>If F and G are the CDFs corresponding to the <var>x</var> and <var>y</var> samples,
respectively, then the null is that F == G.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative F != G. In this case, the
test statistic <var>ks</var> follows a two-sided Kolmogorov-Smirnov
distribution. If <var>alt</var> is <code>">"</code>, the one-sided alternative F >
G is considered. Similarly for <code>"<"</code>, the one-sided alternative F <
G is considered. In this case, the test statistic <var>ks</var> has a
one-sided Kolmogorov-Smirnov distribution. The default is the two-sided
case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>The third returned value, <var>d</var>, is the test statistic, the maximum
vertical distance between the two cumulative distribution functions.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFkruskal_005fwallis_005ftest"></a><dl>
<dt><a name="index-kruskal_005fwallis_005ftest"></a>: <em>[<var>pval</var>, <var>k</var>, <var>df</var>] =</em> <strong>kruskal_wallis_test</strong> <em>(<var>x1</var>, …)</em></dt>
<dd><p>Perform a Kruskal-Wallis one-factor analysis of variance.
</p>
<p>Suppose a variable is observed for <var>k</var> > 1 different groups, and let
<var>x1</var>, …, <var>xk</var> be the corresponding data vectors.
</p>
<p>Under the null hypothesis that the ranks in the pooled sample are not
affected by the group memberships, the test statistic <var>k</var> is
approximately chi-square with <var>df</var> = <var>k</var> - 1 degrees of freedom.
</p>
<p>If the data contains ties (some value appears more than once)
<var>k</var> is divided by
</p>
<p>1 - <var>sum_ties</var> / (<var>n</var>^3 - <var>n</var>)
</p>
<p>where <var>sum_ties</var> is the sum of <var>t</var>^2 - <var>t</var> over each group of
ties where <var>t</var> is the number of ties in the group and <var>n</var> is the
total number of values in the input data. For more info on this
adjustment see William H. Kruskal and W. Allen Wallis,
<cite>Use of Ranks in One-Criterion Variance Analysis</cite>,
Journal of the American Statistical Association, Vol. 47, No. 260 (Dec
1952).
</p>
<p>The p-value (1 minus the CDF of this distribution at <var>k</var>) is returned
in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFmanova"></a><dl>
<dt><a name="index-manova"></a>: <em></em> <strong>manova</strong> <em>(<var>x</var>, <var>g</var>)</em></dt>
<dd><p>Perform a one-way multivariate analysis of variance (MANOVA).
</p>
<p>The goal is to test whether the p-dimensional population means of data
taken from <var>k</var> different groups are all equal. All data are assumed
drawn independently from p-dimensional normal distributions with the same
covariance matrix.
</p>
<p>The data matrix is given by <var>x</var>. As usual, rows are observations and
columns are variables. The vector <var>g</var> specifies the corresponding
group labels (e.g., numbers from 1 to <var>k</var>).
</p>
<p>The LR test statistic (Wilks’ Lambda) and approximate p-values are
computed and displayed.
</p>
<p><strong>See also:</strong> <a href="#XREFanova">anova</a>.
</p></dd></dl>
<a name="XREFmcnemar_005ftest"></a><dl>
<dt><a name="index-mcnemar_005ftest"></a>: <em>[<var>pval</var>, <var>chisq</var>, <var>df</var>] =</em> <strong>mcnemar_test</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For a square contingency table <var>x</var> of data cross-classified on the row
and column variables, McNemar’s test can be used for testing the
null hypothesis of symmetry of the classification probabilities.
</p>
<p>Under the null, <var>chisq</var> is approximately distributed as chisquare with
<var>df</var> degrees of freedom.
</p>
<p>The p-value (1 minus the CDF of this distribution at <var>chisq</var>) is
returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFprop_005ftest_005f2"></a><dl>
<dt><a name="index-prop_005ftest_005f2"></a>: <em>[<var>pval</var>, <var>z</var>] =</em> <strong>prop_test_2</strong> <em>(<var>x1</var>, <var>n1</var>, <var>x2</var>, <var>n2</var>, <var>alt</var>)</em></dt>
<dd><p>If <var>x1</var> and <var>n1</var> are the counts of successes and trials in one
sample, and <var>x2</var> and <var>n2</var> those in a second one, test the null
hypothesis that the success probabilities <var>p1</var> and <var>p2</var> are the
same.
</p>
<p>Under the null, the test statistic <var>z</var> approximately follows a
standard normal distribution.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative <var>p1</var> != <var>p2</var>. If
<var>alt</var> is <code>">"</code>, the one-sided alternative <var>p1</var> > <var>p2</var> is
used. Similarly for <code>"<"</code>, the one-sided alternative
<var>p1</var> < <var>p2</var> is used. The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFrun_005ftest"></a><dl>
<dt><a name="index-run_005ftest"></a>: <em>[<var>pval</var>, <var>chisq</var>] =</em> <strong>run_test</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Perform a chi-square test with 6 degrees of freedom based on the upward
runs in the columns of <var>x</var>.
</p>
<p><code>run_test</code> can be used to decide whether <var>x</var> contains independent
data.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value is displayed.
</p></dd></dl>
<a name="XREFsign_005ftest"></a><dl>
<dt><a name="index-sign_005ftest"></a>: <em>[<var>pval</var>, <var>b</var>, <var>n</var>] =</em> <strong>sign_test</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>)</em></dt>
<dd><p>For two matched-pair samples <var>x</var> and <var>y</var>, perform a sign test
of the null hypothesis
PROB (<var>x</var> > <var>y</var>) == PROB (<var>x</var> < <var>y</var>) == 1/2.
</p>
<p>Under the null, the test statistic <var>b</var> roughly follows a
binomial distribution with parameters
<code><var>n</var> = sum (<var>x</var> != <var>y</var>)</code> and <var>p</var> = 1/2.
</p>
<p>With the optional argument <code>alt</code>, the alternative of interest can be
selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
hypothesis is tested against the two-sided alternative
PROB (<var>x</var> < <var>y</var>) != 1/2. If <var>alt</var> is <code>">"</code>, the one-sided
alternative PROB (<var>x</var> > <var>y</var>) > 1/2 ("x is stochastically greater
than y") is considered. Similarly for <code>"<"</code>, the one-sided
alternative PROB (<var>x</var> > <var>y</var>) < 1/2 ("x is stochastically less than
y") is considered. The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFt_005ftest"></a><dl>
<dt><a name="index-t_005ftest"></a>: <em>[<var>pval</var>, <var>t</var>, <var>df</var>] =</em> <strong>t_test</strong> <em>(<var>x</var>, <var>m</var>, <var>alt</var>)</em></dt>
<dd><p>For a sample <var>x</var> from a normal distribution with unknown mean and
variance, perform a t-test of the null hypothesis
<code>mean (<var>x</var>) == <var>m</var></code>.
</p>
<p>Under the null, the test statistic <var>t</var> follows a Student distribution
with <code><var>df</var> = length (<var>x</var>) - 1</code> degrees of freedom.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative <code>mean (<var>x</var>) !=
<var>m</var></code>. If <var>alt</var> is <code>">"</code>, the one-sided alternative
<code>mean (<var>x</var>) > <var>m</var></code> is considered. Similarly for <var>"<"</var>,
the one-sided alternative <code>mean (<var>x</var>) < <var>m</var></code> is considered.
The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFt_005ftest_005f2"></a><dl>
<dt><a name="index-t_005ftest_005f2"></a>: <em>[<var>pval</var>, <var>t</var>, <var>df</var>] =</em> <strong>t_test_2</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>)</em></dt>
<dd><p>For two samples x and y from normal distributions with unknown means and
unknown equal variances, perform a two-sample t-test of the null
hypothesis of equal means.
</p>
<p>Under the null, the test statistic <var>t</var> follows a Student distribution
with <var>df</var> degrees of freedom.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative <code>mean (<var>x</var>) != mean
(<var>y</var>)</code>. If <var>alt</var> is <code>">"</code>, the one-sided alternative
<code>mean (<var>x</var>) > mean (<var>y</var>)</code> is used. Similarly for
<code>"<"</code>, the one-sided alternative <code>mean (<var>x</var>) < mean
(<var>y</var>)</code> is used. The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFt_005ftest_005fregression"></a><dl>
<dt><a name="index-t_005ftest_005fregression"></a>: <em>[<var>pval</var>, <var>t</var>, <var>df</var>] =</em> <strong>t_test_regression</strong> <em>(<var>y</var>, <var>x</var>, <var>rr</var>, <var>r</var>, <var>alt</var>)</em></dt>
<dd><p>Perform a t test for the null hypothesis
<code><var>rr</var> * <var>b</var> = <var>r</var></code> in a classical normal
regression model <code><var>y</var> = <var>x</var> * <var>b</var> + <var>e</var></code>.
</p>
<p>Under the null, the test statistic <var>t</var> follows a <var>t</var> distribution
with <var>df</var> degrees of freedom.
</p>
<p>If <var>r</var> is omitted, a value of 0 is assumed.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative <code><var>rr</var> *
<var>b</var> != <var>r</var></code>. If <var>alt</var> is <code>">"</code>, the one-sided
alternative <code><var>rr</var> * <var>b</var> > <var>r</var></code> is used.
Similarly for <var>"<"</var>, the one-sided alternative <code><var>rr</var>
* <var>b</var> < <var>r</var></code> is used. The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFu_005ftest"></a><dl>
<dt><a name="index-u_005ftest"></a>: <em>[<var>pval</var>, <var>z</var>] =</em> <strong>u_test</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>)</em></dt>
<dd><p>For two samples <var>x</var> and <var>y</var>, perform a Mann-Whitney U-test of
the null hypothesis
PROB (<var>x</var> > <var>y</var>) == 1/2 == PROB (<var>x</var> < <var>y</var>).
</p>
<p>Under the null, the test statistic <var>z</var> approximately follows a
standard normal distribution. Note that this test is equivalent to the
Wilcoxon rank-sum test.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative
PROB (<var>x</var> > <var>y</var>) != 1/2. If <var>alt</var> is <code>">"</code>, the one-sided
alternative PROB (<var>x</var> > <var>y</var>) > 1/2 is considered. Similarly for
<code>"<"</code>, the one-sided alternative PROB (<var>x</var> > <var>y</var>) < 1/2 is
considered. The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFvar_005ftest"></a><dl>
<dt><a name="index-var_005ftest"></a>: <em>[<var>pval</var>, <var>f</var>, <var>df_num</var>, <var>df_den</var>] =</em> <strong>var_test</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>)</em></dt>
<dd><p>For two samples <var>x</var> and <var>y</var> from normal distributions with
unknown means and unknown variances, perform an F-test of the null
hypothesis of equal variances.
</p>
<p>Under the null, the test statistic <var>f</var> follows an F-distribution with
<var>df_num</var> and <var>df_den</var> degrees of freedom.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative <code>var (<var>x</var>) != var
(<var>y</var>)</code>. If <var>alt</var> is <code>">"</code>, the one-sided alternative
<code>var (<var>x</var>) > var (<var>y</var>)</code> is used. Similarly for "<", the
one-sided alternative <code>var (<var>x</var>) > var (<var>y</var>)</code> is used. The
default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFwelch_005ftest"></a><dl>
<dt><a name="index-welch_005ftest"></a>: <em>[<var>pval</var>, <var>t</var>, <var>df</var>] =</em> <strong>welch_test</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>)</em></dt>
<dd><p>For two samples <var>x</var> and <var>y</var> from normal distributions with
unknown means and unknown and not necessarily equal variances,
perform a Welch test of the null hypothesis of equal means.
</p>
<p>Under the null, the test statistic <var>t</var> approximately follows a
Student distribution with <var>df</var> degrees of freedom.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative
<code>mean (<var>x</var>) != <var>m</var></code>. If <var>alt</var> is <code>">"</code>, the
one-sided alternative mean(x) > <var>m</var> is considered. Similarly for
<code>"<"</code>, the one-sided alternative mean(x) < <var>m</var> is considered.
The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFwilcoxon_005ftest"></a><dl>
<dt><a name="index-wilcoxon_005ftest"></a>: <em>[<var>pval</var>, <var>z</var>] =</em> <strong>wilcoxon_test</strong> <em>(<var>x</var>, <var>y</var>, <var>alt</var>)</em></dt>
<dd><p>For two matched-pair sample vectors <var>x</var> and <var>y</var>, perform a
Wilcoxon signed-rank test of the null hypothesis
PROB (<var>x</var> > <var>y</var>) == 1/2.
</p>
<p>Under the null, the test statistic <var>z</var> approximately follows a
standard normal distribution when <var>n</var> > 25.
</p>
<p><strong>Caution:</strong> This function assumes a normal distribution for <var>z</var>
and thus is invalid for <var>n</var> ≤ 25.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative
PROB (<var>x</var> > <var>y</var>) != 1/2. If alt is <code>">"</code>, the one-sided
alternative PROB (<var>x</var> > <var>y</var>) > 1/2 is considered. Similarly for
<code>"<"</code>, the one-sided alternative PROB (<var>x</var> > <var>y</var>) < 1/2 is
considered. The default is the two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed.
</p></dd></dl>
<a name="XREFz_005ftest"></a><dl>
<dt><a name="index-z_005ftest"></a>: <em>[<var>pval</var>, <var>z</var>] =</em> <strong>z_test</strong> <em>(<var>x</var>, <var>m</var>, <var>v</var>, <var>alt</var>)</em></dt>
<dd><p>Perform a Z-test of the null hypothesis <code>mean (<var>x</var>) == <var>m</var></code>
for a sample <var>x</var> from a normal distribution with unknown mean and known
variance <var>v</var>.
</p>
<p>Under the null, the test statistic <var>z</var> follows a standard normal
distribution.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative
<code>mean (<var>x</var>) != <var>m</var></code>. If <var>alt</var> is <code>">"</code>, the
one-sided alternative <code>mean (<var>x</var>) > <var>m</var></code> is considered.
Similarly for <code>"<"</code>, the one-sided alternative
<code>mean (<var>x</var>) < <var>m</var></code> is considered. The default is the two-sided
case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed along
with some information.
</p></dd></dl>
<a name="XREFz_005ftest_005f2"></a><dl>
<dt><a name="index-z_005ftest_005f2"></a>: <em>[<var>pval</var>, <var>z</var>] =</em> <strong>z_test_2</strong> <em>(<var>x</var>, <var>y</var>, <var>v_x</var>, <var>v_y</var>, <var>alt</var>)</em></dt>
<dd><p>For two samples <var>x</var> and <var>y</var> from normal distributions with unknown
means and known variances <var>v_x</var> and <var>v_y</var>, perform a Z-test of the
hypothesis of equal means.
</p>
<p>Under the null, the test statistic <var>z</var> follows a standard normal
distribution.
</p>
<p>With the optional argument string <var>alt</var>, the alternative of interest
can be selected. If <var>alt</var> is <code>"!="</code> or <code>"<>"</code>, the null
is tested against the two-sided alternative
<code>mean (<var>x</var>) != mean (<var>y</var>)</code>. If alt is <code>">"</code>, the
one-sided alternative <code>mean (<var>x</var>) > mean (<var>y</var>)</code> is used.
Similarly for <code>"<"</code>, the one-sided alternative
<code>mean (<var>x</var>) < mean (<var>y</var>)</code> is used. The default is the
two-sided case.
</p>
<p>The p-value of the test is returned in <var>pval</var>.
</p>
<p>If no output argument is given, the p-value of the test is displayed along
with some information.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Random-Number-Generation.html#Random-Number-Generation" accesskey="n" rel="next">Random Number Generation</a>, Previous: <a href="Distributions.html#Distributions" accesskey="p" rel="prev">Distributions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|