/usr/share/octave/packages/statistics-1.3.0/hist3.m is in octave-statistics 1.3.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | ## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see
## <http:##www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} hist3 (@var{X})
## @deftypefnx {Function File} {} hist3 (@var{X}, @var{nbins})
## @deftypefnx {Function File} {} hist3 (@var{X}, @qcode{"Nbins"}, @var{nbins})
## @deftypefnx {Function File} {} hist3 (@var{X}, @var{centers})
## @deftypefnx {Function File} {} hist3 (@var{X}, @qcode{"Ctrs"}, @var{centers})
## @deftypefnx {Function File} {} hist3 (@var{X}, @qcode{"Edges"}, @var{edges})
## @deftypefnx {Function File} {[@var{N}, @var{C}] =} hist3 (@dots{})
## @deftypefnx {Function File} {} hist3 (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {Function File} {} hist3 (@var{hax}, @dots{})
## Produce bivariate (2D) histogram counts or plots.
##
## The elements to produce the histogram are taken from the Nx2 matrix
## @var{X}. Any row with NaN values are ignored. The actual bins can
## be configured in 3 different: number, centers, or edges of the bins:
##
## @table @asis
## @item Number of bins (default)
## Produces equally spaced bins between the minimum and maximum values
## of @var{X}. Defined as a 2 element vector, @var{nbins}, one for each
## dimension. Defaults to @code{[10 10]}.
##
## @item Center of bins
## Defined as a cell array of 2 monotonically increasing vectors,
## @var{centers}. The width of each bin is determined from the adjacent
## values in the vector with the initial and final bin, extending to Infinity.
##
## @item Edge of bins
## Defined as a cell array of 2 monotonically increasing vectors,
## @var{edges}. @code{@var{N}(i,j)} contains the number of elements
## in @var{X} for which:
##
## @itemize @w{}
## @item
## @var{edges}@{1@}(i) <= @var{X}(:,1) < @var{edges}@{1@}(i+1)
## @item
## @var{edges}@{2@}(j) <= @var{X}(:,2) < @var{edges}@{2@}(j+1)
## @end itemize
##
## The consequence of this definition is that values outside the initial
## and final edge values are ignored, and that the final bin only contains
## the number of elements exactly equal to the final edge.
##
## @end table
##
## The return values, @var{N} and @var{C}, are the bin counts and centers
## respectively. These are specially useful to produce intensity maps:
##
## @example
## [counts, centers] = hist3 (data);
## imagesc (centers@{1@}, centers@{2@}, data)
## @end example
##
## If there is no output argument, or if the axes graphics handle
## @var{hax} is defined, the function will plot a 3 dimensional bar
## graph. Any extra property/value pairs are passed directly to the
## underlying surface object.
##
## @seealso{hist, histc, lookup, mesh}
## @end deftypefn
function [N, C] = hist3 (X, varargin)
if (nargin < 1)
print_usage ();
endif
next_argin = 1;
should_draw = true;
if (isaxes (X))
hax = X;
X = varargin{next_argin++};
elseif (nargout == 0)
hax = gca ();
else
should_draw = false;
endif
if (! ismatrix (X) || columns (X) != 2)
error ("hist3: X must be a 2 columns matrix");
endif
X(any (isnan (X), 2)) = [];
method = "nbins";
val = [10 10];
if (numel (varargin) >= next_argin)
this_arg = varargin{next_argin++};
if (isnumeric (this_arg))
method = "nbins";
val = this_arg;
elseif (iscell (this_arg))
method = "ctrs";
val = this_arg;
elseif (numel (varargin) >= next_argin
&& any (strcmpi ({"nbins", "ctrs", "edges"}, this_arg)))
method = tolower (this_arg);
val = varargin{next_argin++};
else
next_argin--;
endif
endif
have_centers = false;
switch (tolower (method))
case "nbins"
[r_edges, c_edges] = edges_from_nbins (X, val);
case "ctrs"
have_centers = true;
centers = val;
[r_edges, c_edges] = edges_from_centers (val);
case "centers"
## This was supported until 1.2.4 when the Matlab compatible option
## 'Ctrs' was added.
persistent warned = false;
if (! warned)
warning ("hist3: option `centers' is deprecated. Use `ctrs'");
endif
have_centers = true;
centers = val;
[r_edges, c_edges] = edges_from_centers (val);
case "edges"
if (! iscell (val) || numel (val) != 2
|| ! all (cellfun (@isvector, val)))
error ("hist3: EDGES must be a cell array with 2 vectors");
endif
[r_edges] = vec (val{1}, 2);
[c_edges] = vec (val{2}, 2);
out_rows = any (X < [r_edges(1) c_edges(1)]
| X > [r_edges(end) c_edges(end)], 2);
X(out_rows,:) = [];
otherwise
## we should never get here...
error ("hist3: invalid binning method `%s'", method);
endswitch
r_idx = lookup (r_edges, X(:,1), "l");
c_idx = lookup (c_edges, X(:,2), "l");
counts_size = [numel(r_edges) numel(c_edges)];
counts = accumarray ([r_idx, c_idx], 1, counts_size);
if (should_draw)
counts = counts.';
z = zeros ((size (counts) +1) *2);
z(2:end-1,2:end-1) = kron (counts, ones (2, 2));
## Setting the values for the end of the histogram bin like this
## seems straight wrong but that's hwo Matlab plots look.
y = [kron(c_edges, ones (1, 2)) (c_edges(end)*2-c_edges(end-1))([1 1])];
x = [kron(r_edges, ones (1, 2)) (r_edges(end)*2-r_edges(end-1))([1 1])];
mesh (hax, x, y, z, "facecolor", [.75 .85 .95], varargin{next_argin:end});
else
N = counts;
if (isargout (2))
if (! have_centers)
C = {(r_edges + [diff(r_edges)([1:end end])]/ 2) ...
(c_edges + [diff(c_edges)([1:end end])]/ 2)};
else
C = centers(:)';
C{1} = vec (C{1}, 2);
C{2} = vec (C{2}, 2);
endif
endif
endif
endfunction
function [r_edges, c_edges] = edges_from_nbins (X, nbins)
if (! isnumeric (nbins) || numel (nbins) != 2)
error ("hist3: NBINS must be a 2 element vector");
endif
inits = min (X);
ends = max (X);
ends -= (ends - inits) ./ vec (nbins, 2);
r_edges = linspace (inits(1), ends(1), nbins(1));
c_edges = linspace (inits(2), ends(2), nbins(2));
endfunction
function [r_edges, c_edges] = edges_from_centers (ctrs)
if (! iscell (ctrs) || numel (ctrs) != 2 || ! all (cellfun (@isvector, ctrs)))
error ("hist3: CTRS must be a cell array with 2 vectors");
endif
r_edges = vec (ctrs{1}, 2);
c_edges = vec (ctrs{2}, 2);
r_edges(2:end) -= diff (r_edges) / 2;
c_edges(2:end) -= diff (c_edges) / 2;
endfunction
%!demo
%! X = [
%! 1 1
%! 1 1
%! 1 10
%! 1 10
%! 5 5
%! 5 5
%! 5 5
%! 5 5
%! 5 5
%! 7 3
%! 7 3
%! 7 3
%! 10 10
%! 10 10];
%! hist3 (X)
%!test
%! N_exp = [ 0 0 0 5 20
%! 0 0 10 15 0
%! 0 15 10 0 0
%! 20 5 0 0 0];
%!
%! n = 100;
%! x = [1:n]';
%! y = [n:-1:1]';
%! D = [x y];
%! N = hist3 (D, [4 5]);
%! assert (N, N_exp);
%!test
%! N_exp = [0 0 0 0 1
%! 0 0 0 0 1
%! 0 0 0 0 1
%! 1 1 1 1 93];
%!
%! n = 100;
%! x = [1:n]';
%! y = [n:-1:1]';
%! D = [x y];
%! C{1} = [1 1.7 3 4];
%! C{2} = [1:5];
%! N = hist3 (D, C);
%! assert (N, N_exp);
## bug 44987
%!test
%! D = [1 1; 3 1; 3 3; 3 1];
%! [c, nn] = hist3 (D, {0:4, 0:4});
%! exp_c = zeros (5);
%! exp_c([7 9 19]) = [1 2 1];
%! assert (c, exp_c);
%! assert (nn, {0:4, 0:4});
%!test
%! for i = 10
%! assert (size (hist3 (rand (9, 2), "Edges", {[0:.2:1]; [0:.2:1]})), [6 6])
%! endfor
%!test
%! edge_1 = linspace (0, 10, 10);
%! edge_2 = linspace (0, 50, 10);
%! [c, nn] = hist3 ([1:10; 1:5:50]', "Edges", {edge_1, edge_2});
%! exp_c = zeros (10, 10);
%! exp_c([1 12 13 24 35 46 57 68 79 90]) = 1;
%! assert (c, exp_c);
%!
%! assert (nn{1}, edge_1 + edge_1(2)/2, eps*10^4)
%! assert (nn{2}, edge_2 + edge_2(2)/2, eps*10^4)
%!shared X
%! X = [
%! 5 2
%! 5 3
%! 1 4
%! 5 3
%! 4 4
%! 1 2
%! 2 3
%! 3 3
%! 5 4
%! 5 3];
%!test
%! N = zeros (10);
%! N([1 10 53 56 60 91 98 100]) = [1 1 1 1 3 1 1 1];
%! C = {(1.2:0.4:4.8), (2.1:0.2:3.9)};
%! assert (nthargout ([1 2], @hist3, X), {N C}, eps*10^3)
%!test
%! N = zeros (5, 7);
%! N([1 5 17 18 20 31 34 35]) = [1 1 1 1 3 1 1 1];
%! C = {(1.4:0.8:4.6), ((2+(1/7)):(2/7):(4-(1/7)))};
%! assert (nthargout ([1 2], @hist3, X, [5 7]), {N C}, eps*10^3)
%! assert (nthargout ([1 2], @hist3, X, "Nbins", [5 7]), {N C}, eps*10^3)
%!test
%! N = [0 1 0; 0 1 0; 0 0 1; 0 0 0];
%! C = {(2:5), (2.5:1:4.5)};
%! assert (nthargout ([1 2], @hist3, X, "Edges", {(1.5:4.5), (2:4)}), {N C})
%!test
%! N = [0 0 1 0 1 0; 0 0 0 1 0 0; 0 0 1 4 2 0];
%! C = {(1.2:3.2), (0:5)};
%! assert (nthargout ([1 2], @hist3, X, "Ctrs", C), {N C})
%! assert (nthargout ([1 2], @hist3, X, C), {N C})
%!test
%! [~, C] = hist3 (rand (10, 2), "Edges", {[0 .05 .15 .35 .55 .95],
%! [-1 .05 .07 .2 .3 .5 .89 1.2]});
%! C_exp = {[ 0.025 0.1 0.25 0.45 0.75 1.15], ...
%! [-0.475 0.06 0.135 0.25 0.4 0.695 1.045 1.355]};
%! assert (C, C_exp, eps*10^2)
## Test how handling of out of borders is different whether we are
## defining Centers or Edges.
%!test
%! Xv = repmat ([1:10]', [1 2]);
%!
%! ## Test Centers
%! assert (hist3 (Xv, "Ctrs", {1:10, 1:10}), eye (10))
%!
%! N_exp = eye (6);
%! N_exp([1 end]) = 3;
%! assert (hist3 (Xv, "Ctrs", {3:8, 3:8}), N_exp)
%!
%! N_exp = zeros (8, 6);
%! N_exp([1 2 11 20 29 38 47 48]) = [2 1 1 1 1 1 1 2];
%! assert (hist3 (Xv, "Ctrs", {2:9, 3:8}), N_exp)
%!
%! ## Test Edges
%! assert (hist3 (Xv, "Edges", {1:10, 1:10}), eye (10))
%! assert (hist3 (Xv, "Edges", {3:8, 3:8}), eye (6))
%! assert (hist3 (Xv, "Edges", {2:9, 3:8}), [zeros(1, 6); eye(6); zeros(1, 6)])
%!
%! N_exp = zeros (14);
%! N_exp(3:12, 3:12) = eye (10);
%! assert (hist3 (Xv, "Edges", {-1:12, -1:12}), N_exp)
%!
%! ## Test for Nbins
%! assert (hist3 (Xv), eye (10))
%! assert (hist3 (Xv, [10 10]), eye (10))
%! assert (hist3 (Xv, "nbins", [10 10]), eye (10))
%! assert (hist3 (Xv, [5 5]), eye (5) * 2)
%!
%! N_exp = zeros (7, 5);
%! N_exp([1 9 10 18 26 27 35]) = [2 1 1 2 1 1 2];
%! assert (hist3 (Xv, [7 5]), N_exp)
|