/usr/share/octave/packages/specfun-1.1.0/laplacian.m is in octave-specfun 1.1.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | ## Copyright (c) 2010-2011 Andrew V. Knyazev <andrew.knyazev@ucdenver.edu>
## Copyright (c) 2010-2011 Bryan C. Smith <bryan.c.smith@ucdenver.edu>
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
## * Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
## * Neither the name of the <organization> nor the
## names of its contributors may be used to endorse or promote products
## derived from this software without specific prior written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
## ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
## WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
## DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
## DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
## (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
## LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
## SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% LAPLACIAN Sparse Negative Laplacian in 1D, 2D, or 3D
%
% [~,~,A]=LAPLACIAN(N) generates a sparse negative 3D Laplacian matrix
% with Dirichlet boundary conditions, from a rectangular cuboid regular
% grid with j x k x l interior grid points if N = [j k l], using the
% standard 7-point finite-difference scheme, The grid size is always
% one in all directions.
%
% [~,~,A]=LAPLACIAN(N,B) specifies boundary conditions with a cell array
% B. For example, B = {'DD' 'DN' 'P'} will Dirichlet boundary conditions
% ('DD') in the x-direction, Dirichlet-Neumann conditions ('DN') in the
% y-direction and period conditions ('P') in the z-direction. Possible
% values for the elements of B are 'DD', 'DN', 'ND', 'NN' and 'P'.
%
% LAMBDA = LAPLACIAN(N,B,M) or LAPLACIAN(N,M) outputs the m smallest
% eigenvalues of the matrix, computed by an exact known formula, see
% http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors_of_the_second_derivative
% It will produce a warning if the mth eigenvalue is equal to the
% (m+1)th eigenvalue. If m is absebt or zero, lambda will be empty.
%
% [LAMBDA,V] = LAPLACIAN(N,B,M) also outputs orthonormal eigenvectors
% associated with the corresponding m smallest eigenvalues.
%
% [LAMBDA,V,A] = LAPLACIAN(N,B,M) produces a 2D or 1D negative
% Laplacian matrix if the length of N and B are 2 or 1 respectively.
% It uses the standard 5-point scheme for 2D, and 3-point scheme for 1D.
%
% % Examples:
% [lambda,V,A] = laplacian([100,45,55],{'DD' 'NN' 'P'}, 20);
% % Everything for 3D negative Laplacian with mixed boundary conditions.
% laplacian([100,45,55],{'DD' 'NN' 'P'}, 20);
% % or
% lambda = laplacian([100,45,55],{'DD' 'NN' 'P'}, 20);
% % computes the eigenvalues only
%
% [~,V,~] = laplacian([200 200],{'DD' 'DN'},30);
% % Eigenvectors of 2D negative Laplacian with mixed boundary conditions.
%
% [~,~,A] = laplacian(200,{'DN'},30);
% % 1D negative Laplacian matrix A with mixed boundary conditions.
%
% % Example to test if outputs correct eigenvalues and vectors:
% [lambda,V,A] = laplacian([13,10,6],{'DD' 'DN' 'P'},30);
% [Veig D] = eig(full(A)); lambdaeig = diag(D(1:30,1:30));
% max(abs(lambda-lambdaeig)) %checking eigenvalues
% subspace(V,Veig(:,1:30)) %checking the invariant subspace
% subspace(V(:,1),Veig(:,1)) %checking selected eigenvectors
% subspace(V(:,29:30),Veig(:,29:30)) %a multiple eigenvalue
%
% % Example showing equivalence between laplacian.m and built-in MATLAB
% % DELSQ for the 2D case. The output of the last command shall be 0.
% A1 = delsq(numgrid('S',32)); % input 'S' specifies square grid.
% [~,~,A2] = laplacian([30,30]);
% norm(A1-A2,inf)
%
% Class support for inputs:
% N - row vector float double
% B - cell array
% M - scalar float double
%
% Class support for outputs:
% lambda and V - full float double, A - sparse float double.
%
% Note: the actual numerical entries of A fit int8 format, but only
% double data class is currently (2010) supported for sparse matrices.
%
% This program is designed to efficiently compute eigenvalues,
% eigenvectors, and the sparse matrix of the (1-3)D negative Laplacian
% on a rectangular grid for Dirichlet, Neumann, and Periodic boundary
% conditions using tensor sums of 1D Laplacians. For more information on
% tensor products, see
% http://en.wikipedia.org/wiki/Kronecker_sum_of_discrete_Laplacians
% For 2D case in MATLAB, see
% http://www.mathworks.com/access/helpdesk/help/techdoc/ref/kron.html.
%
% This code is also part of the BLOPEX package:
% http://en.wikipedia.org/wiki/BLOPEX or directly
% http://code.google.com/p/blopex/
% Revision 1.1 changes: rearranged the output variables, always compute
% the eigenvalues, compute eigenvectors and/or the matrix on demand only.
% $Revision: 1.1 $ $Date: 1-Aug-2011
% Tested in MATLAB 7.11.0 (R2010b) and Octave 3.4.0.
function [lambda, V, A] = laplacian(varargin)
% Input/Output handling.
if (nargin < 1 || nargin > 3)
print_usage;
endif
u = varargin{1};
dim2 = size(u);
if dim2(1) ~= 1
error('BLOPEX:laplacian:WrongVectorOfGridPoints',...
'%s','Number of grid points must be in a row vector.')
end
if dim2(2) > 3
error('BLOPEX:laplacian:WrongNumberOfGridPoints',...
'%s','Number of grid points must be a 1, 2, or 3')
end
dim=dim2(2); clear dim2;
uint = round(u);
if max(uint~=u)
warning('BLOPEX:laplacian:NonIntegerGridSize',...
'%s','Grid sizes must be integers. Rounding...');
u = uint; clear uint
end
if max(u<=0 )
error('BLOPEX:laplacian:NonIntegerGridSize',...
'%s','Grid sizes must be positive.');
end
if nargin == 3
m = varargin{3};
B = varargin{2};
elseif nargin == 2
f = varargin{2};
a = whos('regep','f');
if sum(a.class(1:4)=='cell') == 4
B = f;
m = 0;
elseif sum(a.class(1:4)=='doub') == 4
if dim == 1
B = {'DD'};
elseif dim == 2
B = {'DD' 'DD'};
else
B = {'DD' 'DD' 'DD'};
end
m = f;
else
error('BLOPEX:laplacian:InvalidClass',...
'%s','Second input must be either class double or a cell array.');
end
else
if dim == 1
B = {'DD'};
elseif dim == 2
B = {'DD' 'DD'};
else
B = {'DD' 'DD' 'DD'};
end
m = 0;
end
if max(size(m) - [1 1]) ~= 0
error('BLOPEX:laplacian:WrongNumberOfEigenvalues',...
'%s','The requested number of eigenvalues must be a scalar.');
end
maxeigs = prod(u);
mint = round(m);
if mint ~= m || mint > maxeigs
error('BLOPEX:laplacian:InvalidNumberOfEigs',...
'%s','Number of eigenvalues output must be a nonnegative ',...
'integer no bigger than number of grid points.');
end
m = mint;
bdryerr = 0;
a = whos('regep','B');
if sum(a.class(1:4)=='cell') ~= 4 || sum(a.size == [1 dim]) ~= 2
bdryerr = 1;
else
BB = zeros(1, 2*dim);
for i = 1:dim
if (length(B{i}) == 1)
if B{i} == 'P'
BB(i) = 3;
BB(i + dim) = 3;
else
bdryerr = 1;
end
elseif (length(B{i}) == 2)
if B{i}(1) == 'D'
BB(i) = 1;
elseif B{i}(1) == 'N'
BB(i) = 2;
else
bdryerr = 1;
end
if B{i}(2) == 'D'
BB(i + dim) = 1;
elseif B{i}(2) == 'N'
BB(i + dim) = 2;
else
bdryerr = 1;
end
else
bdryerr = 1;
end
end
end
if bdryerr == 1
error('BLOPEX:laplacian:InvalidBdryConds',...
'%s','Boundary conditions must be a cell of length 3 for 3D, 2',...
' for 2D, 1 for 1D, with values ''DD'', ''DN'', ''ND'', ''NN''',...
', or ''P''.');
end
% Set the component matrices. SPDIAGS converts int8 into double anyway.
e1 = ones(u(1),1); %e1 = ones(u(1),1,'int8');
if dim > 1
e2 = ones(u(2),1);
end
if dim > 2
e3 = ones(u(3),1);
end
% Calculate m smallest exact eigenvalues.
if m > 0
if (BB(1) == 1) && (BB(1+dim) == 1)
a1 = pi/2/(u(1)+1);
N = (1:u(1))';
elseif (BB(1) == 2) && (BB(1+dim) == 2)
a1 = pi/2/u(1);
N = (0:(u(1)-1))';
elseif ((BB(1) == 1) && (BB(1+dim) == 2)) || ((BB(1) == 2)...
&& (BB(1+dim) == 1))
a1 = pi/4/(u(1)+0.5);
N = 2*(1:u(1))' - 1;
else
a1 = pi/u(1);
N = floor((1:u(1))/2)';
end
lambda1 = 4*sin(a1*N).^2;
if dim > 1
if (BB(2) == 1) && (BB(2+dim) == 1)
a2 = pi/2/(u(2)+1);
N = (1:u(2))';
elseif (BB(2) == 2) && (BB(2+dim) == 2)
a2 = pi/2/u(2);
N = (0:(u(2)-1))';
elseif ((BB(2) == 1) && (BB(2+dim) == 2)) || ((BB(2) == 2)...
&& (BB(2+dim) == 1))
a2 = pi/4/(u(2)+0.5);
N = 2*(1:u(2))' - 1;
else
a2 = pi/u(2);
N = floor((1:u(2))/2)';
end
lambda2 = 4*sin(a2*N).^2;
else
lambda2 = 0;
end
if dim > 2
if (BB(3) == 1) && (BB(6) == 1)
a3 = pi/2/(u(3)+1);
N = (1:u(3))';
elseif (BB(3) == 2) && (BB(6) == 2)
a3 = pi/2/u(3);
N = (0:(u(3)-1))';
elseif ((BB(3) == 1) && (BB(6) == 2)) || ((BB(3) == 2)...
&& (BB(6) == 1))
a3 = pi/4/(u(3)+0.5);
N = 2*(1:u(3))' - 1;
else
a3 = pi/u(3);
N = floor((1:u(3))/2)';
end
lambda3 = 4*sin(a3*N).^2;
else
lambda3 = 0;
end
if dim == 1
lambda = lambda1;
elseif dim == 2
lambda = kron(e2,lambda1) + kron(lambda2, e1);
else
lambda = kron(e3,kron(e2,lambda1)) + kron(e3,kron(lambda2,e1))...
+ kron(lambda3,kron(e2,e1));
end
[lambda, p] = sort(lambda);
if m < maxeigs - 0.1
w = lambda(m+1);
else
w = inf;
end
lambda = lambda(1:m);
p = p(1:m)';
else
lambda = [];
end
V = [];
if nargout > 1 && m > 0 % Calculate eigenvectors if specified in output.
p1 = mod(p-1,u(1))+1;
if (BB(1) == 1) && (BB(1+dim) == 1)
V1 = sin(kron((1:u(1))'*(pi/(u(1)+1)),p1))*(2/(u(1)+1))^0.5;
elseif (BB(1) == 2) && (BB(1+dim) == 2)
V1 = cos(kron((0.5:1:u(1)-0.5)'*(pi/u(1)),p1-1))*(2/u(1))^0.5;
V1(:,p1==1) = 1/u(1)^0.5;
elseif ((BB(1) == 1) && (BB(1+dim) == 2))
V1 = sin(kron((1:u(1))'*(pi/2/(u(1)+0.5)),2*p1 - 1))...
*(2/(u(1)+0.5))^0.5;
elseif ((BB(1) == 2) && (BB(1+dim) == 1))
V1 = cos(kron((0.5:1:u(1)-0.5)'*(pi/2/(u(1)+0.5)),2*p1 - 1))...
*(2/(u(1)+0.5))^0.5;
else
V1 = zeros(u(1),m);
a = (0.5:1:u(1)-0.5)';
V1(:,mod(p1,2)==1) = cos(a*(pi/u(1)*(p1(mod(p1,2)==1)-1)))...
*(2/u(1))^0.5;
pp = p1(mod(p1,2)==0);
if ~isempty(pp)
V1(:,mod(p1,2)==0) = sin(a*(pi/u(1)*p1(mod(p1,2)==0)))...
*(2/u(1))^0.5;
end
V1(:,p1==1) = 1/u(1)^0.5;
if mod(u(1),2) == 0
V1(:,p1==u(1)) = V1(:,p1==u(1))/2^0.5;
end
end
if dim > 1
p2 = mod(p-p1,u(1)*u(2));
p3 = (p - p2 - p1)/(u(1)*u(2)) + 1;
p2 = p2/u(1) + 1;
if (BB(2) == 1) && (BB(2+dim) == 1)
V2 = sin(kron((1:u(2))'*(pi/(u(2)+1)),p2))*(2/(u(2)+1))^0.5;
elseif (BB(2) == 2) && (BB(2+dim) == 2)
V2 = cos(kron((0.5:1:u(2)-0.5)'*(pi/u(2)),p2-1))*(2/u(2))^0.5;
V2(:,p2==1) = 1/u(2)^0.5;
elseif ((BB(2) == 1) && (BB(2+dim) == 2))
V2 = sin(kron((1:u(2))'*(pi/2/(u(2)+0.5)),2*p2 - 1))...
*(2/(u(2)+0.5))^0.5;
elseif ((BB(2) == 2) && (BB(2+dim) == 1))
V2 = cos(kron((0.5:1:u(2)-0.5)'*(pi/2/(u(2)+0.5)),2*p2 - 1))...
*(2/(u(2)+0.5))^0.5;
else
V2 = zeros(u(2),m);
a = (0.5:1:u(2)-0.5)';
V2(:,mod(p2,2)==1) = cos(a*(pi/u(2)*(p2(mod(p2,2)==1)-1)))...
*(2/u(2))^0.5;
pp = p2(mod(p2,2)==0);
if ~isempty(pp)
V2(:,mod(p2,2)==0) = sin(a*(pi/u(2)*p2(mod(p2,2)==0)))...
*(2/u(2))^0.5;
end
V2(:,p2==1) = 1/u(2)^0.5;
if mod(u(2),2) == 0
V2(:,p2==u(2)) = V2(:,p2==u(2))/2^0.5;
end
end
else
V2 = ones(1,m);
end
if dim > 2
if (BB(3) == 1) && (BB(3+dim) == 1)
V3 = sin(kron((1:u(3))'*(pi/(u(3)+1)),p3))*(2/(u(3)+1))^0.5;
elseif (BB(3) == 2) && (BB(3+dim) == 2)
V3 = cos(kron((0.5:1:u(3)-0.5)'*(pi/u(3)),p3-1))*(2/u(3))^0.5;
V3(:,p3==1) = 1/u(3)^0.5;
elseif ((BB(3) == 1) && (BB(3+dim) == 2))
V3 = sin(kron((1:u(3))'*(pi/2/(u(3)+0.5)),2*p3 - 1))...
*(2/(u(3)+0.5))^0.5;
elseif ((BB(3) == 2) && (BB(3+dim) == 1))
V3 = cos(kron((0.5:1:u(3)-0.5)'*(pi/2/(u(3)+0.5)),2*p3 - 1))...
*(2/(u(3)+0.5))^0.5;
else
V3 = zeros(u(3),m);
a = (0.5:1:u(3)-0.5)';
V3(:,mod(p3,2)==1) = cos(a*(pi/u(3)*(p3(mod(p3,2)==1)-1)))...
*(2/u(3))^0.5;
pp = p1(mod(p3,2)==0);
if ~isempty(pp)
V3(:,mod(p3,2)==0) = sin(a*(pi/u(3)*p3(mod(p3,2)==0)))...
*(2/u(3))^0.5;
end
V3(:,p3==1) = 1/u(3)^0.5;
if mod(u(3),2) == 0
V3(:,p3==u(3)) = V3(:,p3==u(3))/2^0.5;
end
end
else
V3 = ones(1,m);
end
if dim == 1
V = V1;
elseif dim == 2
V = kron(e2,V1).*kron(V2,e1);
else
V = kron(e3, kron(e2, V1)).*kron(e3, kron(V2, e1))...
.*kron(kron(V3,e2),e1);
end
if m ~= 0
if abs(lambda(m) - w) < maxeigs*eps('double')
sprintf('\n%s','Warning: (m+1)th eigenvalue is nearly equal',...
' to mth.')
end
end
end
A = [];
if nargout > 2 %also calulate the matrix if specified in the output
% Set the component matrices. SPDIAGS converts int8 into double anyway.
% e1 = ones(u(1),1); %e1 = ones(u(1),1,'int8');
D1x = spdiags([-e1 2*e1 -e1], [-1 0 1], u(1),u(1));
if dim > 1
% e2 = ones(u(2),1);
D1y = spdiags([-e2 2*e2 -e2], [-1 0 1], u(2),u(2));
end
if dim > 2
% e3 = ones(u(3),1);
D1z = spdiags([-e3 2*e3 -e3], [-1 0 1], u(3),u(3));
end
% Set boundary conditions if other than Dirichlet.
for i = 1:dim
if BB(i) == 2
eval(['D1' char(119 + i) '(1,1) = 1;'])
elseif BB(i) == 3
eval(['D1' char(119 + i) '(1,' num2str(u(i)) ') = D1'...
char(119 + i) '(1,' num2str(u(i)) ') -1;']);
eval(['D1' char(119 + i) '(' num2str(u(i)) ',1) = D1'...
char(119 + i) '(' num2str(u(i)) ',1) -1;']);
end
if BB(i+dim) == 2
eval(['D1' char(119 + i)...
'(',num2str(u(i)),',',num2str(u(i)),') = 1;'])
end
end
% Form A using tensor products of lower dimensional Laplacians
Ix = speye(u(1));
if dim == 1
A = D1x;
elseif dim == 2
Iy = speye(u(2));
A = kron(Iy,D1x) + kron(D1y,Ix);
elseif dim == 3
Iy = speye(u(2));
Iz = speye(u(3));
A = kron(Iz, kron(Iy, D1x)) + kron(Iz, kron(D1y, Ix))...
+ kron(kron(D1z,Iy),Ix);
end
end
disp(' ')
if ~isempty(V)
a = whos('regep','V');
disp(['The eigenvectors take ' num2str(a.bytes) ' bytes'])
end
if ~isempty(A)
a = whos('regexp','A');
disp(['The Laplacian matrix takes ' num2str(a.bytes) ' bytes'])
end
disp(' ')
endfunction
|