This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/mvtcdf.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
## Copyright (C) 2008 Arno Onken <asnelt@asnelt.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{p} =} mvtcdf (@var{x}, @var{sigma}, @var{nu})
## @deftypefnx {Function File} {} mvtcdf (@var{a}, @var{x}, @var{sigma}, @var{nu})
## @deftypefnx {Function File} {[@var{p}, @var{err}] =} mvtcdf (@dots{})
## Compute the cumulative distribution function of the multivariate
## Student's t distribution.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{x} is the upper limit for integration where each row corresponds
## to an observation.
##
## @item
## @var{sigma} is the correlation matrix.
##
## @item
## @var{nu} is the degrees of freedom.
##
## @item
## @var{a} is the lower limit for integration where each row corresponds
## to an observation. @var{a} must have the same size as @var{x}.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{p} is the cumulative distribution at each row of @var{x} and
## @var{a}.
##
## @item
## @var{err} is the estimated error.
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## x = [1 2];
## sigma = [1.0 0.5; 0.5 1.0];
## nu = 4;
## p = mvtcdf (x, sigma, nu)
## @end group
##
## @group
## a = [-inf 0];
## p = mvtcdf (a, x, sigma, nu)
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Alan Genz and Frank Bretz. Numerical Computation of Multivariate
## t-Probabilities with Application to Power Calculation of Multiple
## Constrasts. @cite{Journal of Statistical Computation and Simulation},
## 63, pages 361-378, 1999.
## @end enumerate
## @end deftypefn

## Author: Arno Onken <asnelt@asnelt.org>
## Description: CDF of the multivariate Student's t distribution

function [p, err] = mvtcdf (varargin)

  # Monte-Carlo confidence factor for the standard error: 99 %
  gamma = 2.5;
  # Tolerance
  err_eps = 1e-3;

  if (length (varargin) == 3)
    x = varargin{1};
    sigma = varargin{2};
    nu = varargin{3};
    a = -Inf .* ones (size (x));
  elseif (length (varargin) == 4)
    a = varargin{1};
    x = varargin{2};
    sigma = varargin{3};
    nu = varargin{4};
  else
    print_usage ();
  endif

  # Dimension
  q = size (sigma, 1);
  cases = size (x, 1);

  # Check parameters
  if (size (x, 2) != q)
    error ("mvtcdf: x must have the same number of columns as sigma");
  endif

  if (any (size (x) != size (a)))
    error ("mvtcdf: a must have the same size as x");
  endif

  if (! isscalar (nu) && (! isvector (nu) || length (nu) != cases))
    error ("mvtcdf: nu must be a scalar or a vector with the same number of rows as x");
  endif

  # Convert to correlation matrix if necessary
  if (any (diag (sigma) != 1))
    svar = repmat (diag (sigma), 1, q);
    sigma = sigma ./ sqrt (svar .* svar');
  endif
  if (q < 1 || size (sigma, 2) != q || any (any (sigma != sigma')) || min (eig (sigma)) <= 0)
    error ("mvtcdf: sigma must be nonempty symmetric positive definite");
  endif

  nu = nu(:);
  c = chol (sigma)';

  # Number of integral transformations
  n = 1;

  p = zeros (cases, 1);
  varsum = zeros (cases, 1);

  err = ones (cases, 1) .* err_eps;
  # Apply crude Monte-Carlo estimation
  while any (err >= err_eps)
    # Sample from q-1 dimensional unit hypercube
    w = rand (cases, q - 1);

    # Transformation of the multivariate t-integral
    dvev = tcdf ([a(:, 1) / c(1, 1), x(:, 1) / c(1, 1)], nu);
    dv = dvev(:, 1);
    ev = dvev(:, 2);
    fv = ev - dv;
    y = zeros (cases, q - 1);
    for i = 1:(q - 1)
      y(:, i) = tinv (dv + w(:, i) .* (ev - dv), nu + i - 1) .* sqrt ((nu + sum (y(:, 1:(i-1)) .^ 2, 2)) ./ (nu + i - 1));
      tf = (sqrt ((nu + i) ./ (nu + sum (y(:, 1:i) .^ 2, 2)))) ./ c(i + 1, i + 1);
      dvev = tcdf ([(a(:, i + 1) - c(i + 1, 1:i) .* y(:, 1:i)) .* tf, (x(:, i + 1) - c(i + 1, 1:i) .* y(:, 1:i)) .* tf], nu + i);
      dv = dvev(:, 1);
      ev = dvev(:, 2);
      fv = (ev - dv) .* fv;
    endfor

    n++;
    # Estimate standard error
    varsum += (n - 1) .* ((fv - p) .^ 2) ./ n;
    err = gamma .* sqrt (varsum ./ (n .* (n - 1)));
    p += (fv - p) ./ n;
  endwhile

endfunction