This file is indexed.

/usr/share/octave/packages/symbolic-2.6.0/doc-cache is in octave-symbolic 2.6.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
# doc-cache created by Octave 4.2.2
# name: cache
# type: cell
# rows: 3
# columns: 22
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
assume


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 836
 -- Command: assume X COND
 -- Command: assume X COND COND2 ...
 -- Command: assume X Y ... COND COND2 ...
     Specify assumptions for a symbolic variable (replace existing).

     Example:
          syms n x y
          assume n integer
          assume x y real
          assumptions
            ⇒ ans =
              {
                [1,1] = n: integer
                [1,2] = x: real
                [1,3] = y: real
              }

     To clear assumptions on a variable, use ‘assume x clear’, for
     example:
          assume x y clear
          assumptions
            ⇒ ans =
              {
                [1,1] = n: integer
              }

     For more precise control over assumptions, *note @sym/assume:: and
     *note @sym/assumeAlso::.

     See also: @sym/assume, @sym/assumeAlso, assumptions, sym, syms.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Specify assumptions for a symbolic variable (replace existing).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
assumptions


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1260
 -- Function: A = assumptions ()
 -- Function: A = assumptions (X)
 -- Function: [V, D] = assumptions (X, 'dict')
 -- Function: L = assumptions ('possible')
     List assumptions on symbolic variables.

     The assumptions are returned as a cell-array of strings:
          syms x y positive
          syms n integer
          assumptions
            ⇒ ans =
              {
                [1,1] = n: integer
                [1,2] = x: positive
                [1,3] = y: positive
              }
          assumptions(n)
            ⇒ ans =
              {
                [1,1] = n: integer
              }

     You can get the list of assumptions relevant to an expression:
          f = sin(n*x);
          assumptions(f)
            ⇒ ans =
              {
                [1,1] = n: integer
                [1,2] = x: positive
              }

     With the optional second argument set to the string ‘'dict'’,
     return the assumption dictionaries in D corresponding to the
     variables in V.

     You can also get a list of possible assumptions:
          A = assumptions('possible');
          strjoin(sort(A), ', ')
            ⇒ ans = ..., finite, ..., positive, ..., zero

     See also: sym, syms, @sym/assume, @sym/assumeAlso.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
List assumptions on symbolic variables.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
bernoulli


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 441
 -- Function: B = bernoulli (N)
 -- Function: P = bernoulli (N, X)
     Return symbolic Bernoulli numbers or Bernoulli polynomials.

     Examples:
          bernoulli(6)
            ⇒ (sym) 1/42
          bernoulli(7)
            ⇒ (sym) 0

     Polynomial example:
          syms x
          bernoulli(2, x)
            ⇒ (sym)
                 2       1
                x  - x + ─
                         6

     See also: euler.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Return symbolic Bernoulli numbers or Bernoulli polynomials.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
catalan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 219
 -- Constant: catalan ()
     Return Catalan constant.

          catalan ()
            ⇒ (sym) Catalan

          vpa (catalan ())
            ⇒ (sym) 0.91596559417721901505460351493238

     See also: eulergamma.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Return Catalan constant.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cell2sym


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 358
 -- Function: @sym cell2sym (X)
     Convert cell array to symbolic array.

     Examples:
          cell2sym({'x', 'y'})
            ⇒ ans = (sym) [x  y]  (1×2 matrix)

          cell2sym({'x', 2; pi 'y'})
            ⇒ ans = (sym 2×2 matrix)
                ⎡x  2⎤
                ⎢    ⎥
                ⎣π  y⎦

     See also: sym, syms.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert cell array to symbolic array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
digits


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 472
 -- Command: digits N
 -- Function: digits (N)
 -- Function: N = digits ()
 -- Function: OLDN = digits (N)
     Set/get number of digits used in variable precision arith.

     Examples:
          n_orig = digits(7);
          vpa('pi')
            ⇒ (sym) 3.141593

          digits(42)
          vpa('pi')
            ⇒ (sym) 3.14159265358979323846264338327950288419717

          digits(n_orig)      % reset digits to saved value

     See also: sym, vpa, vpasolve.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Set/get number of digits used in variable precision arith.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dirac


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 453
 -- Function: dirac (X)
     Compute the Dirac delta (generalized) function.

     The Dirac delta “function” is a generalized function (or
     distribution) which is zero almost everywhere, except at the origin
     where it is infinite.

     Examples:
          dirac (0)
            ⇒ Inf
          dirac (1)
            ⇒ 0
          dirac ([-10 -1 0 1 inf])
            ⇒ 0     0   Inf     0     0

     See also: heaviside, @sym/dirac.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Compute the Dirac delta (generalized) function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
eulergamma


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 228
 -- Constant: eulergamma ()
     Return Euler–Mascheroni constant.

          eulergamma
            ⇒ (sym) γ

          vpa (eulergamma ())
            ⇒ (sym) 0.57721566490153286060651209008240

     See also: catalan.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return Euler–Mascheroni constant.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
evalpy


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2389
 -- Function: evalpy (CMD)
 -- Function: evalpy (CMD, X, Y, ...)
     Run Python code, automatically transferring results.

     *Note* this function is _deprecated_.
          s = warning ('off', 'OctSymPy:deprecated');

     Examples:
          x = -4;
          evalpy ('y = 2*x', x)
            ⊣ y = -8
          y
            ⇒ y = -8

     You can replace ‘x’ with a new value in the Python code:
          syms x
          evalpy ('y = 3*x; x = -1.5; z = x**2', x)
            ⊣ x = -1.5000
            ⊣ y = (sym) 3⋅x
            ⊣ z =  2.2500

     All arguments can be accessed as ‘i0’, ‘i1’, etc.  This is useful
     if they don’t have inputnames:
          x = 10;
          evalpy ('y = ", ".join( (str(x),str(i0),str(i1)) )', x, 5)
            ⊣ y = 10.0, 10.0, 5.0

     If you need a variable in Python but don’t want it passed back to
     Octave, put an ‘_’ (underscore) at the beginning or end.
          x = 20;
          evalpy ('_y = 3*x; z_ = _y/6; my = z_/2;', x)
            ⊣ Variables effected: my
          _y
            ⊣ ??? '_y' undefined near line 1 column 1
          z_
            ⊣ ??? 'z_' undefined near line 1 column 1
          warning (s);

     The final few characters of CMD effect the verbosity:
        • 2 semicolons ‘;;’, very quiet, no output.
        • 1 semicolon ‘;’, a one-line msg about variables assigned.
        • no semicolon, display each variable assigned.

     Multiline code should be placed in a cell array, see the
     ‘python_cmd’ documentation.

     Warning: evalpy is probably too smart for its own good.  It is
     intended for interactive use.  In your non-interactive code, you
     might want ‘python_cmd’ instead.

     Notes:
        • if you assign to X but don’t change its value, it will not be
          assigned to and will not appear in the “Variables effected”
          list.
        • using print is probably a bad idea.  For now, use ‘dbout(x)’
          to print ‘x’ to stderr which should appear in the terminal
          (FIXME: currently broken on windows).
        • evalpy is a bit of a work-in-progress and subject to change.
          For example, with a proper IPC mechanism, you could grab the
          values of X etc when needed and not need to specify them as
          args.

     See also: python_cmd.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Run Python code, automatically transferring results.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
fibonacci


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 496
 -- Function: F = fibonacci (N)
 -- Function: P = fibonacci (N, X)
     Return symbolic Fibonacci numbers or Fibonacci polynomials.

     Examples:
          fibonacci(15)
            ⇒ (sym) 610
          syms n
          fibonacci(n)
            ⇒ (sym) fibonacci(n)

     Polynomial example:
          syms x
          fibonacci(10, x)
            ⇒ (sym)
                 9      7       5       3
                x  + 8⋅x  + 21⋅x  + 20⋅x  + 5⋅x

     See also: euler, bernoulli.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Return symbolic Fibonacci numbers or Fibonacci polynomials.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
findsymbols


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 827
 -- Function: findsymbols (X)
     Return a list (cell array) of the symbols in an expression.

     The list is sorted alphabetically.  For details, *note
     @sym/symvar::.

     If two variables have the same symbol but different assumptions,
     they will both appear in the output.  It is not well-defined in
     what order they appear.

     X could be a sym, sym array, cell array, or struct.

          syms x y z
          C = {x, 2*x*y, [1 x; sin(z) pi]};
          findsymbols (C)
            ⇒ ans =
                {
                  (sym) x
                  (sym) y
                  (sym) z
                }

     Note ℯ, ⅈ, π, etc are not considered as symbols.

     Note only returns symbols actually appearing in the RHS of a
     ‘symfun’.

     See also: symvar, @sym/symvar, @sym/findsym.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Return a list (cell array) of the symbols in an expression.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
finiteset


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2129
 -- Function: S = finiteset (A, B, ...)
 -- Function: S = finiteset (CELLARRAY)
 -- Function: EMPTYSET = finiteset ()
     Return a symbolic set containing the inputs without duplicates.

     Example:
          syms x y
          S = finiteset(1, pi, x, 1, 1, x, x + y)
            ⇒ S = (sym) {1, π, x, x + y}
          subs(S, x, pi)
            ⇒ ans = (sym) {1, π, y + π}

     You can also use this to make the empty set:
          finiteset()
            ⇒ ans = (sym) ∅

     You cannot directly access elements of a set using indexing:
          S(2)
            ⊣ ??? ind2sub: index out of range
     Instead you can first convert it to a cell (*note @sym/children::):
          elements = children(S)
            ⇒ elements = (sym) [1  π  x  x + y]  (1×4 matrix)
          elements(end)
            ⇒ ans = (sym) x + y

     Careful, passing a matrix creates a set of matrices (rather than a
     set from the elements of the matrix):
          finiteset([1 x 1 1])
            ⇒ ans = (sym) {[1  x  1  1]}
          finiteset([1 pi], [1 x 1 1], [1 pi])
            ⇒ ans = (sym) {[1  π], [1  x  1  1]}

     On the other hand, if you _want_ to make a set from the elements of
     a matrix, first convert it to a cell array:
          A = [1 x 1; 2 1 x];
          finiteset(num2cell(A))
            ⇒ ans = (sym) {1, 2, x}

     Sets can be nested:
          finiteset(finiteset(), finiteset(finiteset()))
            ⇒ (sym) {∅, {∅}}

     *Note* that cell arrays are _not_ the same thing as sets (despite
     the similar rendering using ‘{’ and ‘}’).  For example, this
     creates a set containing a set:
          finiteset(finiteset(1, 2, 3, 3))
            ⇒ ans = (sym) {{1, 2, 3}}
     whereas passing a single cell array CELLARRAY creates a set
     containing each element of CELLARRAY:
          finiteset({1, 2, 3, 3})
            ⇒ ans = (sym) {1, 2, 3}
     (This is implemented mainly to enable the ‘num2cell’ example
     above.)

     See also: @sym/interval, @sym/ismember, @sym/children, @sym/union,
     @sym/intersect, @sym/setdiff, @sym/setxor.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a symbolic set containing the inputs without duplicates.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
heaviside


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 602
 -- Function: heaviside (X)
 -- Function: heaviside (X, ZERO_VALUE)
     Compute the Heaviside unit-step function.

     The Heaviside function is 0 for negative X and 1 for positive X.

     Example:
          heaviside([-inf -3 -1 1 3 inf])
            ⇒ 0     0     0     1     1     1

     There are various conventions for ‘heaviside(0)’; this function
     returns 0.5 by default:
          heaviside(0)
            ⇒ 0.50000
     However, this can be changed via the optional second input
     argument:
          heaviside(0, 1)
            ⇒ 1

     See also: dirac, @sym/heaviside.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Compute the Heaviside unit-step function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
laguerreL


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1148
 -- Function: laguerreL (N, X)
     Evaluate Laguerre polynomials.

     Compute the value of the Laguerre polynomial of order N for each
     element of X.

     This implementation uses a three-term recurrence directly on the
     values of X.  The result is numerically stable, as opposed to
     evaluating the polynomial using the monomial coefficients.  For
     example, we can symbolically construct the Laguerre polynomial of
     degree 14 and evaluate it at the point 6:
          syms x
          L = laguerreL (14, x);
          exact = subs (L, x, 6)
            ⇒ exact = (sym)
                34213
                ─────
                35035
     But if we extract the monomial coefficients and numerically
     evaluate the polynomial at a point, the result is rather poor:
          coeffs = sym2poly (L);
          polyval (coeffs, 6)
            ⇒ 0.97654
          ans - double (exact)
            ⇒ -1.6798e-11
     So please don’t do that!  The numerical ‘laguerreL’ function does
     much better:
          laguerreL (14, 6) - double (exact)
            ⇒ 9.9920e-16

     See also: @sym/laguerreL.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Evaluate Laguerre polynomials.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
lambertw


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1504
 -- Function: lambertw (Z)
 -- Function: lambertw (N, Z)
     Compute the Lambert W function of Z.

     This function satisfies W(z).*exp(W(z)) = z, and can thus be used
     to express solutions of transcendental equations involving
     exponentials or logarithms.

     N must be integer, and specifies the branch of W to be computed;
     W(z) is a shorthand for W(0,z), the principal branch.  Branches 0
     and -1 are the only ones that can take on non-complex values.

     For example, the principal branch passes through the point (0, 0):
          lambertw (0)
            ⇒ ans = 0
     And the 0 and -1 branches coincide for the following real value:
          x = -1/exp (1);
          lambertw (x)
            ⇒ ans = -1
          lambertw (-1, x)
            ⇒ ans = -1

     If either N or Z are non-scalar, the function is mapped to each
     element; both may be non-scalar provided their dimensions agree.
     For example, we can repeat the above calculation as:
          lambertw ([0 -1], x)
            ⇒ ans =
                -1  -1

     This implementation should return values within 2.5*eps of its
     counterpart in Maple V, release 3 or later.  Please report any
     discrepancies to the author, Nici Schraudolph
     <schraudo@inf.ethz.ch>.

     For further algorithmic details, see:

     Corless, Gonnet, Hare, Jeffrey, and Knuth (1996), ‘On the Lambert W
     Function’, Advances in Computational Mathematics 5(4):329-359.

     See also: @sym/lambertw.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Compute the Lambert W function of Z.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
octsympy_tests


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 444
 -- Function: octsympy_tests ()
     Run the OctSymPy tests, log results, and return true if any fail.

     I threw this together by modifying "__run_test_suite__.m" which is
     Copyright (C) 2005-2013 David Bateman and part of GNU Octave, GPL
     v3.

     FIXME: once we no longer try to support Octave 3.6, drop most of
     this and call "__run_test_suite({'@sym', '@symfun'}, {})" instead.
     See https://savannah.gnu.org/bugs/?41215


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Run the OctSymPy tests, log results, and return true if any fail.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poly2sym


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 718
 -- Function: poly2sym (C)
 -- Function: poly2sym (C, X)
     Create a symbolic polynomial expression from coefficients.

     If X is not specified, the free variable is set to ‘sym('x')’.  C
     may be a vector of doubles or syms.  It can also be a cell array
     vector.  X may be a symbolic expression or something that converts
     to one.  The coefficients correspond to decreasing exponent of the
     free variable.

     Example:
          x = sym ('x');
          y = sym ('y');
          poly2sym ([2 5])
            ⇒ (sym) 2⋅x + 5
          poly2sym ({2*y 5 -3}, x)
            ⇒ (sym)
                   2
                2⋅x ⋅y + 5⋅x - 3

     See also: @sym/sym2poly, polyval, roots.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Create a symbolic polynomial expression from coefficients.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
python_cmd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2773
 -- Function: [A, B, ...] = python_cmd (CMD, X, Y, ...)
     Run some Python command on some objects and return other objects.

     Here CMD is a string of Python code.  Inputs X, Y, ... can be a
     variety of objects (possible types listed below).  Outputs A, B,
     ... are converted from Python objects: not all types are possible,
     see below.

     Example:
          x = 10; y = 2;
          cmd = '(x, y) = _ins; return (x+y, x-y)';
          [a, b] = python_cmd (cmd, x, y)
            ⇒ a =  12
            ⇒ b =  8

     The inputs will be in a list called ’_ins’.  Instead of ‘return’,
     you can append to the Python list ‘_outs’:
          cmd = '(x, y) = _ins; _outs.append(x**y)';
          a = python_cmd (cmd, x, y)
            ⇒ a =  100

     If you want to return a list, one way to to append a comma to the
     return command.  Compare these two examples:
          L = python_cmd ('return [1, -3.4, "python"],')
            ⇒ L =
              {
                [1,1] =  1
                [1,2] = -3.4000
                [1,3] = python
              }
          [a, b, c] = python_cmd ('return [1, -3.4, "python"]')
            ⇒ a =  1
            ⇒ b = -3.4000
            ⇒ c = python

     You can also pass a cell-array of lines of code.  But be careful
     with whitespace: its Python!
          cmd = { '(x,) = _ins'
                  'if x.is_Matrix:'
                  '    return x.T'
                  'else:'
                  '    return x' };
     The cell array can be either a row or a column vector.  Each of
     these strings probably should not have any newlines (other than
     escaped ones e.g., inside strings).  An exception might be Python
     triple-quoted """ multiline strings """.  FIXME: test this.  It
     might be a good idea to avoid blank lines as they can cause
     problems with some of the IPC mechanisms.

     Possible input types:
        • sym objects
        • strings (char)
        • scalar doubles
        • structs
     They can also be cell arrays of these items.  Multi-D cell arrays
     may not work properly.

     Possible output types:
        • SymPy objects
        • int
        • float
        • string
        • unicode strings
        • bool
        • dict (converted to structs)
        • lists/tuples (converted to cell vectors)
     FIXME: add a py_config to change the header?  The python
     environment is defined in python_header.py.  Changing it is
     currently harder than it should be.

     Note: if you don’t pass in any syms, this shouldn’t need SymPy.
     But it still imports it in that case.  If you want to run this w/o
     having the SymPy package, you’d need to hack a bit.

     See also: evalpy.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Run some Python command on some objects and return other objects.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sympref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3927
 -- Command: sympref CMD
 -- Command: sympref CMD ARGS
 -- Function: R = sympref ()
 -- Function: R = sympref (CMD)
 -- Function: R = sympref (CMD, ARGS)
     Preferences for the Symbolic package.

     ‘sympref’ can set or get various preferences and configurations.
     The various choices for CMD and ARGS are documented below.

     Get the name of the *Python executable*:
          sympref python
            ⇒ ans = python

     This value can be changed by setting the environment variable
     ‘PYTHON’, which can be configured in the OS, or it can be set
     within Octave using:
          setenv PYTHON /usr/bin/python
          setenv PYTHON C:\Python\python.exe
          sympref reset
     If the environment variable is empty or not set, the package uses a
     default setting (usually ‘python’).

     *Display* of syms:

          sympref display
            ⇒ ans = unicode

          syms x
          sympref display flat
          sin(x/2)
            ⇒ (sym) sin(x/2)

          sympref display ascii
          sin(x/2)
            ⇒ (sym)
                   /x\
                sin|-|
                   \2/

          sympref display unicode
          sin(x/2)
            ⇒ (sym)
                   ⎛x⎞
                sin⎜─⎟
                   ⎝2⎠

          sympref display default

     By default, a unicode pretty printer is used to display symbolic
     expressions.  If that doesn’t work (e.g., if you see ‘?’
     characters) then try the ‘ascii’ option.

     *Communication mechanism*:

          sympref ipc
            ⇒ ans = default

     The default will typically be the ‘popen2’ mechanism which uses a
     pipe to communicate with Python and should be fairly fast.  If that
     doesn’t work, try ‘sympref display system’ which is much slower, as
     a new Python process is started for each operation (many commands
     use more than one operation).  Other options for ‘sympref ipc’
     include:
        • ‘sympref ipc popen2’: force popen2 choice (e.g., on Matlab
          were it would not be the default).
        • ‘sympref ipc native’: use native Python/C interface to
          interact directly with an embedded Python interpreter.  This
          is highly experimental and requires functions provided by the
          “pytave” project which have not yet been merged into Octave.
        • ‘sympref ipc system’: construct a long string of the command
          and pass it directly to the python interpreter with the
          ‘system()’ command.  This typically assembles a multiline
          string for the commands, except on Windows where a long
          one-line string is used.
        • ‘sympref ipc systmpfile’: output the python commands to a
          ‘tmp_python_cmd.py’ file and then call that [for debugging,
          may not be supported long-term].
        • ‘sympref ipc sysoneline’: put the python commands all on one
          line and pass to ‘python -c’ using a call to ‘system()’.  [for
          debugging, may not be supported long-term].

     *Reset*: reset the SymPy communication mechanism.  This can be
     useful after an error occurs and the connection with Python becomes
     confused.

          sympref reset                              % doctest: +SKIP

     *Default precision*: control the number of digits used by
     variable-precision arithmetic (see also the *note digits::
     command).

          sympref digits          % get
            ⇒ ans = 32
          sympref digits 64       % set
          sympref digits default

     Be *quiet* by minimizing startup and diagnostics messages:
          sympref quiet
            ⇒ ans = 0
          sympref quiet on
          sympref quiet default

     Report the *version* number:

          sympref version
            ⇒ 2.6.0

     See also: sym, syms.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Preferences for the Symbolic package.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
syms


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1253
 -- Command: syms
 -- Command: syms X
 -- Command: syms X Y ...
 -- Command: syms F(X)
 -- Command: syms X ASM
 -- Command: syms X ASM ASM2 ...
     Create symbolic variables and symbolic functions.

     This is a convenience function.  For example:
          syms x y z
     instead of:
          x = sym('x');
          y = sym('y');
          z = sym('z');

     The last arguments can provide one or more assumptions (type or
     restriction) on the variable (*note sym::).
          syms x y z positive
          syms n positive even

     Symfuns represent abstract or concrete functions.  Abstract symfuns
     can be created with ‘syms’:
          syms f(x)
     Here ‘x’ is created in the callers workspace, as a *side effect*.

     Called without arguments, ‘syms’ displays a list of all symbolic
     functions defined in the current workspace.

     Caution: On Matlab, you may not want to use ‘syms’ within
     functions.  In particular, if you shadow a function name, you may
     get hard-to-track-down bugs.  For example, instead of writing ‘syms
     alpha’ use ‘alpha = sym('alpha')’ within functions.
     [https://www.mathworks.com/matlabcentral/newsreader/view_thread/237730]

     See also: sym, assume.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create symbolic variables and symbolic functions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
vpa


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 664
 -- Function: vpa (X)
 -- Function: vpa (X, N)
     Create a variable-precision floating point number.

     X can be a string, a sym or a double.  Example:
          x = vpa('1/3', 32)
            ⇒ x = (sym) 0.33333333333333333333333333333333
          a = sym(1)/3;
          x = vpa(a, 32)
            ⇒ x = (sym) 0.33333333333333333333333333333333

     Be careful when creating a high-precision float from a double as
     you will generally only get 15 digits:
          vpa(1/3, 32)
            ⇒ (sym) 0.33333333333333331482961625624739

     If N is omitted it defaults to the current value of ‘digits()’.

     See also: sym, vpasolve, digits.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Create a variable-precision floating point number.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
vpasolve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1262
 -- Function: vpasolve (E)
 -- Function: vpasolve (E, X)
 -- Function: vpasolve (E, X, X0)
     Numerical solution of a symbolic equation.

     Variable-precision numerical solution of the equation E for
     variable X using initial guess of X0.

     Example:
          syms x
          eqn = exp(x) == x + 2;
          vpasolve(eqn, x, 0.1)
            ⇒ (sym) 1.1461932206205825852370610285214

     Systems of equations are supported:
          syms x y
          eqns = [y*exp(x) == 16; x^5 == x + x*y^2]
            ⇒ eqns = (sym 2×1 matrix)

                ⎡     x       ⎤
                ⎢  y⋅ℯ  = 16  ⎥
                ⎢             ⎥
                ⎢ 5      2    ⎥
                ⎣x  = x⋅y  + x⎦

          vpasolve(eqns, [x; y], [1; 1])
            ⇒ (sym 2×1 matrix)

                ⎡1.7324062670465659633407456995303⎤
                ⎢                                 ⎥
                ⎣2.8297332667835974266598942031498⎦

     Complex roots can be found but you must provide a complex initial
     guess:
          vpasolve(x^2 + 2 == 0, x, 1i)
            ⇒ (sym) 1.4142135623730950488016887242097⋅ⅈ

     Some of the examples above require SymPy version 1.1 or later.

     See also: vpa.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Numerical solution of a symbolic equation.