This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/tricdf.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
## Copyright (C) 2016 Dag Lyberg
## Copyright (C) 1997-2015 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {} {} tricdf (@var{x}, @var{a}, @var{b}, @var{c})
## Compute the cumulative distribution function (CDF) at @var{x} of the
## triangular distribution with parameters @var{a}, @var{b}, and @var{c}
## on the interval [@var{a}, @var{b}].
## @end deftypefn

## Author: Dag Lyberg <daglyberg80@gmail.com>
## Description: CDF of the triangle distribution

function cdf = tricdf (x, a, b, c)

  if (nargin != 4)
    print_usage ();
  endif

  if (! isscalar (a) || ! isscalar (b) || ! isscalar (c))
    [retval, x, a, b, c] = common_size (x, a, b, c);
    if (retval > 0)
      error ("tricdf: X, A, B, and C must be of common size or scalars");
    endif
  endif

  if (iscomplex (x) || iscomplex (a) || iscomplex (b) || iscomplex (c))
    error ("tricdf: X, A, B, and C must not be complex");
  endif

  if (isa (x, "single") || isa (a, "single")
      || isa (b, "single") || isa (c, "single"))
    cdf = zeros (size (x), "single");
  else
    cdf = zeros (size (x));
  endif

  k = isnan (x) | !(a < b) | !(c >= a) | !(c <= b) ;
  cdf(k) = NaN;

  k = (x > a) & (a < b) & (a <= c) & (c <= b);
  if (isscalar (a) && isscalar (b) && isscalar (c))
    h = 2 / (b-a);

    k_temp = k & (c <= x);
    full_area = (c-a) * h / 2;
    cdf(k_temp) += full_area;

    k_temp = k & (a < x) & (x < c);
    area = (x(k_temp) - a).^2 * h;
    cdf(k_temp) += area;

    k_temp = k & (b <= x);
    full_area = (b-c) * h / 2;
    cdf(k_temp) += full_area;

    k_temp = k & (c < x) & (x < b);
    area = (b-x(k_temp)).^2 * h;
    cdf(k_temp) += full_area - area;
  else
    h = 2 ./ (b-a);

    k_temp = k & (c <= x);
    full_area = (c(k_temp)-a(k_temp)) .* h(k_temp) / 2;
    cdf(k_temp) += full_area;

    k_temp = k & (a <= x) & (x < c);
    area = (x(k_temp) - a(k_temp)).^2 .* h(k_temp);
    cdf(k_temp) += area;

    k_temp = k & (b <= x);
    full_area = (b(k_temp)-c(k_temp)) .* h(k_temp) / 2;
    cdf(k_temp) += full_area;

    k_temp = k & (c <= x) & (x < b);
    area = (b(k_temp)-x(k_temp)).^2 .* h(k_temp);
    cdf(k_temp) += full_area - area;
  endif

endfunction


%!shared x,y
%! x = [-1, 0, 0.1, 0.5, 0.9, 1, 2] + 1;
%! y = [0, 0, 0.02, 0.5, 0.98, 1 1];
%!assert (tricdf (x, ones (1,7), 2*ones (1,7), 1.5*ones (1,7)), y, eps)
%!assert (tricdf (x, 1*ones (1,7), 2, 1.5), y, eps)
%!assert (tricdf (x, 1, 2*ones (1,7), 1.5), y, eps)
%!assert (tricdf (x, 1, 2, 1.5*ones (1,7)), y, eps)
%!assert (tricdf (x, 1, 2, 1.5), y, eps)
%!assert (tricdf (x, [1, 1, NaN, 1, 1, 1, 1], 2, 1.5), [y(1:2), NaN, y(4:7)], eps)
%!assert (tricdf (x, 1, 2*[1, 1, NaN, 1, 1, 1, 1], 1.5), [y(1:2), NaN, y(4:7)], eps)
%!assert (tricdf (x, 1, 2, 1.5*[1, 1, NaN, 1, 1, 1, 1]), [y(1:2), NaN, y(4:7)], eps)
%!assert (tricdf ([x, NaN], 1, 2, 1.5), [y, NaN], eps)

## Test class of input preserved
%!assert (tricdf (single ([x, NaN]), 1, 2, 1.5), single ([y, NaN]), eps('single'))
%!assert (tricdf ([x, NaN], single (1), 2, 1.5), single ([y, NaN]), eps('single'))
%!assert (tricdf ([x, NaN], 1, single (2), 1.5), single ([y, NaN]), eps('single'))
%!assert (tricdf ([x, NaN], 1, 2, single (1.5)), single ([y, NaN]), eps('single'))

## Test input validation
%!error tricdf ()
%!error tricdf (1)
%!error tricdf (1,2)
%!error tricdf (1,2,3)
%!error tricdf (1,2,3,4,5)
%!error tricdf (1, ones (3), ones (2), ones (2))
%!error tricdf (1, ones (2), ones (3), ones (2))
%!error tricdf (1, ones (2), ones (2), ones (3))
%!error tricdf (i, 2, 2, 2)
%!error tricdf (2, i, 2, 2)
%!error tricdf (2, 2, i, 2)
%!error tricdf (2, 2, 2, i)