This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/anovan.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
## Copyright (C) 2003-2005 Andy Adler <adler@ncf.ca>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{pval}, @var{f}, @var{df_b}, @var{df_e}] =} anovan (@var{data}, @var{grps})
## @deftypefnx {Function File} {[@var{pval}, @var{f}, @var{df_b}, @var{df_e}] =} anovan (@var{data}, @var{grps}, 'param1', @var{value1})
## Perform a multi-way analysis of variance (ANOVA).  The goal is to test
## whether the population means of data taken from @var{k} different
## groups are all equal.
##
## Data is a single vector @var{data} with groups specified by
## a corresponding matrix of group labels @var{grps}, where @var{grps}
## has the same number of rows as @var{data}. For example, if
## @var{data} = [1.1;1.2]; @var{grps}= [1,2,1; 1,5,2];
## then data point 1.1 was measured under conditions 1,2,1 and
## data point 1.2 was measured under conditions 1,5,2.
## Note that groups do not need to be sequentially numbered.
##
## By default, a 'linear' model is used, computing the N main effects
## with no interactions. this may be modified by param 'model'
##
## p= anovan(data,groups, 'model', modeltype)
## - modeltype = 'linear': compute N main effects
## - modeltype = 'interaction': compute N effects and
##                               N*(N-1) two-factor interactions
## - modeltype = 'full': compute interactions at all levels
##
## Under the null of constant means, the statistic @var{f} follows an F
## distribution with @var{df_b} and @var{df_e} degrees of freedom.
##
## The p-value (1 minus the CDF of this distribution at @var{f}) is
## returned in @var{pval}.
##
## If no output argument is given, the standard one-way ANOVA table is
## printed.
##
## BUG: DFE is incorrect for modeltypes != full
## @end deftypefn

## Author: Andy Adler <adler@ncf.ca>
## Based on code by: KH <Kurt.Hornik@ci.tuwien.ac.at>
## $Id$
##
## TESTING RESULTS:
##  1. ANOVA ACCURACY: www.itl.nist.gov/div898/strd/anova/anova.html
##     Passes 'easy' test. Comes close on 'Average'. Fails 'Higher'.
##     This could be fixed with higher precision arithmetic
##  2. Matlab anova2 test
##      www.mathworks.com/access/helpdesk/help/toolbox/stats/anova2.html
##     % From web site:
##      popcorn= [  5.5 4.5 3.5; 5.5 4.5 4.0; 6.0 4.0 3.0;
##                  6.5 5.0 4.0; 7.0 5.5 5.0; 7.0 5.0 4.5];
##     % Define groups so reps = 3
##      groups = [  1 1;1 2;1 3;1 1;1 2;1 3;1 1;1 2;1 3;
##                  2 1;2 2;2 3;2 1;2 2;2 3;2 1;2 2;2 3 ];
##      anovan( vec(popcorn'), groups, 'model', 'full')
##     % Results same as Matlab output
##  3. Matlab anovan test
##      www.mathworks.com/access/helpdesk/help/toolbox/stats/anovan.html
##    % From web site
##      y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
##      g1 = [1 2 1 2 1 2 1 2]; 
##      g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'}; 
##      g3 = {'may'; 'may'; 'may'; 'may'; 'june'; 'june'; 'june'; 'june'}; 
##      anovan( y', [g1',g2',g3'])
##    % Fails because we always do interactions

function [PVAL, FSTAT, DF_B, DFE] = anovan (data, grps, varargin)

    if nargin <= 1
        usage ("anovan (data, grps)");
    end

    # test supplied parameters
    modeltype= 'linear';
    for idx= 3:2:nargin
       param= varargin{idx-2};
       value= varargin{idx-1};

       if strcmp(param, 'model')
          modeltype= value;
#      elseif strcmp(param    # add other parameters here
       else 
          error(sprintf('parameter %s is not supported', param));
       end
    end

    if ~isvector (data)
          error ("anova: for `anova (data, grps)', data must be a vector");
    endif

    nd = size (grps,1); # number of data points
    nw = size (grps,2); # number of anova "ways"
    if (~ isvector (data) || (length(data) ~= nd))
      error ("anova: grps must be a matrix of the same number of rows as data");
    endif

    [g,grp_map]   = relabel_groups (grps);
    if strcmp(modeltype, 'linear')
       max_interact  = 1;
    elseif strcmp(modeltype,'interaction')
       max_interact  = 2;
    elseif strcmp(modeltype,'full')
       max_interact  = rows(grps);
    else
       error(sprintf('modeltype %s is not supported', modeltype));
    end
    ng = length(grp_map);
    int_tbl       = interact_tbl (nw, ng, max_interact );
    [gn, gs, gss] = raw_sums(data, g, ng, int_tbl);

    stats_tbl = int_tbl(2:size(int_tbl,1),:)>0;
    nstats= size(stats_tbl,1);
    stats= zeros( nstats+1, 5); # SS, DF, MS, F, p
    for i= 1:nstats
        [SS, DF, MS]= factor_sums( gn, gs, gss, stats_tbl(i,:), ng, nw);
        stats(i,1:3)= [SS, DF, MS];
    end

    # The Mean squared error is the data - avg for each possible measurement
    # This calculation doesn't work unless there is replication for all grps
#   SSE= sum( gss(sel) ) - sum( gs(sel).^2 ./ gn(sel) );  
    SST= gss(1) - gs(1)^2/gn(1);
    SSE= SST - sum(stats(:,1));
    sel = select_pat( ones(1,nw), ng, nw); %incorrect for modeltypes != full
    DFE= sum( (gn(sel)-1).*(gn(sel)>0) );
    MSE= SSE/DFE;
    stats(nstats+1,1:3)= [SSE, DFE, MSE];

    for i= 1:nstats
        MS= stats(i,3);
        DF= stats(i,2);
        F= MS/MSE;
        pval = 1 - fcdf (F, DF, DFE);
        stats(i,4:5)= [F, pval];
    end

    if nargout==0;
        printout( stats, stats_tbl );
    else
        PVAL= stats(1:nstats,5);
        FSTAT=stats(1:nstats,4);
        DF_B= stats(1:nstats,2);
        DF_E= DFE;
    end
endfunction


# relabel groups to a mapping from 1 to ng
# Input
#   grps    input grouping
# Output
#   g       relabelled grouping
#   grp_map map from output to input grouping
function [g,grp_map] = relabel_groups(grps)
    grp_vec= vec(grps);
    s= sort (grp_vec);
    uniq = 1+[0;find(diff(s))];
    # mapping from new grps to old groups
    grp_map = s(uniq);
    # create new group g
    ngroups= length(uniq);
    g= zeros(size(grp_vec));
    for i = 1:ngroups
        g( find( grp_vec== grp_map(i) ) ) = i;
    end
    g= reshape(g, size(grps));
endfunction

# Create interaction table
#
# Input: 
#    nw            number of "ways"
#    ng            number of ANOVA groups
#    max_interact  maximum number of interactions to consider
#                  default is nw
function int_tbl =interact_tbl(nw, ng, max_interact)
    combin= 2^nw;
    inter_tbl= zeros( combin, nw);
    idx= (0:combin-1)';
    for i=1:nw;
       inter_tbl(:,i) = ( rem(idx,2^i) >= 2^(i-1) ); 
    end

    # find elements with more than max_interact 1's
    idx = ( sum(inter_tbl',1) > max_interact );
    inter_tbl(idx,:) =[];
    combin= size(inter_tbl,1); # update value

    #scale inter_tbl 
    # use ng+1 to map combinations of groups to integers
    # this would be lots easier with a hash data structure
    int_tbl = inter_tbl .* (ones(combin,1) * (ng+1).^(0:nw-1) );
endfunction 

# Calculate sums for each combination
#
# Input: 
#    g             relabelled grouping matrix
#    ng            number of ANOVA groups
#    max_interact
#
# Output (virtual (ng+1)x(nw) matrices):
#    gn            number of data sums in each group
#    gs            sum of data in each group
#    gss           sumsqr of data in each group
function    [gn, gs, gss] = raw_sums(data, g, ng, int_tbl);
    nw=    size(g,2);
    ndata= size(g,1);
    gn= gs= gss=  zeros((ng+1)^nw, 1);
    for i=1:ndata
        # need offset by one for indexing
        datapt= data(i);
        idx = 1+ int_tbl*g(i,:)';
        gn(idx)  +=1;
        gs(idx)  +=datapt;
        gss(idx) +=datapt^2;
    end
endfunction

# Calcualte the various factor sums
# Input:  
#    gn            number of data sums in each group
#    gs            sum of data in each group
#    gss           sumsqr of data in each group
#    select        binary vector of factor for this "way"?
#    ng            number of ANOVA groups
#    nw            number of ways

function [SS,DF]= raw_factor_sums( gn, gs, gss, select, ng, nw);
   sel= select_pat( select, ng, nw);
   ss_raw=   gs(sel).^2 ./ gn(sel);
   SS= sum( ss_raw( ~isnan(ss_raw) ));
   if length(find(select>0))==1
       DF= sum(gn(sel)>0)-1;
   else
       DF= 1; #this isn't the real DF, but needed to multiply
   end
endfunction

function [SS, DF, MS]= factor_sums( gn, gs, gss, select, ng, nw);
   SS=0;
   DF=1;

   ff = find(select);
   lff= length(ff);
   # zero terms added, one term subtracted, two added, etc
   for i= 0:2^lff-1
       remove= find( rem( floor( i * 2.^(-lff+1:0) ), 2) );
       sel1= select;
       if ~isempty(remove)
           sel1( ff( remove ) )=0;
       end
       [raw_sum,raw_df]= raw_factor_sums(gn,gs,gss,sel1,ng,nw);
       
       add_sub= (-1)^length(remove);
       SS+= add_sub*raw_sum;
       DF*= raw_df;
   end

   MS=  SS/DF;
endfunction

# Calcualte the various factor sums
# Input:  
#    select        binary vector of factor for this "way"?
#    ng            number of ANOVA groups
#    nw            number of ways
function sel= select_pat( select, ng, nw);
   # if select(i) is zero, remove nonzeros
   # if select(i) is zero, remove zero terms for i
   field=[];

   if length(select) ~= nw;
       error("length of select must be = nw");
   end
   ng1= ng+1;

   if isempty(field)
       # expand 0:(ng+1)^nw in base ng+1
       field= (0:(ng1)^nw-1)'* ng1.^(-nw+1:0);
       field= rem( floor( field), ng1);
       # select zero or non-zero elements
       field= field>0;
   end
   sel= find( all( field == ones(ng1^nw,1)*select(:)', 2) );
endfunction


function printout( stats, stats_tbl );
  nw= size( stats_tbl,2);
  [jnk,order]= sort( sum(stats_tbl,2) );

  printf('\n%d-way ANOVA Table (Factors A%s):\n\n', nw, ...
         sprintf(',%c',toascii('A')+(1:nw-1)) );
  printf('Source of Variation        Sum Sqr   df      MeanSS    Fval   p-value\n');
  printf('*********************************************************************\n');
  printf('Error                  %10.2f  %4d %10.2f\n', stats( size(stats,1),1:3));
  
  for i= order(:)'
      str=  sprintf(' %c x',toascii('A')+find(stats_tbl(i,:)>0)-1 );
      str= str(1:length(str)-2); # remove x
      printf('Factor %15s %10.2f  %4d %10.2f  %7.3f  %7.6f\n', ...
         str, stats(i,:) );
  end
  printf('\n');
endfunction

#{
# Test Data from http://maths.sci.shu.ac.uk/distance/stats/14.shtml
data=[7  9  9  8 12 10 ...
      9  8 10 11 13 13 ...
      9 10 10 12 10 12]';
grp = [1,1; 1,1; 1,2; 1,2; 1,3; 1,3;
       2,1; 2,1; 2,2; 2,2; 2,3; 2,3;
       3,1; 3,1; 3,2; 3,2; 3,3; 3,3];
data=[7  9  9  8 12 10  9  8 ...
      9  8 10 11 13 13 10 11 ...
      9 10 10 12 10 12 10 12]';
grp = [1,4; 1,4; 1,5; 1,5; 1,6; 1,6; 1,7; 1,7;
       2,4; 2,4; 2,5; 2,5; 2,6; 2,6; 2,7; 2,7;
       3,4; 3,4; 3,5; 3,5; 3,6; 3,6; 3,7; 3,7];
# Test Data from http://maths.sci.shu.ac.uk/distance/stats/9.shtml
data=[9.5 11.1 11.9 12.8 ...
     10.9 10.0 11.0 11.9 ...
     11.2 10.4 10.8 13.4]';
grp= [1:4,1:4,1:4]';
# Test Data from http://maths.sci.shu.ac.uk/distance/stats/13.shtml
data=[7.56  9.68 11.65  ...
      9.98  9.69 10.69  ...
      7.23 10.49 11.77  ...
      8.22  8.55 10.72  ...
      7.59  8.30 12.36]'; 
grp = [1,1;1,2;1,3;
       2,1;2,2;2,3;
       3,1;3,2;3,3;
       4,1;4,2;4,3;
       5,1;5,2;5,3];
# Test Data from www.mathworks.com/
#                access/helpdesk/help/toolbox/stats/linear10.shtml
data=[23  27  43  41  15  17   3   9  20  63  55  90];
grp= [ 1    1   1   1   2   2   2   2   3   3   3   3;
       1    1   2   2   1   1   2   2   1   1   2   2]';
#}