/usr/share/octave/packages/statistics-1.3.0/boxplot.m is in octave-statistics 1.3.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | ## Copyright (C) 2002 Alberto Terruzzi <t-albert@libero.it>
## Copyright (C) 2006 Alberto Pose <apose@alu.itba.edu.ar>
## Copyright (C) 2011 Pascal Dupuis <Pascal.Dupuis@worldonline.be>
## Copyright (C) 2012 Juan Pablo Carbajal <carbajal@ifi.uzh.ch>
## Copyright (C) 2016 Pascal Dupuis <cdemills@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{s} =} boxplot (@var{data}, @var{notched}, @
## @var{symbol}, @var{vertical}, @var{maxwhisker}, @dots{})
## @deftypefnx {Function File} {@var{s} =} boxplot (@var{data}, @var{group})
## @deftypefnx {Function File} {[@dots{} @var{h}]=} boxplot (@dots{})
##
## Produce a box plot.
##
## The box plot is a graphical display that simultaneously describes several
## important features of a data set, such as center, spread, departure from
## symmetry, and identification of observations that lie unusually far from
## the bulk of the data.
##
## @var{data} is a matrix with one column for each data set, or data is a cell
## vector with one cell for each data set.
##
## @var{notched} = 1 produces a notched-box plot. Notches represent a robust
## estimate of the uncertainty about the median.
##
## @var{notched} = 0 (default) produces a rectangular box plot.
##
## @var{notched} in (0,1) produces a notch of the specified depth.
## notched values outside (0,1) are amusing if not exactly practical.
##
## @var{symbol} sets the symbol for the outlier values, default symbol for
## points that lie outside 3 times the interquartile range is 'o',
## default symbol for points between 1.5 and 3 times the interquartile
## range is '+'.
##
## @var{symbol} = '.' points between 1.5 and 3 times the IQR is marked with
## '.' and points outside 3 times IQR with 'o'.
##
## @var{symbol} = ['x','*'] points between 1.5 and 3 times the IQR is marked with
## 'x' and points outside 3 times IQR with '*'.
##
## @var{vertical} = 0 makes the boxes horizontal, by default @var{vertical} = 1.
##
## @var{maxwhisker} defines the length of the whiskers as a function of the IQR
## (default = 1.5). If @var{maxwhisker} = 0 then @code{boxplot} displays all data
## values outside the box using the plotting symbol for points that lie
## outside 3 times the IQR.
##
## Supplemental arguments are concatenated and passed to plot.
##
## The returned matrix @var{s} has one column for each data set as follows:
##
## @multitable @columnfractions .1 .8
## @item 1 @tab Minimum
## @item 2 @tab 1st quartile
## @item 3 @tab 2nd quartile (median)
## @item 4 @tab 3rd quartile
## @item 5 @tab Maximum
## @item 6 @tab Lower confidence limit for median
## @item 7 @tab Upper confidence limit for median
## @end multitable
##
## The returned structure @var{h} has handles to the plot elements, allowing
## customization of the visualization using set/get functions.
##
## Example
##
## @example
## title ("Grade 3 heights");
## axis ([0,3]);
## set(gca (), "xtick", [1 2], "xticklabel", @{"girls", "boys"@});
## boxplot (@{randn(10,1)*5+140, randn(13,1)*8+135@});
## @end example
##
## @end deftypefn
function [s hs] = boxplot (data, varargin)
## assign parameter defaults
if (nargin < 1)
print_usage;
endif
%# default values
maxwhisker = 1.5;
vertical = 1;
symbol = ['+', 'o'];
notched = 0;
plot_opts = {};
groups = [];
%# Optional arguments analysis
numarg = nargin - 1;
option_args = ['Notch'; 'Symbol'; 'Vertical'; 'Maxwhisker'];
indopt = 1;
while (numarg)
dummy = varargin{indopt++};
if (!ischar (dummy))
%# MatLAB allows passing the second argument as a grouping vector
if (length (dummy) > 1)
if (2 ~= indopt)
error ('Boxplot.m: grouping vector may only be passed as second arg');
endif
groups = dummy;
else
%# old way: positional argument
switch indopt
case 2
notched = dummy;
case 4
vertical = dummy;
case 5
maxwhisker = dummy;
otherwise
error("No positional argument allowed at position %d", --indopt);
endswitch
endif
numarg--; continue;
else
if (3 == indopt && length (dummy) <= 2)
symbol = dummy; numarg--; continue;
else
tt = strmatch(dummy, option_args);
switch (tt)
case 1
notched = varargin{indopt};
case 2
symbol = varargin{indopt};
case 3
vertical = varargin{indopt};
case 4
maxwhisker = varargin{indopt};
otherwise
%# take two args and append them to plot_opts
plot_opts(1, end+1:end+2) = {dummy, varargin{indopt}};
endswitch
endif
indopt++; numarg -= 2;
endif
endwhile
if (1 == length (symbol)) symbol(2) = symbol(1); endif
if (1 == notched) notched = 0.25; endif
a = 1-notched;
## figure out how many data sets we have
if (isempty (groups))
if (iscell (data))
nc = length (data);
else
if (isvector (data)) data = data(:); endif
nc = columns (data);
endif
groups = (1:nc);
else
if (~isvector (data))
error ('Boxplot.m: with the formalism (data, group), both must be vectors');
end
nc = unique (groups); dummy = cell (1, length (nc));
for indopt = (1:length (nc))
dummy(indopt) = data(groups == nc(indopt));
end
data = dummy; groups = nc(:).'; nc = length (nc);
end
## compute statistics
## s will contain
## 1,5 min and max
## 2,3,4 1st, 2nd and 3rd quartile
## 6,7 lower and upper confidence intervals for median
s = zeros (7, nc);
box = zeros (1, nc);
whisker_x = ones (2,1)*[groups, groups];
whisker_y = zeros (2, 2*nc);
outliers_x = [];
outliers_y = [];
outliers2_x = [];
outliers2_y = [];
for indi = (1:nc)
## Get the next data set from the array or cell array
if (iscell (data))
col = data{indi}(:);
else
col = data(:, indi);
endif
## Skip missing data
col(isnan (col) | isna (col)) = [];
## Remember the data length
nd = length (col);
box(indi) = nd;
if (nd > 1)
## min,max and quartiles
s(1:5, indi) = statistics (col)(1:5);
## confidence interval for the median
est = 1.57*(s(4, indi)-s(2, indi))/sqrt (nd);
s(6, indi) = max ([s(3, indi)-est, s(2, indi)]);
s(7, indi) = min ([s(3, indi)+est, s(4, indi)]);
## whiskers out to the last point within the desired inter-quartile range
IQR = maxwhisker*(s(4, indi)-s(2, indi));
whisker_y(:, indi) = [min(col(col >= s(2, indi)-IQR)); s(2, indi)];
whisker_y(:,nc+indi) = [max(col(col <= s(4, indi)+IQR)); s(4, indi)];
## outliers beyond 1 and 2 inter-quartile ranges
outliers = col((col < s(2, indi)-IQR & col >= s(2, indi)-2*IQR) | (col > s(4, indi)+IQR & col <= s(4, indi)+2*IQR));
outliers2 = col(col < s(2, indi)-2*IQR | col > s(4, indi)+2*IQR);
outliers_x = [outliers_x; groups(indi)*ones(size(outliers))];
outliers_y = [outliers_y; outliers];
outliers2_x = [outliers2_x; groups(indi)*ones(size(outliers2))];
outliers2_y = [outliers2_y; outliers2];
elseif (1 == nd)
## all statistics collapse to the value of the point
s(:, indi) = col;
## single point data sets are plotted as outliers.
outliers_x = [outliers_x; groups(indi)];
outliers_y = [outliers_y; col];
else
## no statistics if no points
s(:, indi) = NaN;
end
end
## Note which boxes don't have enough stats
chop = find (box <= 1);
## Draw a box around the quartiles, with width proportional to the number of
## items in the box. Draw notches if desired.
box *= 0.4/max (box);
quartile_x = ones (11,1)*groups + [-a;-1;-1;1;1;a;1;1;-1;-1;-a]*box;
quartile_y = s([3,7,4,4,7,3,6,2,2,6,3],:);
## Draw a line through the median
median_x = ones (2,1)*groups + [-a;+a]*box;
median_y = s([3,3],:);
## Chop all boxes which don't have enough stats
quartile_x(:, chop) = [];
quartile_y(:, chop) = [];
whisker_x(:,[chop, chop+nc]) = [];
whisker_y(:,[chop, chop+nc]) = [];
median_x(:, chop) = [];
median_y(:, chop) = [];
## Add caps to the remaining whiskers
cap_x = whisker_x;
cap_x(1, :) -= 0.05;
cap_x(2, :) += 0.05;
cap_y = whisker_y([1, 1], :);
#quartile_x,quartile_y
#whisker_x,whisker_y
#median_x,median_y
#cap_x,cap_y
## Do the plot
if (vertical)
if (isempty (plot_opts))
h = plot (quartile_x, quartile_y, "b;;",
whisker_x, whisker_y, "b;;",
cap_x, cap_y, "b;;",
median_x, median_y, "r;;",
outliers_x, outliers_y, [symbol(1), "r;;"],
outliers2_x, outliers2_y, [symbol(2), "r;;"]);
else
h = plot (quartile_x, quartile_y, "b;;",
whisker_x, whisker_y, "b;;",
cap_x, cap_y, "b;;",
median_x, median_y, "r;;",
outliers_x, outliers_y, [symbol(1), "r;;"],
outliers2_x, outliers2_y, [symbol(2), "r;;"], plot_opts{:});
endif
else
if (isempty (plot_opts))
h = plot (quartile_y, quartile_x, "b;;",
whisker_y, whisker_x, "b;;",
cap_y, cap_x, "b;;",
median_y, median_x, "r;;",
outliers_y, outliers_x, [symbol(1), "r;;"],
outliers2_y, outliers2_x, [symbol(2), "r;;"]);
else
h = plot (quartile_y, quartile_x, "b;;",
whisker_y, whisker_x, "b;;",
cap_y, cap_x, "b;;",
median_y, median_x, "r;;",
outliers_y, outliers_x, [symbol(1), "r;;"],
outliers2_y, outliers2_x, [symbol(2), "r;;"], plot_opts{:});
endif
endif
% Distribute handles
nq = 1:size(quartile_x,2);
hs.box = h(nq);
nw = nq(end) + [1:2*size(whisker_x,2)];
hs.whisker = h(nw);
nm = nw(end)+ [1:size(median_x,2)];
hs.median = h(nm);
no = nm;
if ~isempty (outliers_y)
no = nm(end) + [1:size(outliers_y,2)];
hs.outliers = h(no);
end
if ~isempty (outliers2_y)
no2 = no(end) + [1:size(outliers2_y,2)];
hs.outliers2 = h(no2);
end
endfunction
%!demo
%! axis ([0,3]);
%! boxplot ({randn(10,1)*5+140, randn(13,1)*8+135});
%! set(gca (), "xtick", [1 2], "xticklabel", {"girls", "boys"})
%! title ("Grade 3 heights");
|