This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/kmeans.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
## Copyright (C) 2011 Soren Hauberg <soren@hauberg.org>
## Copyright (C) 2012 Daniel Ward <dwa012@gmail.com>
## Copyright (C) 2015-2016 Lachlan Andrew <lachlanbis@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {} {[@var{idx}, @var{centers}, @var{sumd}, @var{dist}] =} kmeans (@var{data}, @var{k}, @var{param1}, @var{value1}, @dots{})
## Perform a @var{k}-means clustering of the @var{N}x@var{D} table @var{data}.
## If parameter @qcode{start} is specified, then @var{k} may be empty
## in which case @var{k} is set to the number of rows of @var{start}.
##
## The outputs are:
## @table @code
## @item @var{idx}
## An @var{N}x1 vector whose @var{i}th element is the class to which row @var{i}
## of @var{data} is assigned.
## 
## @item @var{centers}
## A @var{K}x@var{D} array whose @var{i}th row is the centroid of cluster
## @var{i}.
##
## @item @var{sumd}
## A @var{k}x1 vector whose @var{i}th entry is the sum of the distances
## from samples in cluster @var{i} to centroid @var{i}.
##
## @item @var{dist}
## An @var{N}x@var{k} matrix whose @var{i}@var{j}th element is
## the distance from sample @var{i} to centroid @var{j}.
## @end table 
## 
## The following parameters may be placed in any order.  Each parameter
## must be followed by its value.
## @table @code
## @item @var{Start}
## The initialization method for the centroids.
##  @table @code
##  @item @code{plus}
##        (Default) The k-means++ algorithm.
##  @item @code{sample}
#         A subset of @var{k} rows from @var{data},
##        sampled uniformly without replacement.
##  @item @code{cluster}
##        Perform a pilot clustering on 10% of the rows of @var{data}.
##  @item @code{uniform}
##        Each component of each centroid is drawn uniformly
##        from the interval between the maximum and minimum values of that
##        component within @var{data}.
##        This performs poorly and is implemented only for Matlab compatibility.
##  @item A
##        A @var{k}x@var{D}x@var{r} matrix, where @var{r} is the number of
##        replicates.
##  @end table
##
## @item @var{Replicates}
## An positive integer specifying the number of independent clusterings to
## perform.
## The output values are the values for the best clustering, i.e.,
## the one with the smallest value of @var{sumd}.
## If @var{Start} is numeric, then @var{Replicates} defaults to
# (and must equal) the size of the third dimension of @var{Start}.
## Otherwise it defaults to 1.
## 
## @item @var{MaxIter}
## The maximum number of iterations to perform for each replicate.
## If the maximum change of any centroid is less than 0.001, then
## the replicate terminates even if @var{MaxIter} iterations have no occurred.
## The default is 100.
##
## @item @var{Distance}
## The distance measure used for partitioning and calculating centroids.
##  @table @code
##  @item @qcode{sqeuclidean}
##  The squared Euclidean distance, i.e.,
##  the sum of the squares of the differences between corresponding components.
##  In this case, the centroid is the arithmetic mean of all samples in
##  its cluster.
##  This is the only distance for which this algorithm is truly "k-means".
##
##  @item @qcode{cityblock}
##  The sum metric, or L1 distance, i.e.,
##  the sum of the absolute differences between corresponding components.
##  In this case, the centroid is the median of all samples in its cluster.
##  This gives the k-medians algorithm.
##
##  @item @qcode{cosine}
##  (Documentation incomplete.)
##
## @item @qcode{correlation}
##  (Documentation incomplete.)
##
##  @item @qcode{hamming}
##  The number of components in which the sample and the centroid differ.
##  In this case, the centroid is the median of all samples in its cluster.
##  Unlike Matlab, Octave allows non-logical @var{data}.
## 
##  @end table
##
## @item @var{EmptyAction}
## What to do when a centroid is not the closest to any data sample.
##  @table @code
##  @item @qcode{error}
##        (Default) Throw an error.
##  @item @qcode{singleton}
##        Select the row of @var{data} that has the highest error and
##        use that as the new centroid.
##  @item @qcode{drop}
##        Remove the centroid, and continue computation with one fewer centroid.
##        The dimensions of the outputs @var{centroids} and @var{d}
##        are unchanged, with values for omitted centroids replaced by NA.
##        
##  @end table
## @end table
##
## Example:
##
##  [~,c] = kmeans (rand(10, 3), 2, "emptyaction", "singleton");
##
## @seealso{linkage}
## @end deftypefn

function [classes, centers, sumd, D] = kmeans (data, k, varargin)
  [reg, prop] = parseparams (varargin);

  ## defaults for options
  emptyaction = "error";
  start       = "plus";
  replicates  = 1;
  max_iter    = 100;
  distance    = "sqeuclidean";

  replicates_set_explicitly = false;

  ## Remove rows containing NaN / NA, but record which rows are used
  data_idx = ! any (isnan (data), 2);
  original_rows = rows (data);
  data = data(data_idx,:);

  #used for getting the number of samples
  n_rows = rows (data);

  #used for convergence of the centroids
  err = 1;

  ## Input checking, validate the matrix
  if (! isnumeric (data) || ! ismatrix (data) || ! isreal (data))
    error ("kmeans: first input argument must be a DxN real data matrix");
  elseif (! isnumeric (k))
    error ("kmeans: second argument must be numeric");
  endif

  ## Parse options
  while (length (prop) > 0)
    if (length (prop) < 2)
      error ("kmeans: Option '%s' has no argument", prop{1});
    endif
    switch (lower (prop{1}))
      case "emptyaction" emptyaction = prop{2};
      case "start"       start       = prop{2};
      case "maxiter"     max_iter    = prop{2};
      case "distance"    distance    = prop{2};

      case "replicates"  replicates  = prop{2};
                         replicates_set_explicitly = true;

      case {"display", "onlinephase", "options"}
        warning ("kmeans: Ignoring unimplemented option '%s'", prop{1});

      otherwise
        error ("kmeans: Unknown option %s", prop{1});
    endswitch
    prop = {prop{3:end}};
  endwhile

  ## Process options

  ## check for the 'emptyaction' property
  switch (emptyaction)
    case {"singleton", "error", "drop"}
      ;
    otherwise
      d = [", " disp(emptyaction)] (1:end-1);  # strip trailing \n
      if (length (d) > 20)
        d = "";
      endif
      error ("kmeans: unsupported empty cluster action parameter%s", d);
  endswitch

  ## check for the 'replicates' property
  if (! isnumeric (replicates) || ! isscalar (replicates)
     || ! isreal (replicates) || replicates < 1)
    d = [", " disp(replicates)] (1:end-1);     # strip trailing \n
    if (length (d) > 20)
      d = "";
    endif
    error ("kmeans: invalid number of replicates%s", d);
  endif

  ## check for the 'MaxIter' property
  if (! isnumeric (max_iter) || ! isscalar (max_iter)
     || ! isreal (max_iter) || max_iter < 1)
    d = [", " disp(max_iter)] (1:end-1);       # strip trailing \n
    if (length (d) > 20)
      d = "";
    endif
    error ("kmeans: invalid MaxIter%s", d);
  endif

  ## check for the 'start' property
  switch (lower (start))
    case {"sample", "plus", "cluster"}
      start = lower (start);
    case {"uniform"}
      start = "uniform";
      min_data = min (data);
      range = max (data) - min_data;
    otherwise
      if (! isnumeric (start))
        d = [", " disp(start)] (1:end-1);       # strip trailing \n
        if (length (d) > 20)
          d = "";
        endif
        error ("kmeans: invalid start parameter%s", d);
      endif
      if (isempty (k))
        k = rows (start);
      elseif (rows (start) != k)
        error ("kmeans: Number of initializers (%d) should match number of centroids (%d)", rows (start), k);
      endif
      if (replicates_set_explicitly)
        if (replicates != size (start, 3))
           error ("kmeans: The third dimension of the initializer (%d) should match the number of replicates (%d)", size (start, 3), replicates);
        endif
      else
        replicates = size (start, 3);
      endif
  endswitch

  ## check for the 'distance' property
  ## dist  returns the distance btwn each row of matrix x and a row vector c
  switch (lower (distance))
    case "sqeuclidean"
      dist = @(x, c) (sumsq (bsxfun (@minus, x, c), 2));
      centroid  = @(x) (mean (x,1));
    case "cityblock"
      dist = @(x, c) (sum (abs (bsxfun (@minus, x, c)), 2));
      centroid  = @(x) (median (x,1));
    case "cosine"
        ## Pre-normalize all data.
        ## (when Octave implements normr, will use  data = normr (data) )
      for i = 1:rows (data)
        data(i,:) = data(i,:) / sqrt (sumsq (data(i,:)));
      endfor
      dist = @(x, c) (1 - (x * c') ./ sqrt (sumsq (c)));
      centroid = @(x) (mean (x,1));   ## already normalized
    case "correlation"
        ## Pre-normalize all data.
      data = data - mean (data, 2);
        ## (when Octave implements normr, will use  data = normr (data) )
      for i = 1:rows (data)
        data(i,:) = data(i,:) / sqrt (sumsq (data(i,:)));
      endfor

      dist = @(x, c) (1 - (x * (c-mean (c))') ./ sqrt (sumsq (c-mean (c))));
      centroid  = @(x) (mean (x,1));   ## already normalized
    case "hamming"
      dist = @(x, c) (sum (bsxfun (@ne, x, c), 2));
      centroid  = @(x) (median (x,1));
    otherwise
      error ("kmeans: unsupported distance parameter %s", distance);
  endswitch

  ## Done processing options
  ########################################

  ## Now that  k  has been set (possibly by 'replicates' option), check/use it.

  if (! isscalar (k))
    error ("kmeans: second input argument must be a scalar");
  endif

  ## used to hold the distances from each sample to each class
  D = zeros (n_rows, k);

  best = Inf;
  best_centers = [];
  for rep = 1:replicates
    ## check for the 'start' property
    switch (lower (start))
      case "sample"
        idx = randperm (n_rows, k);
        centers = data(idx, :);
      case "plus"                  # k-means++, by Arthur and Vassilios(?)
        centers(1,:) = data(randi (n_rows),:);
	d = inf (n_rows, 1);       # Distance to nearest centroid so far
	for i = 2:k
	  d = min (d, dist (data, centers(i-1, :)));
	  centers(i,:) = data(find (cumsum (d) > rand * sum (d), 1), :);
	endfor
      case "cluster"
        idx = randperm (n_rows, max (k, ceil (n_rows/10)));
        [~, centers] = kmeans (data(idx,:), k, "start", "sample",
                               "distance", distance);
      case "uniform"
	# vectorised 'min_data + range .* rand'
        centers = bsxfun (@plus, min_data,
                          bsxfun (@times, range, rand (k, columns (data))));
      otherwise
        centers = start(:,:,rep);
    endswitch

    ## Run the algorithm
    iter = 1;

        ## Classify once before the loop; to set sumd, and  if  max_iter == 0
    ## Compute distances and classify
    for i = 1:k
      D (:, i) = dist (data, centers(i, :));
    endfor
    [~, classes] = min (D, [], 2);
    sumd = obj_cost (D, classes);

    while (err > 0.001 && iter++ <= max_iter)
      ## Calculate new centroids
      replaced_centroids = [];        ## Used by "emptyaction = singleton"
      for i = 1:k
        ## Get binary vector indicating membership in cluster i
        membership = (classes == i);

        ## Check for empty clusters
        if (! any (membership))
          switch emptyaction
            ## if 'singleton', then find the point that is the
            ## farthest from any centroid (and not replacing an empty cluster
            ## from earlier in this pass) and add it to the empty cluster
            case 'singleton'
             available = setdiff(1:n_rows, replaced_centroids);
             [~, idx] = max (min (D(available,:)'));
             idx = available(idx);
             replaced_centroids = [replaced_centroids, idx];

             classes(idx) = i;
             membership(idx)=1;

           ## if 'drop' then set C and D to NA
           case 'drop'
            centers(i,:) = NA;
            D(i,:) = NA;

           ## if 'error' then throw the error
            otherwise
              error ("kmeans: empty cluster created");
          endswitch
       endif ## end check for empty clusters

        ## update the centroids
        if (any (membership))      ## if we didn't "drop" the cluster
          centers(i, :) = centroid (data(membership, :));
        endif
      endfor

      ## Compute distances
      for i = 1:k
        D (:, i) = dist (data, centers(i, :));
      endfor

      ## Classify
      [~, classes] = min (D, [], 2);

      ## calculate the difference in the sum of distances
      new_sumd = obj_cost (D, classes);
      err  = sum (sumd - new_sumd);
      ## update the current sum of distances
      sumd = new_sumd;
    endwhile
    if (sum (sumd) < sum (best) || isinf (best))
      best = sumd;
      best_centers = centers;
    endif
  endfor
  centers = best_centers;
  sumd = best';

  final_classes = NA (original_rows,1);
  final_classes(data_idx) = classes;        ## other positions already NaN / NA
  classes = final_classes;
endfunction

## calculate the sum of within-class distances
function obj = obj_cost (D, classes)
  obj = zeros (1,columns (D));
  for i = 1:columns (D)
    idx = (classes == i);
    obj(i) = sum (D(idx,i));
  end
endfunction

## Test input parsing
%!error kmeans (rand (3,2), 4);

%!test
%! samples = 4;
%! dims = 3;
%! k = 2;
%! [cls, c, d, z] = kmeans (rand (samples,dims), k, "start", rand (k,dims, 5),
%!                          "emptyAction", "singleton");
%! assert (size (cls), [samples, 1]);
%! assert (size (c), [k, dims]);
%! assert (size (d), [k, 1]);
%! assert (size (z), [samples, k]);

%!test
%! samples = 4;
%! dims = 3;
%! k = 2;
%! [cls, c, d, z] = kmeans (rand (samples,dims), [], "start", rand (k,dims, 5),
%!                          "emptyAction", "singleton");
%! assert (size (cls), [samples, 1]);
%! assert (size (c), [k, dims]);
%! assert (size (d), [k, 1]);
%! assert (size (z), [samples, k]);

%!test
%! kmeans (rand (4,3), 2, "start", rand (2,3, 5), "replicates", 5,
%!         "emptyAction", "singleton");

%!error kmeans (rand (4,3), 2, "start", rand (2,3, 5), "replicates", 1);

%!error kmeans (rand (4,3), 2, "start", rand (2,2));

%!test
%! kmeans (rand (3,4), 2, "start", "sample", "emptyAction", "singleton");
%!test
%! kmeans (rand (3,4), 2, "start", "plus", "emptyAction", "singleton");
%!test
%! kmeans (rand (3,4), 2, "start", "cluster", "emptyAction", "singleton");
%!test
%! kmeans (rand (3,4), 2, "start", "uniform", "emptyAction", "singleton");

%!error kmeans (rand (3,4), 2, "start", "normal");

%!error kmeans (rand (4,3), 2, "replicates", i);
%!error kmeans (rand (4,3), 2, "replicates", -1);
%!error kmeans (rand (4,3), 2, "replicates", []);
%!error kmeans (rand (4,3), 2, "replicates", [1 2]);
%!error kmeans (rand (4,3), 2, "replicates", "one");

%!error kmeans (rand (4,3), 2, "MAXITER", i);
%!error kmeans (rand (4,3), 2, "MaxIter", -1);
%!error kmeans (rand (4,3), 2, "maxiter", []);
%!error kmeans (rand (4,3), 2, "maxiter", [1 2]);
%!error kmeans (rand (4,3), 2, "maxiter", "one");

%!test
%! kmeans (rand (4,3), 2, "distance", "sqeuclidean", "emptyAction", "singleton");

%!test
%! kmeans (rand (4,3), 2, "distance", "cityblock", "emptyAction", "singleton");

%!test
%! kmeans (rand (4,3), 2, "distance", "cosine", "emptyAction", "singleton");

%!test
%! kmeans (rand (4,3), 2, "distance", "correlation", "emptyAction", "singleton");

%!test
%! kmeans (rand (4,3), 2, "distance", "hamming", "emptyAction", "singleton");

%!error kmeans (rand (4,3), 2, "distance", "manhattan");

%!error <empty cluster created> kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "error");

%!test
%! kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "singleton");

%!test
%! [cls, c] = kmeans ([1 0; 2 0], 2, "start", [8,0;0,8], "emptyaction", "drop");
%! assert (cls, [1; 1]);
%! assert (c, [1.5, 0; NA, NA]);

%!error kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "panic");

%!demo
%! ## Generate a two-cluster problem
%! C1 = randn (100, 2) + 1;
%! C2 = randn (100, 2) - 1;
%! data = [C1; C2];
%!
%! ## Perform clustering
%! [idx, centers] = kmeans (data, 2);
%!
%! ## Plot the result
%! figure;
%! plot (data (idx==1, 1), data (idx==1, 2), 'ro');
%! hold on;
%! plot (data (idx==2, 1), data (idx==2, 2), 'bs');
%! plot (centers (:, 1), centers (:, 2), 'kv', 'markersize', 10);
%! hold off;