/usr/share/octave/packages/statistics-1.3.0/vartest2.m is in octave-statistics 1.3.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | ## Copyright (C) 2014 Tony Richardson
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} vartest2 (@var{x}, @var{y})
## @deftypefnx {Function File} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} vartest2 (@var{x}, @var{y}, @var{Name}, @var{Value})
## Perform a F-test for equal variances.
##
## If the second argument @var{y} is a vector, a paired-t test of the
## hypothesis @code{mean (@var{x}) = mean (@var{y})} is performed.
##
## The argument @qcode{"alpha"} can be used to specify the significance level
## of the test (the default value is 0.05). The string
## argument @qcode{"tail"}, can be used to select the desired alternative
## hypotheses. If @qcode{"alt"} is @qcode{"both"} (default) the null is
## tested against the two-sided alternative @code{mean (@var{x}) != @var{m}}.
## If @qcode{"alt"} is @qcode{"right"} the one-sided
## alternative @code{mean (@var{x}) > @var{m}} is considered.
## Similarly for @qcode{"left"}, the one-sided alternative @code{mean
## (@var{x}) < @var{m}} is considered. When @qcode{"vartype"} is @qcode{"equal"}
## the variances are assumed to be equal (this is the default). When
## @qcode{"vartype"} is @qcode{"unequal"} the variances are not assumed equal.
## When argument @var{x} is a matrix the @qcode{"dim"} argument can be
## used to selection the dimension over which to perform the test.
## (The default is the first non-singleton dimension.)
##
## If @var{h} is 0 the null hypothesis is accepted, if it is 1 the null
## hypothesis is rejected. The p-value of the test is returned in @var{pval}.
## A 100(1-alpha)% confidence interval is returned in @var{ci}. @var{stats}
## is a structure containing the value of the test statistic (@var{tstat}),
## the degrees of freedom (@var{df}) and the sample standard deviation
## (@var{sd}).
##
## @end deftypefn
## Author: Tony Richardson <richardson.tony@gmail.com>
## Description: Test for mean of a normal sample with known variance
function [h, p, ci, stats] = vartest2(x, y, varargin)
% Set default arguments
alpha = 0.05;
tail = 'both';
% Find the first non-singleton dimension of x
dim = min(find(size(x)~=1));
if isempty(dim), dim = 1; end
i = 1;
while ( i <= length(varargin) )
switch lower(varargin{i})
case 'alpha'
i = i + 1;
alpha = varargin{i};
case 'tail'
i = i + 1;
tail = varargin{i};
case 'dim'
i = i + 1;
dim = varargin{i};
otherwise
error('Invalid Name argument.',[]);
end
i = i + 1;
end
if ~isa(tail, 'char')
error('tail argument to vartest2 must be a string\n',[]);
end
s1_var = var(x, 0, dim);
s2_var = var(y, 0, dim);
stats.fstat = s1_var ./ s2_var;
df1= size(x, dim) - 1;
df2 = size(y, dim) - 1;
% Based on the "tail" argument determine the P-value, the critical values,
% and the confidence interval.
switch lower(tail)
case 'both'
p = 2*min(fcdf(stats.fstat,df1,df2),1 - fcdf(stats.fstat,df1,df2));
fcrit = finv(1-alpha/2,df1,df2);
ci = [s1_var ./ (fcrit*s2_var); fcrit*s1_var ./ s2_var];
case 'left'
p = fcdf(stats.fstat,df1,df2);
fcrit = finv(alpha,df1,df2);
ci = [zeros(size(stats.fstat)); s1_var ./ (fcrit*s2_var)];
case 'right'
p = 1 - fcdf(stats.fstat,df1,df2);
fcrit = finv(1-alpha,df1,df2);
ci = [s1_var ./ (fcrit*s2_var); inf*ones(size(stats.fstat))];
otherwise
error('Invalid fourth (tail) argument to vartest2\n',[]);
end
% Reshape the ci array to match MATLAB shaping
if and(isscalar(stats.fstat), dim==2)
ci = ci(:)';
elseif size(stats.fstat,2)<size(stats.fstat,1)
ci = reshape(ci(:),length(stats.fstat),2);
end
stats.df1 = df1*ones(size(stats.fstat));
stats.df2 = df2*ones(size(stats.fstat));
% Determine the test outcome
% MATLAB returns this a double instead of a logical array
h = double(p < alpha);
end
|