This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/violin.m is in octave-statistics 1.3.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
## Copyright (C) 2016 - Juan Pablo Carbajal
##
## This progrm is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

## Author: Juan Pablo Carbajal <ajuanpi+dev@gmail.com>

## -*- texinfo -*-
## @defun {@var{h} =} violin (@var{x})
## @defunx {@var{h} =} violin (@dots{}, @var{property}, @var{value}, @dots{})
## @defunx {@var{h} =} violin (@var{hax}, @dots{})
## @defunx {@var{h} =} violin (@dots{}, @asis{"horizontal"})
## Produce a Violin plot of the data @var{x}.
##
## The input data @var{x} can be a N-by-m array containg N observations of m variables.
## It can also be a cell with m elements, for the case in which the varibales
## are not uniformly sampled.
##
## The following @var{property} can be set using @var{property}/@var{value} pairs
## (default values in parenthesis).
## The value of the property can be a scalar indicating that it applies
## to all the variables in the data.
## It can also be a cell/array, indicating the property for each variable.
## In this case it should have m columns (as many as variables).
##
## @table @asis
##
## @item Color
## (@asis{"y"}) Indicates the filling color of the violins.
##
## @item Nbins
## (50) Internally, the function calls @command{hist} to compute the histogram of the data.
## This property indicates how many bins to use. See @command{help hist}
## for more details.
##
## @item SmoothFactor
## (4) The fuction performs simple kernel density estimation and automatically
## finds the bandwith of the kernel function that best approximates the histogram
## using optimization (@command{sqp}).
## The result is in general very noisy. To smooth the result the bandwidth is
## multiplied by the value of this property. The higher the value the smoother
## the violings, but values too high might remove features from the data distribution.
##
## @item Bandwidth
## (NA) If this property is given a value other than NA, it sets the bandwith of the
## kernel function. No optimization is peformed and the property @asis{SmoothFactor}
## is ignored.
##
## @item Width
## (0.5) Sets the maximum width of the violins. Violins are centered at integer axis
## values. The distance between two violin middle axis is 1. Setting a value
## higher thna 1 in this property will cause the violins to overlap.
## @end table
##
## If the string @asis{"Horizontal"} is among the input arguments, the violin
## plot is rendered along the x axis with the variables in the y axis.
##
## The returned structure @var{h} has handles to the plot elements, allowing
## customization of the visualization using set/get functions.
##
## Example:
##
## @example
## title ("Grade 3 heights");
## axis ([0,3]);
## set (gca, "xtick", 1:2, "xticklabel", @{"girls"; "boys"@});
## h = violin (@{randn(100,1)*5+140, randn(130,1)*8+135@}, "Nbins", 10);
## set (h.violin, "linewidth", 2)
## @end example
##
## @seealso{boxplot, hist}
## @end defun

function h = violin (ax, varargin)
  ######################
  ## Parse parameters ##
  parser = inputParser ();
  parser.CaseSensitive = false;
  parser.FunctionName = 'violin';

  parser.addParamValue ('Nbins', 50);
  parser.addParamValue ('SmoothFactor', 4);
  parser.addParamValue ('Bandwidth', NA);
  parser.addParamValue ('Width', 0.5);
  parser.addParamValue ('Color', "y");
  parser.addSwitch ('Horizontal');

  parser.parse (varargin{:});
  res = parser.Results;

  c        = res.Color;        # Color of violins
  if (ischar (c)) c = c(:); endif
  nb       = res.Nbins;        # Number of bins in histogram
  sf       = res.SmoothFactor; # Smoothing factor for kernel estimation
  r0       = res.Bandwidth;    # User value for KDE bandwth to prevent optimization
  is_horiz = res.Horizontal;   # Whether the plot must be rotated
  width    = res.Width;        # Width of the violins
  clear parser res
  ######################
  old_hold = ishold ();
  # First argument is not an axis
  if (~ishandle (ax) || ~isscalar (ax))
    if (~old_hold)
      cla
    endif

    x  = ax;
    ax = gca ();
  else
    x = varargin{1};
  endif

  ## Make everything a cell for code simplicity
  if (~iscell (x))
    [N Nc] = size (x);
    x      = mat2cell (x, N, ones (1, Nc));
  else
    Nc = numel (x);
  endif

  try
    [nb, c, sf, r0, width] = to_cell (nb, c, sf, r0, width, Nc);
  catch err
    if strcmp (err.identifier, "to_cell:element_idx")
      n = str2num (err.message);
      txt = {"Nbins", "Color", "SmoothFactor", "Bandwidth", "Width"};
      error ("Octave:invaid-input-arg", ...
             ["options should be scalars or call/array with as many values as" ...
              " numbers of variables in the data (wrong size of %s)."], txt{n});
    else
      rethrow (lasterror())
    endif
  end

  ## Build violins
  [px py mx] = cellfun (@(y,n,s,r)build_polygon(y, n, s, r), ...
                          x, nb, sf, r0, "unif", 0);

  Nc    = 1:numel (px);
  Ncc   = mat2cell (Nc, 1, ones (1, Nc(end)));

  # get hold state
  old_hold = ishold ();

  # Draw plain violins
  tmp      = cellfun (@(x,y,n,u, w)patch(ax, (w * x + n)(:), y(:) ,u), ...
                        px, py, Ncc, c, width);
  h.violin = tmp;

  hold on
  # Overlay mean value
  tmp    = cellfun (@(z,y)plot(ax, z, y,'.k', "markersize", 6), Ncc, mx);
  h.mean = tmp;

  # Overlay median
  Mx       = cellfun (@median, x, "unif", 0);
  tmp      = cellfun (@(z,y)plot(ax, z, y, 'ok'), Ncc, Mx);
  h.median = tmp;

  # Overlay 1nd and 3th quartiles
  LUBU = cellfun (@(x,y)abs(quantile(x,[0.25 0.75])-y), x, Mx, "unif", 0);
  tmp  = cellfun (@(x,y,z)errorbar(ax, x, y, z(1),z(2)), Ncc, Mx, LUBU)(:);
  # Flatten errorbar output handles
  tmp2       = allchild (tmp);
  if (~iscell (tmp2))
    tmp2 = mat2cell (tmp2, ones(length (tmp2), 1), 1);
  endif
  tmp        = mat2cell (tmp, ones (length (tmp), 1), 1);
  tmp        = cellfun (@vertcat, tmp, tmp2, "unif", 0);
  h.quartile = cell2mat (tmp);

  hold off

  # Rotate the plot if it is horizontal
  if (is_horiz)
    structfun (@swap_axes, h);
    set (ax, "ytick", Nc);
  else
    set (ax, "xtick", Nc);
  endif

  if (nargout < 1);
    clear h;
  endif

  # restore hold state
  if (old_hold)
    hold on
  endif
endfunction

function k = kde(x,r)
  k  = mean (stdnormal_pdf (x / r)) / r;
  k /= max (k);
endfunction

function [px py mx] = build_polygon (x, nb, sf, r)
  N = size (x, 1);
  mx = mean (x);
  sx = std (x);
  X = (x - mx ) / sx;

  [count bin] = hist (X, nb);
  count /= max (count);

  X  = X - bin;
  if isna (r)
    r0 = 1.06 * N^(1/5);
    r  = sqp (r0, @(r)sumsq (kde(X,r) - count), [], [], 1e-3, 1e2);
  else
    sf = 1;
  endif

  v  = kde (X, sf * r).';

  px = [v -flipud(v)];
  bin = bin * sx + mx;
  py = [bin; fliplr(bin)].';

endfunction

function tf = swap_axes (h)
    tmp  = mat2cell (h(:), ones (length (h),1), 1);
%    tmp  = cellfun (@(x)[x; allchild(x)], tmp, "unif", 0);
    tmpy = cellfun(@(x)get(x, "ydata"), tmp, "unif", 0);
    tmpx = cellfun(@(x)get(x, "xdata"), tmp, "unif", 0);
    cellfun (@(h,x,y)set (h, "xdata", y, "ydata", x), tmp, tmpx, tmpy);
    tf = true;
endfunction

function varargout = to_cell (varargin)

    m = varargin{end};
    varargin(end) = [];

    for i = 1:numel(varargin)
      x  = varargin{i};
      if (isscalar (x)) x = repmat (x, m, 1); endif

      if (iscell (x))
        if (numel(x) ~= m) # no dimension equals m
          error ("to_cell:element_idx", "%d\n",i);
        endif
        varargout{i} = x;
        continue
      endif

      sz = size (x);
      d  = find (sz == m)
      if (isempty (d)) # no dimension equals m
        error ("to_cell:element_idx", "%d\n",i);
      elseif (length (d) == 2)
        #both dims are m, choose 1st
      elseif (d == 1) # 2nd dimension is m --> transpose
        x  = x.';
        sz = fliplr (sz);
      endif

      varargout{i} = mat2cell (x, sz(1), ones (m,1));

    endfor

endfunction

%!demo
%! clf
%! x = zeros (9e2, 10);
%! for i=1:10
%!   x(:,i) = (0.1 * randn (3e2, 3) * (randn (3,1) + 1) + ...
%!          2 * randn (1,3))(:);
%! endfor
%! h = violin (x, "color", "c");
%! axis tight
%! set (h.violin, "linewidth", 2);
%! set (gca, "xgrid", "on");
%! xlabel ("Variables")
%! ylabel ("Values")

%!demo
%! clf
%! data = {randn(100,1)*5+140, randn(130,1)*8+135};
%! subplot (1,2,1)
%! title ("Grade 3 heights - vertical");
%! set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"});
%! violin (data, "Nbins", 10);
%! axis tight
%!
%! subplot(1,2,2)
%! title ("Grade 3 heights - horizontal");
%! set (gca, "ytick", 1:2, "yticklabel", {"girls"; "boys"});
%! violin (data, "horizontal", "Nbins", 10);
%! axis tight

%!demo
%! clf
%! data = exprnd (0.1, 500,4);
%! violin (data, "nbins", {5,10,50,100});
%! axis ([0 5 0 max(data(:))])

%!demo
%! clf
%! data = exprnd (0.1, 500,4);
%! violin (data, "color", jet(4));
%! axis ([0 5 0 max(data(:))])

%!demo
%! clf
%! data = repmat(exprnd (0.1, 500,1), 1, 4);
%! violin (data, "width", linspace (0.1,0.5,4));
%! axis ([0 5 0 max(data(:))])

%!demo
%! clf
%! data = repmat(exprnd (0.1, 500,1), 1, 4);
%! violin (data, "nbins", [5,10,50,100], "smoothfactor", [4 4 8 10]);
%! axis ([0 5 0 max(data(:))])