/usr/share/octave/packages/statistics-1.3.0/binostat.m is in octave-statistics 1.3.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | ## Copyright (C) 2006, 2007 Arno Onken <asnelt@asnelt.org>
## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{m}, @var{v}] =} binostat (@var{n}, @var{p})
## Compute mean and variance of the binomial distribution.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{n} is the first parameter of the binomial distribution. The elements
## of @var{n} must be natural numbers
##
## @item
## @var{p} is the second parameter of the binomial distribution. The
## elements of @var{p} must be probabilities
## @end itemize
## @var{n} and @var{p} must be of common size or one of them must be scalar
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{m} is the mean of the binomial distribution
##
## @item
## @var{v} is the variance of the binomial distribution
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## n = 1:6;
## p = 0:0.2:1;
## [m, v] = binostat (n, p)
## @end group
##
## @group
## [m, v] = binostat (n, 0.5)
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics
## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC,
## 2001.
##
## @item
## Athanasios Papoulis. @cite{Probability, Random Variables, and Stochastic
## Processes}. McGraw-Hill, New York, second edition, 1984.
## @end enumerate
## @end deftypefn
## Author: Arno Onken <asnelt@asnelt.org>
## Description: Moments of the binomial distribution
function [m, v] = binostat (n, p)
if (nargin != 2)
print_usage ();
elseif (! isscalar (n) && ! isscalar (p) && ! size_equal (n, p))
error ("binostat: N and P must be of common size or scalar");
endif
k = find (! (n > 0 & fix (n) == n & p >= 0 & p <= 1));
# Calculate moments
m = n .* p;
m(k) = NaN;
if (nargout > 1)
v = m .* (1 - p);
v(k) = NaN;
endif
endfunction
%!test
%! n = 1:6;
%! p = 0:0.2:1;
%! [m, v] = binostat (n, p);
%! expected_m = [0.00, 0.40, 1.20, 2.40, 4.00, 6.00];
%! expected_v = [0.00, 0.32, 0.72, 0.96, 0.80, 0.00];
%! assert (m, expected_m, 0.001);
%! assert (v, expected_v, 0.001);
%!test
%! n = 1:6;
%! [m, v] = binostat (n, 0.5);
%! expected_m = [0.50, 1.00, 1.50, 2.00, 2.50, 3.00];
%! expected_v = [0.25, 0.50, 0.75, 1.00, 1.25, 1.50];
%! assert (m, expected_m, 0.001);
%! assert (v, expected_v, 0.001);
%!test
%! n = [-Inf -3 5 0.5 3 NaN 100, Inf];
%! [m, v] = binostat (n, 0.5);
%! assert (isnan (m), [true true false true false true false false])
%! assert (isnan (v), [true true false true false true false false])
%! assert (m(end), Inf);
%! assert (v(end), Inf);
%!assert (nthargout (1:2, @binostat, 5, []), {[], []})
%!assert (nthargout (1:2, @binostat, [], 5), {[], []})
%!assert (nthargout (1:2, @binostat, "", 5), {[], []})
%!assert (nthargout (1:2, @binostat, true, 5), {NaN, NaN})
%!assert (nthargout (1:2, @binostat, 5, true), {5, 0})
%!assert (size (binostat (randi (100, 10, 5, 4), rand (10, 5, 4))), [10 5 4])
%!assert (size (binostat (randi (100, 10, 5, 4), 7)), [10 5 4])
|