This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/copulacdf.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
## Copyright (C) 2008 Arno Onken <asnelt@asnelt.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{p} =} copulacdf (@var{family}, @var{x}, @var{theta})
## @deftypefnx {Function File} {} copulacdf ('t', @var{x}, @var{theta}, @var{nu})
## Compute the cumulative distribution function of a copula family.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{family} is the copula family name. Currently, @var{family} can
## be @code{'Gaussian'} for the Gaussian family, @code{'t'} for the
## Student's t family, @code{'Clayton'} for the Clayton family,
## @code{'Gumbel'} for the Gumbel-Hougaard family, @code{'Frank'} for
## the Frank family, @code{'AMH'} for the Ali-Mikhail-Haq family, or
## @code{'FGM'} for the Farlie-Gumbel-Morgenstern family.
##
## @item
## @var{x} is the support where each row corresponds to an observation.
##
## @item
## @var{theta} is the parameter of the copula. For the Gaussian and
## Student's t copula, @var{theta} must be a correlation matrix. For
## bivariate copulas @var{theta} can also be a correlation coefficient.
## For the Clayton family, the Gumbel-Hougaard family, the Frank family,
## and the Ali-Mikhail-Haq family, @var{theta} must be a vector with the
## same number of elements as observations in @var{x} or be scalar. For
## the Farlie-Gumbel-Morgenstern family, @var{theta} must be a matrix of
## coefficients for the Farlie-Gumbel-Morgenstern polynomial where each
## row corresponds to one set of coefficients for an observation in
## @var{x}. A single row is expanded. The coefficients are in binary
## order.
##
## @item
## @var{nu} is the degrees of freedom for the Student's t family.
## @var{nu} must be a vector with the same number of elements as
## observations in @var{x} or be scalar.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{p} is the cumulative distribution of the copula at each row of
## @var{x} and corresponding parameter @var{theta}.
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## x = [0.2:0.2:0.6; 0.2:0.2:0.6];
## theta = [1; 2];
## p = copulacdf ("Clayton", x, theta)
## @end group
##
## @group
## x = [0.2:0.2:0.6; 0.2:0.1:0.4];
## theta = [0.2, 0.1, 0.1, 0.05];
## p = copulacdf ("FGM", x, theta)
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Roger B. Nelsen. @cite{An Introduction to Copulas}. Springer,
## New York, second edition, 2006.
## @end enumerate
## @end deftypefn

## Author: Arno Onken <asnelt@asnelt.org>
## Description: CDF of a copula family

function p = copulacdf (family, x, theta, nu)

  # Check arguments
  if (nargin != 3 && (nargin != 4 || ! strcmpi (family, "t")))
    print_usage ();
  endif

  if (! ischar (family))
    error ("copulacdf: family must be one of 'Gaussian', 't', 'Clayton', 'Gumbel', 'Frank', 'AMH', and 'FGM'");
  endif

  if (! isempty (x) && ! ismatrix (x))
    error ("copulacdf: x must be a numeric matrix");
  endif

  [n, d] = size (x);

  lower_family = lower (family);

  # Check family and copula parameters
  switch (lower_family)

    case {"gaussian", "t"}
      # Family with a covariance matrix
      if (d == 2 && isscalar (theta))
        # Expand a scalar to a correlation matrix
        theta = [1, theta; theta, 1];
      endif
      if (any (size (theta) != [d, d]) || any (diag (theta) != 1) || any (any (theta != theta')) || min (eig (theta)) <= 0)
        error ("copulacdf: theta must be a correlation matrix");
      endif
      if (nargin == 4)
        # Student's t family
        if (! isscalar (nu) && (! isvector (nu) || length (nu) != n))
          error ("copulacdf: nu must be a vector with the same number of rows as x or be scalar");
        endif
        nu = nu(:);
      endif

    case {"clayton", "gumbel", "frank", "amh"}
      # Archimedian one parameter family
      if (! isvector (theta) || (! isscalar (theta) && length (theta) != n))
        error ("copulacdf: theta must be a vector with the same number of rows as x or be scalar");
      endif
      theta = theta(:);
      if (n > 1 && isscalar (theta))
        theta = repmat (theta, n, 1);
      endif

    case {"fgm"}
      # Exponential number of parameters
      if (! ismatrix (theta) || size (theta, 2) != (2 .^ d - d - 1) || (size (theta, 1) != 1 && size (theta, 1) != n))
        error ("copulacdf: theta must be a row vector of length 2^d-d-1 or a matrix of size n x (2^d-d-1)");
      endif
      if (n > 1 && size (theta, 1) == 1)
        theta = repmat (theta, n, 1);
      endif

    otherwise
      error ("copulacdf: unknown copula family '%s'", family);

  endswitch

  if (n == 0)
    # Input is empty
    p = zeros (0, 1);
  else
    # Truncate input to unit hypercube
    x(x < 0) = 0;
    x(x > 1) = 1;

    # Compute the cumulative distribution function according to family
    switch (lower_family)

      case {"gaussian"}
        # The Gaussian family
        p = mvncdf (norminv (x), zeros (1, d), theta);
        # No parameter bounds check
        k = [];

      case {"t"}
        # The Student's t family
        p = mvtcdf (tinv (x, nu), theta, nu);
        # No parameter bounds check
        k = [];

      case {"clayton"}
        # The Clayton family
        p = exp (-log (max (sum (x .^ (repmat (-theta, 1, d)), 2) - d + 1, 0)) ./ theta);
        # Product copula at columns where theta == 0
        k = find (theta == 0);
        if (any (k))
          p(k) = prod (x(k, :), 2);
        endif
        # Check bounds
        if (d > 2)
          k = find (! (theta >= 0) | ! (theta < inf));
        else
          k = find (! (theta >= -1) | ! (theta < inf));
        endif

      case {"gumbel"}
        # The Gumbel-Hougaard family
        p = exp (-(sum ((-log (x)) .^ repmat (theta, 1, d), 2)) .^ (1 ./ theta));
        # Check bounds
        k = find (! (theta >= 1) | ! (theta < inf));

      case {"frank"}
        # The Frank family
        p = -log (1 + (prod (expm1 (repmat (-theta, 1, d) .* x), 2)) ./ (expm1 (-theta) .^ (d - 1))) ./ theta;
        # Product copula at columns where theta == 0
        k = find (theta == 0);
        if (any (k))
          p(k) = prod (x(k, :), 2);
        endif
        # Check bounds
        if (d > 2)
          k = find (! (theta > 0) | ! (theta < inf));
        else
          k = find (! (theta > -inf) | ! (theta < inf));
        endif

      case {"amh"}
        # The Ali-Mikhail-Haq family
        p = (theta - 1) ./ (theta - prod ((1 + repmat (theta, 1, d) .* (x - 1)) ./ x, 2));
        # Check bounds
        if (d > 2)
          k = find (! (theta >= 0) | ! (theta < 1));
        else
          k = find (! (theta >= -1) | ! (theta < 1));
        endif

      case {"fgm"}
        # The Farlie-Gumbel-Morgenstern family
        # All binary combinations
        bcomb = logical (floor (mod (((0:(2 .^ d - 1))' * 2 .^ ((1 - d):0)), 2)));
        ecomb = ones (size (bcomb));
        ecomb(bcomb) = -1;
        # Summation over all combinations of order >= 2
        bcomb = bcomb(sum (bcomb, 2) >= 2, end:-1:1);
        # Linear constraints matrix
        ac = zeros (size (ecomb, 1), size (bcomb, 1));
        # Matrix to compute p
        ap = zeros (size (x, 1), size (bcomb, 1));
        for i = 1:size (bcomb, 1)
          ac(:, i) = -prod (ecomb(:, bcomb(i, :)), 2);
          ap(:, i) = prod (1 - x(:, bcomb(i, :)), 2);
        endfor
        p = prod (x, 2) .* (1 + sum (ap .* theta, 2));
        # Check linear constraints
        k = false (n, 1);
        for i = 1:n
          k(i) = any (ac * theta(i, :)' > 1);
        endfor

    endswitch

    # Out of bounds parameters
    if (any (k))
      p(k) = NaN;
    endif

  endif

endfunction

%!test
%! x = [0.2:0.2:0.6; 0.2:0.2:0.6];
%! theta = [1; 2];
%! p = copulacdf ("Clayton", x, theta);
%! expected_p = [0.1395; 0.1767];
%! assert (p, expected_p, 0.001);

%!test
%! x = [0.2:0.2:0.6; 0.2:0.2:0.6];
%! p = copulacdf ("Gumbel", x, 2);
%! expected_p = [0.1464; 0.1464];
%! assert (p, expected_p, 0.001);

%!test
%! x = [0.2:0.2:0.6; 0.2:0.2:0.6];
%! theta = [1; 2];
%! p = copulacdf ("Frank", x, theta);
%! expected_p = [0.0699; 0.0930];
%! assert (p, expected_p, 0.001);

%!test
%! x = [0.2:0.2:0.6; 0.2:0.2:0.6];
%! theta = [0.3; 0.7];
%! p = copulacdf ("AMH", x, theta);
%! expected_p = [0.0629; 0.0959];
%! assert (p, expected_p, 0.001);

%!test
%! x = [0.2:0.2:0.6; 0.2:0.1:0.4];
%! theta = [0.2, 0.1, 0.1, 0.05];
%! p = copulacdf ("FGM", x, theta);
%! expected_p = [0.0558; 0.0293];
%! assert (p, expected_p, 0.001);