This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/pcacov.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
## Copyright (C) 2013 Fernando Damian Nieuwveldt <fdnieuwveldt@gmail.com>
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3
## of the License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{COEFF}]} = pcacov(@var{X})
## @deftypefnx {Function File} {[@var{COEFF},@var{latent}]} = pcacov(@var{X})
## @deftypefnx {Function File} {[@var{COEFF},@var{latent},@var{explained}]} = pcacov(@var{X})
## @itemize @bullet
## @item
## pcacov performs principal component analysis on the nxn covariance matrix X
## @item
## @var{COEFF} : a nxn matrix with columns containing the principal component coefficients
## @item
## @var{latent} : a vector containing the principal component variances
## @item
## @var{explained} : a vector containing the percentage of the total variance explained by each principal component
##
## @end itemize
##
## @subheading References
##
## @enumerate
## @item
## Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002
## 
## @end enumerate
## @end deftypefn

## Author: Fernando Damian Nieuwveldt <fdnieuwveldt@gmail.com>
## Description:  Principal Components Analysis using a covariance matrix
function [COEFF, latent, explained] = pcacov(X)

  [U,S,V] = svd(X);

  if nargout == 1
    COEFF     = U;
  elseif nargout == 2
    COEFF     = U;
    latent    = diag(S);
  else
    COEFF     = U;
    latent    = diag(S);
    explained = 100*latent./sum(latent);
  end
endfunction
%!demo
%! X = [ 7    26     6    60;
%!       1    29    15    52;
%!      11    56     8    20;
%!      11    31     8    47;
%!       7    52     6    33;
%!      11    55     9    22;
%!       3    71    17     6;
%!       1    31    22    44;
%!       2    54    18    22;
%!      21    47     4    26;
%!       1    40    23    34;
%!      11    66     9    12;
%!      10    68     8    12 
%!     ];
%! covx = cov(X);
%! [COEFF,latent,explained] = pcacov(covx)