/usr/share/octave/packages/statistics-1.3.0/copulapdf.m is in octave-statistics 1.3.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | ## Copyright (C) 2008 Arno Onken <asnelt@asnelt.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{p} =} copulapdf (@var{family}, @var{x}, @var{theta})
## Compute the probability density function of a copula family.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{family} is the copula family name. Currently, @var{family} can
## be @code{'Clayton'} for the Clayton family, @code{'Gumbel'} for the
## Gumbel-Hougaard family, @code{'Frank'} for the Frank family, or
## @code{'AMH'} for the Ali-Mikhail-Haq family.
##
## @item
## @var{x} is the support where each row corresponds to an observation.
##
## @item
## @var{theta} is the parameter of the copula. The elements of
## @var{theta} must be greater than or equal to @code{-1} for the
## Clayton family, greater than or equal to @code{1} for the
## Gumbel-Hougaard family, arbitrary for the Frank family, and greater
## than or equal to @code{-1} and lower than @code{1} for the
## Ali-Mikhail-Haq family. Moreover, @var{theta} must be non-negative
## for dimensions greater than @code{2}. @var{theta} must be a column
## vector with the same number of rows as @var{x} or be scalar.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{p} is the probability density of the copula at each row of
## @var{x} and corresponding parameter @var{theta}.
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## x = [0.2:0.2:0.6; 0.2:0.2:0.6];
## theta = [1; 2];
## p = copulapdf ("Clayton", x, theta)
## @end group
##
## @group
## p = copulapdf ("Gumbel", x, 2)
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Roger B. Nelsen. @cite{An Introduction to Copulas}. Springer,
## New York, second edition, 2006.
## @end enumerate
## @end deftypefn
## Author: Arno Onken <asnelt@asnelt.org>
## Description: PDF of a copula family
function p = copulapdf (family, x, theta)
# Check arguments
if (nargin != 3)
print_usage ();
endif
if (! ischar (family))
error ("copulapdf: family must be one of 'Clayton', 'Gumbel', 'Frank', and 'AMH'");
endif
if (! isempty (x) && ! ismatrix (x))
error ("copulapdf: x must be a numeric matrix");
endif
[n, d] = size (x);
if (! isvector (theta) || (! isscalar (theta) && size (theta, 1) != n))
error ("copulapdf: theta must be a column vector with the same number of rows as x or be scalar");
endif
if (n == 0)
# Input is empty
p = zeros (0, 1);
else
if (n > 1 && isscalar (theta))
theta = repmat (theta, n, 1);
endif
# Truncate input to unit hypercube
x(x < 0) = 0;
x(x > 1) = 1;
# Compute the cumulative distribution function according to family
lowerarg = lower (family);
if (strcmp (lowerarg, "clayton"))
# The Clayton family
log_cdf = -log (max (sum (x .^ (repmat (-theta, 1, d)), 2) - d + 1, 0)) ./ theta;
p = prod (repmat (theta, 1, d) .* repmat (0:(d - 1), n, 1) + 1, 2) .* exp ((1 + theta .* d) .* log_cdf - (theta + 1) .* sum (log (x), 2));
# Product copula at columns where theta == 0
k = find (theta == 0);
if (any (k))
p(k) = 1;
endif
# Check theta
if (d > 2)
k = find (! (theta >= 0) | ! (theta < inf));
else
k = find (! (theta >= -1) | ! (theta < inf));
endif
elseif (strcmp (lowerarg, "gumbel"))
# The Gumbel-Hougaard family
g = sum ((-log (x)) .^ repmat (theta, 1, d), 2);
c = exp (-g .^ (1 ./ theta));
p = ((prod (-log (x), 2)) .^ (theta - 1)) ./ prod (x, 2) .* c .* (g .^ (2 ./ theta - 2) + (theta - 1) .* g .^ (1 ./ theta - 2));
# Check theta
k = find (! (theta >= 1) | ! (theta < inf));
elseif (strcmp (lowerarg, "frank"))
# The Frank family
if (d != 2)
error ("copulapdf: Frank copula PDF implemented as bivariate only");
endif
p = (theta .* exp (theta .* (1 + sum (x, 2))) .* (exp (theta) - 1))./ (exp (theta) - exp (theta + theta .* x(:, 1)) + exp (theta .* sum (x, 2)) - exp (theta + theta .* x(:, 2))) .^ 2;
# Product copula at columns where theta == 0
k = find (theta == 0);
if (any (k))
p(k) = 1;
endif
# Check theta
k = find (! (theta > -inf) | ! (theta < inf));
elseif (strcmp (lowerarg, "amh"))
# The Ali-Mikhail-Haq family
if (d != 2)
error ("copulapdf: Ali-Mikhail-Haq copula PDF implemented as bivariate only");
endif
z = theta .* prod (x - 1, 2) - 1;
p = (theta .* (1 - sum (x, 2) - prod (x, 2) - z) - 1) ./ (z .^ 3);
# Check theta
k = find (! (theta >= -1) | ! (theta < 1));
else
error ("copulapdf: unknown copula family '%s'", family);
endif
if (any (k))
p(k) = NaN;
endif
endif
endfunction
%!test
%! x = [0.2:0.2:0.6; 0.2:0.2:0.6];
%! theta = [1; 2];
%! p = copulapdf ("Clayton", x, theta);
%! expected_p = [0.9872; 0.7295];
%! assert (p, expected_p, 0.001);
%!test
%! x = [0.2:0.2:0.6; 0.2:0.2:0.6];
%! p = copulapdf ("Gumbel", x, 2);
%! expected_p = [0.9468; 0.9468];
%! assert (p, expected_p, 0.001);
%!test
%! x = [0.2, 0.6; 0.2, 0.6];
%! theta = [1; 2];
%! p = copulapdf ("Frank", x, theta);
%! expected_p = [0.9378; 0.8678];
%! assert (p, expected_p, 0.001);
%!test
%! x = [0.2, 0.6; 0.2, 0.6];
%! theta = [0.3; 0.7];
%! p = copulapdf ("AMH", x, theta);
%! expected_p = [0.9540; 0.8577];
%! assert (p, expected_p, 0.001);
|