/usr/share/octave/packages/specfun-1.1.0/doc-cache is in octave-specfun 1.1.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | # doc-cache created by Octave 4.2.1
# name: cache
# type: cell
# rows: 3
# columns: 19
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
Ci
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 278
-- Function File: Y = Ci (Z)
Compute the cosine integral function defined by:
Inf
/
Ci(x) = | cos(t)/t dt
/
x
See also: cosint, Si, sinint, expint, expint_Ei.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the cosine integral function defined by:
Inf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
Si
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
-- Function File: Y = Si (X)
Compute the sine integral defined by:
x
/
Si(x) = | sin(t)/t dt
/
0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the sine integral defined by:
x
/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cosint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 278
-- Function File: Y = cosint (Z)
Compute the cosine integral function defined by:
Inf
/
cosint(x) = | cos(t)/t dt
/
x
See also: Ci, Si, sinint, expint, expint_Ei.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the cosine integral function defined by:
Inf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dirac
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
-- Function File: Y = dirac(X)
Compute the dirac delta function.
See also: heaviside.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Compute the dirac delta function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ellipke
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
-- Function File: [K, E] = ellipke (M[,TOL])
Compute complete elliptic integral of first K(M) and second E(M).
M is either real array or scalar with 0 <= m <= 1
TOL will be ignored (MATLAB uses this to allow faster, less
accurate approximation)
Ref: Abramowitz, Milton and Stegun, Irene A. Handbook of
Mathematical Functions, Dover, 1965, Chapter 17.
See also: ellipj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Compute complete elliptic integral of first K(M) and second E(M).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
erfcinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
-- Function File: erfcinv (X)
Compute the inverse complementary error function.
See also: erfc,erf,erfinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the inverse complementary error function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
-- Function File: Y = expint (X)
Compute the exponential integral,
infinity
/
expint(x) = | exp(t)/t dt
/
x
See also: expint_E1, expint_Ei.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the exponential integral,
infinity
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
expint_E1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
-- Function File: Y = expint_E1 (X)
Compute the exponential integral,
infinity
/
expint(x) = | exp(t)/t dt
/
x
See also: expint, expint_Ei.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the exponential integral,
infinity
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
expint_Ei
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 266
-- Function File: Y = expint_Ei (X)
Compute the exponential integral,
infinity
/
expint_Ei(x) = - | exp(t)/t dt
/
-x
See also: expint, expint_E1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the exponential integral,
infinity
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
heaviside
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 396
-- Function File: heaviside(X)
-- Function File: heaviside(X, ZERO_VALUE)
Compute the Heaviside step function.
The Heaviside function is defined as
Heaviside (X) = 1, X > 0
Heaviside (X) = 0, X < 0
The value of the Heaviside function at X = 0 is by default 0.5, but
can be changed via the optional second input argument.
See also: dirac.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Compute the Heaviside step function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
laguerre
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
-- Function File: Y = laguerre (X,N)
-- Function File: [Y P]= laguerre (X,N)
Compute the value of the Laguerre polynomial of order N for each
element of X
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Compute the value of the Laguerre polynomial of order N for each element
of X
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
lambertw
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1025
-- Function File: X = lambertw (Z)
-- Function File: X = lambertw (Z, N)
Compute the Lambert W function of Z.
This function satisfies W(z).*exp(W(z)) = z, and can thus be used
to express solutions of transcendental equations involving
exponentials or logarithms.
N must be integer, and specifies the branch of W to be computed;
W(z) is a shorthand for W(0,z), the principal branch. Branches 0
and -1 are the only ones that can take on non-complex values.
If either N or Z are non-scalar, the function is mapped to each
element; both may be non-scalar provided their dimensions agree.
This implementation should return values within 2.5*eps of its
counterpart in Maple V, release 3 or later. Please report any
discrepancies to the author, Nici Schraudolph
<schraudo@inf.ethz.ch>.
For further details, see:
Corless, Gonnet, Hare, Jeffrey, and Knuth (1996), 'On the Lambert W
Function', Advances in Computational Mathematics 5(4):329-359.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Compute the Lambert W function of Z.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
laplacian
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3694
LAPLACIAN Sparse Negative Laplacian in 1D, 2D, or 3D
[~,~,A]=LAPLACIAN(N) generates a sparse negative 3D Laplacian matrix
with Dirichlet boundary conditions, from a rectangular cuboid regular
grid with j x k x l interior grid points if N = [j k l], using the
standard 7-point finite-difference scheme, The grid size is always
one in all directions.
[~,~,A]=LAPLACIAN(N,B) specifies boundary conditions with a cell array
B. For example, B = {'DD' 'DN' 'P'} will Dirichlet boundary conditions
('DD') in the x-direction, Dirichlet-Neumann conditions ('DN') in the
y-direction and period conditions ('P') in the z-direction. Possible
values for the elements of B are 'DD', 'DN', 'ND', 'NN' and 'P'.
LAMBDA = LAPLACIAN(N,B,M) or LAPLACIAN(N,M) outputs the m smallest
eigenvalues of the matrix, computed by an exact known formula, see
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors_of_the_second_derivative
It will produce a warning if the mth eigenvalue is equal to the
(m+1)th eigenvalue. If m is absebt or zero, lambda will be empty.
[LAMBDA,V] = LAPLACIAN(N,B,M) also outputs orthonormal eigenvectors
associated with the corresponding m smallest eigenvalues.
[LAMBDA,V,A] = LAPLACIAN(N,B,M) produces a 2D or 1D negative
Laplacian matrix if the length of N and B are 2 or 1 respectively.
It uses the standard 5-point scheme for 2D, and 3-point scheme for 1D.
% Examples:
[lambda,V,A] = laplacian([100,45,55],{'DD' 'NN' 'P'}, 20);
% Everything for 3D negative Laplacian with mixed boundary conditions.
laplacian([100,45,55],{'DD' 'NN' 'P'}, 20);
% or
lambda = laplacian([100,45,55],{'DD' 'NN' 'P'}, 20);
% computes the eigenvalues only
[~,V,~] = laplacian([200 200],{'DD' 'DN'},30);
% Eigenvectors of 2D negative Laplacian with mixed boundary conditions.
[~,~,A] = laplacian(200,{'DN'},30);
% 1D negative Laplacian matrix A with mixed boundary conditions.
% Example to test if outputs correct eigenvalues and vectors:
[lambda,V,A] = laplacian([13,10,6],{'DD' 'DN' 'P'},30);
[Veig D] = eig(full(A)); lambdaeig = diag(D(1:30,1:30));
max(abs(lambda-lambdaeig)) %checking eigenvalues
subspace(V,Veig(:,1:30)) %checking the invariant subspace
subspace(V(:,1),Veig(:,1)) %checking selected eigenvectors
subspace(V(:,29:30),Veig(:,29:30)) %a multiple eigenvalue
% Example showing equivalence between laplacian.m and built-in MATLAB
% DELSQ for the 2D case. The output of the last command shall be 0.
A1 = delsq(numgrid('S',32)); % input 'S' specifies square grid.
[~,~,A2] = laplacian([30,30]);
norm(A1-A2,inf)
Class support for inputs:
N - row vector float double
B - cell array
M - scalar float double
Class support for outputs:
lambda and V - full float double, A - sparse float double.
Note: the actual numerical entries of A fit int8 format, but only
double data class is currently (2010) supported for sparse matrices.
This program is designed to efficiently compute eigenvalues,
eigenvectors, and the sparse matrix of the (1-3)D negative Laplacian
on a rectangular grid for Dirichlet, Neumann, and Periodic boundary
conditions using tensor sums of 1D Laplacians. For more information on
tensor products, see
http://en.wikipedia.org/wiki/Kronecker_sum_of_discrete_Laplacians
For 2D case in MATLAB, see
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/kron.html.
This code is also part of the BLOPEX package:
http://en.wikipedia.org/wiki/BLOPEX or directly
http://code.google.com/p/blopex/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
LAPLACIAN Sparse Negative Laplacian in 1D, 2D, or 3D
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
multinom
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 588
-- Function File: [Y ALPHA] = multinom (X, N)
-- Function File: [Y ALPHA] = multinom (X, N,SORT)
Returns the terms (monomials) of the multinomial expansion of
degree n.
(x1 + x2 + ... + xm)^N
X is a nT-by-m matrix where each column represents a different
variable, the output Y has the same format. The order of the terms
is inherited from multinom_exp and can be controlled through the
optional argument SORT and is passed to the function 'sort'. The
exponents are returned in ALPHA.
See also: multinom_exp, multinom_coeff, sort.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Returns the terms (monomials) of the multinomial expansion of degree n.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
multinom_coeff
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 934
-- Function File: [C ALPHA] = multinom_coeff (M, N)
-- Function File: [C ALPHA] = multinom_coeff (M, N,ORDER)
Produces the coefficients of the multinomial expansion
(x1 + x2 + ... + xm).^n
For example, for m=3, n=3 the expansion is
(x1+x2+x3)^3 =
= x1^3 + x2^3 + x3^3 +
+ 3 x1^2 x2 + 3 x1^2 x3 + 3 x2^2 x1 + 3 x2^2 x3 +
+ 3 x3^2 x1 + 3 x3^2 x2 + 6 x1 x2 x3
and the coefficients are [6 3 3 3 3 3 3 1 1 1].
The order of the coefficients is defined by the optinal argument
ORDER. It is passed to the function 'multion_exp'. See the help
of that function for explanation. The multinomial coefficients are
generated using
/ \
| n | n!
| | = ------------------------
| k | k(1)!k(2)! ... k(end)!
\ /
See also: multinom,multinom_exp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Produces the coefficients of the multinomial expansion
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
multinom_exp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 698
-- Function File: ALPHA = multinom_exp (M, N)
-- Function File: ALPHA = multinom_exp (M, N,SORT)
Returns the exponents of the terms in the multinomial expansion
(x1 + x2 + ... + xm).^N
For example, for m=2, n=3 the expansion has the terms
x1^3, x2^3, x1^2*x2, x1*x2^2
then 'alpha = [3 0; 2 1; 1 2; 0 3]';
The optional argument SORT is passed to function 'sort' to sort the
exponents by the maximum degree. The example above calling '
multinom(m,n,"ascend")' produces
'alpha = [2 1; 1 2; 3 0; 0 3]';
calling ' multinom(m,n,"descend")' produces
'alpha = [3 0; 0 3; 2 1; 1 2]';
See also: multinom, multinom_coeff, sort.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Returns the exponents of the terms in the multinomial expansion
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
psi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
-- Function File: Y = psi (X)
Compute the psi function, for each value of X.
d
psi(x) = __ log(gamma(x))
dx
See also: gamma, gammainc, gammaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Compute the psi function, for each value of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sinint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
-- Function File: Y = sinint (X)
Compute the sine integral function.
See also: Si.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Compute the sine integral function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
zeta
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
-- Function File: Z = zeta (T)
Compute the Riemann's Zeta function.
See also: Si.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Compute the Riemann's Zeta function.
|