This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/pdist.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
## Copyright (C) 2008 Francesco Potortì <pot@gnu.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} pdist (@var{x})
## @deftypefnx {Function File} {@var{y} =} pdist (@var{x}, @var{metric})
## @deftypefnx {Function File} {@var{y} =} pdist (@var{x}, @var{metric}, @var{metricarg}, @dots{})
##
## Return the distance between any two rows in @var{x}.
##
## @var{x} is the @var{n}x@var{d} matrix representing @var{q} row
## vectors of size @var{d}.
##
## The output is a dissimilarity matrix formatted as a row vector
## @var{y}, @math{(n-1)*n/2} long, where the distances are in
## the order [(1, 2) (1, 3) @dots{} (2, 3) @dots{} (n-1, n)].  You can
## use the @code{squareform} function to display the distances between
## the vectors arranged into an @var{n}x@var{n} matrix.
##
## @code{metric} is an optional argument specifying how the distance is
## computed. It can be any of the following ones, defaulting to
## "euclidean", or a user defined function that takes two arguments
## @var{x} and @var{y} plus any number of optional arguments,
## where @var{x} is a row vector and and @var{y} is a matrix having the
## same number of columns as @var{x}.  @code{metric} returns a column
## vector where row @var{i} is the distance between @var{x} and row
## @var{i} of @var{y}. Any additional arguments after the @code{metric}
## are passed as metric (@var{x}, @var{y}, @var{metricarg1},
## @var{metricarg2} @dots{}).
##
## Predefined distance functions are:
##
## @table @samp
## @item "euclidean"
## Euclidean distance (default).
##
## @item "seuclidean"
## Standardized Euclidean distance. Each coordinate in the sum of
## squares is inverse weighted by the sample variance of that
## coordinate.
##
## @item "mahalanobis"
## Mahalanobis distance: see the function mahalanobis.
##
## @item "cityblock"
## City Block metric, aka Manhattan distance.
##
## @item "minkowski"
## Minkowski metric.  Accepts a numeric parameter @var{p}: for @var{p}=1
## this is the same as the cityblock metric, with @var{p}=2 (default) it
## is equal to the euclidean metric.
##
## @item "cosine"
## One minus the cosine of the included angle between rows, seen as
## vectors.
##
## @item "correlation"
## One minus the sample correlation between points (treated as
## sequences of values).
##
## @item "spearman"
## One minus the sample Spearman's rank correlation between
## observations, treated as sequences of values.
##
## @item "hamming"
## Hamming distance: the quote of the number of coordinates that differ.
##
## @item "jaccard"
## One minus the Jaccard coefficient, the quote of nonzero
## coordinates that differ.
##
## @item "chebychev"
## Chebychev distance: the maximum coordinate difference.
## @end table 
## @seealso{linkage, mahalanobis, squareform, pdist2}
## @end deftypefn

## Author: Francesco Potortì  <pot@gnu.org>

function y = pdist (x, metric, varargin)

  if (nargin < 1)
    print_usage ();
  elseif ((nargin > 1)
          && ! ischar (metric)
          && ! isa (metric, "function_handle"))
    error (["pdist: the distance function must be either a string or a "
            "function handle."]);
  endif

  if (nargin < 2)
    metric = "euclidean";
  endif

  if (! ismatrix (x) || isempty (x))
    error ("pdist: x must be a nonempty matrix");
  elseif (length (size (x)) > 2)
    error ("pdist: x must be 1 or 2 dimensional");
  endif

  y = [];
  if (rows(x) == 1)
    return;
  endif

  if (ischar (metric))
    order = nchoosek(1:rows(x),2);
    Xi = order(:,1);
    Yi = order(:,2);
    X = x';
    metric = lower (metric);
    switch (metric)
      case "euclidean"
        d = X(:,Xi) - X(:,Yi);
        y = norm (d, "cols");

      case "seuclidean"
        d = X(:,Xi) - X(:,Yi);
        weights = inv (diag (var (x, 0, 1)));
        y = sqrt (sum ((weights * d) .* d, 1));

      case "mahalanobis"
        d = X(:,Xi) - X(:,Yi);
        weights = inv (cov (x));
        y = sqrt (sum ((weights * d) .* d, 1));

      case "cityblock"
        d = X(:,Xi) - X(:,Yi);
        if (str2num(version()(1:3)) > 3.1)
          y = norm (d, 1, "cols");
        else
          y = sum (abs (d), 1);
        endif

      case "minkowski"
        d = X(:,Xi) - X(:,Yi);
        p = 2;                  # default
        if (nargin > 2)
          p = varargin{1};      # explicitly assigned
        endif;
        y = norm (d, p, "cols");

      case "cosine"
        prod = X(:,Xi) .* X(:,Yi);
        weights = sumsq (X(:,Xi), 1) .* sumsq (X(:,Yi), 1);
        y = 1 - sum (prod, 1) ./ sqrt (weights);

      case "correlation"
        if (rows(X) == 1)
          error ("pdist: correlation distance between scalars not defined")
        endif
        cor = corr (X);
        y = 1 - cor (sub2ind (size (cor), Xi, Yi))';

      case "spearman"
        if (rows(X) == 1)
          error ("pdist: spearman distance between scalars not defined")
        endif
        cor = spearman (X);
        y = 1 - cor (sub2ind (size (cor), Xi, Yi))';

      case "hamming"
        d = logical (X(:,Xi) - X(:,Yi));
        y = sum (d, 1) / rows (X);

      case "jaccard"
        d = logical (X(:,Xi) - X(:,Yi));
        weights = X(:,Xi) | X(:,Yi);
        y = sum (d & weights, 1) ./ sum (weights, 1);

      case "chebychev"
        d = X(:,Xi) - X(:,Yi);
        y = norm (d, Inf, "cols");

    endswitch
  endif

  if (isempty (y))
    ## Metric is a function handle or the name of an external function
    l = rows (x);
    y = zeros (1, nchoosek (l, 2));
    idx = 1;
    for ii = 1:l-1
      for jj = ii+1:l
        y(idx++) = feval (metric, x(ii,:), x, varargin{:})(jj);
      endfor
    endfor
  endif

endfunction

%!shared xy, t, eucl
%! xy = [0 1; 0 2; 7 6; 5 6];
%! t = 1e-3;
%! eucl = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
%!assert(pdist(xy),              [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,eucl),         [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,"euclidean"),  [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,"seuclidean"), [0.380 2.735 2.363 2.486 2.070 0.561],t);
%!assert(pdist(xy,"mahalanobis"),[1.384 1.967 2.446 2.384 1.535 2.045],t);
%!assert(pdist(xy,"cityblock"),  [1.000 12.00 10.00 11.00 9.000 2.000],t);
%!assert(pdist(xy,"minkowski"),  [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,"minkowski",3),[1.000 7.763 6.299 7.410 5.738 2.000],t);
%!assert(pdist(xy,"cosine"),     [0.000 0.349 0.231 0.349 0.231 0.013],t);
%!assert(pdist(xy,"correlation"),[0.000 2.000 0.000 2.000 0.000 2.000],t);
%!assert(pdist(xy,"spearman"),   [0.000 2.000 0.000 2.000 0.000 2.000],t);
%!assert(pdist(xy,"hamming"),    [0.500 1.000 1.000 1.000 1.000 0.500],t);
%!assert(pdist(xy,"jaccard"),    [1.000 1.000 1.000 1.000 1.000 0.500],t);
%!assert(pdist(xy,"chebychev"),  [1.000 7.000 5.000 7.000 5.000 2.000],t);