/usr/share/polymake/demo/regular_subdivisions.ipynb is in polymake-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 | {
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Regular subdivisons\n",
"\n",
"*Regular subdivsions* of point sets appear in several different applications. `polymake` allows to define regular subdivisions of point configurations (e.g. the lattice points of a lattice polytope) via weights on the points. The weights define a *height function* on the points, and the subdivision is described by the lower hull of the polytope defined by the lifted points (see [here](http://link.springer.com/book/10.1007%2F978-3-642-12971-1) for example to get an idea of the mathematical backround). Let us look at an example on how to create a regular subdivision.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$M = new Matrix<Rational>([[1,0,0],[1,2,0],[1,1,1],[1,0,2],[1,2,2],[1,1,3]]);\n",
"$w = new Vector<Rational>([0,0,1,0,0,3]);\n",
"$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
"print $S->MAXIMAL_CELLS;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
" {0 1 3 4}\n",
" {3 4 5}\n",
"\n",
"\n",
"The six points (given by the six rows of the matrix `M`) define a pentagon with interior point `(1,1)`. The weights `w` must be given in the same order as the vertices. So in our case the interior point has weight `1`. Switching to the `fan` application we may create the regular subdivision via the polymake object `SubdivisionOfPoints`, whose input parameters are the points `M` and weights `w`. A maximal cell of the subdivision is given by a set of indices, representing the points that cell contains. In our example we got two maximal cells and the first one is a quadrilateral with vertices 0, 1, 3 and 4.\n",
"\n",
"We may visualize the regular subdivision if it is at most three-dimensional. \n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$S->VISUAL;"
]
},
{
"attachments": {
"subdiv_of_points_1.gif": {
"image/gif": [
"R0lGODlhLAEAAfcAAAAAAAICAg4ODhQUFBkZGRsbGyYaGjMAADQAADYAAD8AADAVFSEhISIiIiUlJScnJywsLDcrKzQ0NDY2Njc3Nzg4OD8/PzdPPz9LQ0AAAEUAAEYAAEsAAFAAAFQAAEA8PE05MVwrK148PGs8PHA/P01AOEREREVFRUZGRkdHR0FLQ0NPR0hISElJSUpKSkxMTE1NTU5OTkpTS0hUTEpXTkxYUE1ZUU5aUlBQUFFRUVJSUlNTU1RUVFZWVlBcVFFdVVJeVlNfV1hYWFpaWltbW1xcXEJyUk19XVVtXXhLQ3VtXWJiYmRkZGZmZmpqamxsbG5ubnBwcHJycnR0dHZ2dnp3d3x3d3h4eHp6ent7e3x8fH19fX9/f1ODY1SEZFyMbF+Pb2GRcWSUdGaWdmmZeWmaeWqaemycfG6efnCggHOjg3SkhHamhnioiHqqin2tjX6ujoMAAIcAAIkAAIoAAI4AAJ8gIKwAALIAALQAALwREbs8PIZYUJBtXYJ3d4V3d4B7e71lVbxtXcYAAMgAAMoAAM4AAMIXF8cYGMwSEs4SEskZGdEAANIAANUAAPUAAPUFBfIJCfsCAv0AAP8AAP8CAv8FBf8NDf8ODvgeHuM8PP8iIv4lJf8mJv4wMP80NMBCQs1iYt13d953d+J3d4CAgIGBgYKCgoSEhIeHh4mJiYqKioyMjI6OjpSUlJWVlZaWlpiYmJqampycnJ6enoCkjIGkjIyklICwkIKykoS0lIi4mIq6moy8nI6+nqKioqWlpaioqKurq62tra6urrGxsbKysrOzs7Szs7ezs7S0tLa2tri4uLq6ury8vL29vb6+vpHBoZHCoZPDo5TEpJbGppnJqZrKqpzMrJ7OrqHRsaLSsqTUtKXWtafXt6jYuKnZuarauq7fvrPkw7TkxMOzs8ezs+uurvKzs8LCwsTExMjIyMzMzM7OztDQ0NLS0tXV1dbW1tjY2Nra2t3d3d7e3uDg4OLi4uTk5Obm5ujo6Orq6uvr6+zs7O3t7e7u7iwAAAAALAEAAUcI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIseNDea3s6ZPFQp7HkyhTqlzJsmVFZi9kgACh4kUzlzhz6tzJUyczGDfICR1KtOjQGTZ7Kl3KtKlLZjGCGp1KtepQGi5uOt3KtatTqFKtih1LViiNFlq9ql3LFiIzHGHLyp1Ll1wNtG3z6l3KTEfcuoADC67BIu3ew4glMsvhQ7Djx5Cp2iicuPLhxUAia97MWTJly6BR5oNCxIkLYPz+9Q3SubXr15JROEvoDx4VLv5C6y4oihInRT+6fRM3Drbx48iJ2lDUqdKof/fq7Z4+cEuFcNiza9/Ovbv37+DDi/8fT768efJDslBfX/36+ffw48ufT/+7EPXs12txX7+///8AvndffvrxF+CBCCbY34AETrefghBGKKF4PeDXoG4PTqjhhhFWeOFuGXIo4oj98WDhh5aFSOKKLJYXw4koJrYFBS0eyA0vX+xSI30vwBjjYdbt6F8ttQjZnws+/qhXkEY2uSOSSlY2o5NUsthCklGyNWWVXHLIApZZqrVll2RG+GWYQNJY5poJpgAmmlyNyeac/qHwJpxObTEBnXz2d8KdeDKlpxlo5IIGG9f0qWh5KFwRDBM5CNNPoFw9UsknkyhB5Kacdurpp6CGKuqopJZq6qmojtoHJZ9YogmlsMb/KuusiPGzyhSoqHJPbrT26qtApFyCSSizyKJMPrz+qiyaMNlgFVKGLSstdWBpdla002a7VbXJEXWttuCu9NZf3cp1F7bhppvQYuSW21kNKaCrrq99NebuvZ7JOy+Ki/2A77+CTabvvpfpkBnACL8mMMFc2fMOLDrQkPDECNsg20D4nBJFPa5cwU+yDGf0gQFFLmoyeUhEAEjIKTF58svhpccySi7DbDN3DM7ckYo39xxOzjpvxLPPNgMddEZDE/2yh0cLbaDSMJvYtNNQ9yz11Eg/DfM1R4yhhhdvgHNyj1hnVPPLAAgwAAA9Q1n2RWdXbbLbb1ckp9xzA1q3Qnfj/63olXvbrabfJp8Z+ER9E06nm4cjPrjifdrZuESJQ77mn5NHpKflippgSuYQ6cmGNeB4MwYunJeJQin9pLOFpKDHLvvstNdu++076eOAFFHAcs+kuAff0DNYxFMPK03QI/zyByUzxyF60GEF89QT1KxR0FaP+0/tTpW99pNz79j34DfNLWfflk/w+celr7607OPr/vuwvuUsxUWdS3+Y4+JPFmED2x9o2OW/wOhPgAPMQfcKCBh4BRCBTKkXA42zMAg2RYITdFcFLfiUHPgrgxPbIAc50i8QglCEI1SMwUzIwqKgkIP+iKEMrbfCFtrQM7PhYD7qoQ9/LOEVytABa/9uSMSxWCyHBTnGEopwBeAFrx330cEMzECNIlpRLkf8Bz/e0Y52oOIJyrvdMeRwh0XUoQQzSKMa18jGNrrxjXCMoxznSMc62vGOcVxAHRBxhzhUL26pIxMR9CY7QAaSSzL7o9YOySWjCc+QjHSSI4OXtEhKkpCxq6QljTRJ3Glykzvq5O0+CcoWidJ2pCzliphGvVSqckSsZJ4rX8mhWC5vlrTUkC2Fh8tcSuhqrVykL0kETFkKc5giKuYtj7kocICDG9v4htjGhknQaeFxNitdOLjxBjF4g5raq5zJeGEEXUyDGteY5qLIpsib1QIAAQAAAJBwM7oxD5LI3JA9l4f/z3xOaJ+PZKY/JQTQ4IlzoBIC3B+xidANKZR6B22ogh56T4ZKVEKGg6hFLwqhjFaUoxxi3EJBuiGRapSkGpLcSFEqIZWelKURculHYQohzP1xTzRVkOfCOQFwZIMa2lBnTvuzOn/gw3ggs52e2pCob4wBDkOt0xXYAQ0twM6gE0jDGdgABjhwI6pEZZ06TkEMJ9pODnjAAx38cIy2uvWtcI2rXOdK17ra9a54zate91rXKswhD3ioQwoHS9jCGvawiE1s2frhDmIMgxjIUmzg9OECWjwjHZGVbN3cMQBWtMIEtMCHZus2j3r0gx/5gAA8Rvs2dzhhClMogjP0wdqm/yGDEJnIxCDKUduybSEBHvBAAh7Y23Rd7yhJKW7Ijou95CrXuEAZC/meC7/oymW61KWV+ACD3ewGaruOmZ93+RcV9OFlvFGK32awQlz0DrC87cuKe/OjXuOId76VqW9y7ovfvOjXXfztb1egcj//HVDAA8ZBgSd4YATzBS43bLCDc9I/KwJwwjgh4BWHImEMd0TDG85fvDz8YQWG2CoOJDFGQHxiFI9YxSpcYIuncmEYNwSDM6bLC208EBznGDA7VjEzdmCvHz8myA4uoZE3g+T5KnnJnWlydp8MZddIubdUrjJsrizZvhxMy93ismG9DOZ/3eAzoyVzmSuGZgv6Y/8fy/iFO/YBvNWsGX9ZpE0/3sEO5jUDC8uIxxJkwQ8737mAeTZIPmLBgCmYFXf+oEULCDAFIR76hBcbiD/WQQVXtKKJy4NHMeKxDB2sYBeXZmGe52EBBkjgAQ1ohfDMcY4t6AADZZCGOFLdwiOiYyC0QMWjaTcISHCCEXy4hbKXzexmO/vZ0I62tKdN7Wpb+9rYlnYSGrGJSBSCeiLYQAcQQE+w9scWB+AAB/7QTnMDaJDhFKi7zwPvds+7P4mEqLzvjZ5qZq6f/CbPKWsH8ICLZ+C0K7jBwYPw2Sl84d5puOx6CfHtSDyT+654dy5uzYxr3OL+nhzFP/6zkDdu5B//53jmUK5xlYvc4yTHjstPDvOYz/xwLK/4LilZc5Lv3JM9//jPRxl0jQ8dlUXXuclxnnSIH712OXf60gMX9YUrk5dNt/rU91Z1g1+d5zE3z9eBHvbyjJ3oZSfP2ZGe9vGsHepZN/iLtNf1JnmjGnBwQzS2IdQ+sbOVGzVZLtLwDW7k4gvfAOdKffbMXoShF33n099n2jNu6MILvfBG5CW/9bo9vEy9QMIFuuCF0qPhZQXF3ee7hAQANKAAACgZzFJ/u9WzXp7lthntlRr3gO+e4L3n9+8THvx7D9/hxZ/38QuZfHcvP3YRbXs4ng+66Led+v8OvPSxQ1F+an/73X/k//elH36Djr/t5Vf9+dPuUe9vHzztF//7vxN/88/fO/VX//27k//ar7/sJkV5+5cdAeh+A6gdBSh/B0iAnfc21pd2CWh/C4gdMmWAE1iBCniBDehb/xd2GCiBE2hTLxWCG4g1mzOB4SCC94RTE7hTN4WC4eCCEMWCCyiDK9gLa5AGbEANm5d2q6MPzZAK0DBsCZdVPJgNZqAL+4cCUYAKTvAEV6V6E9AG2BAOTgVV97c6/OA6UVh7E0AGu7ANu3AGvrCErMOFRCg7xwAKiRAIcLAGb5BO9ycIdrAHxiAPysAOSTU7x1AIleAJjhACTjCIhFiIhniIiJiIiriIjNiIji/4iJAYiYtIAo7gCZJgCMfAPFSgABowAuVTBRnAAVTAY6RYiqZ4iqiYiqq4iusREAA7"
]
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"If you use javaview for visualization, then this might look similar to the following:\n",
"\n",
"![{{:tutorial:subdiv_of_points_1.gif?300|}}](attachment:subdiv_of_points_1.gif)\n",
"\n",
"Note that the quadrilateral contains point 2 in its interior and that this point is colored black. This corresponds to the fact that the lifted point 2 lies above the convex hull of the lifted points 0,1,3 and 4. Therefore the maximal cell describing the quadrilateral does not contain the point 2. We may change the lifting function by giving point 2 height `0` as well:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$w = new Vector<Rational>([0,0,0,0,0,3]);\n",
"$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
"print $S->MAXIMAL_CELLS;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
" {0 1 2 3 4}\n",
" {3 4 5}\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$S->VISUAL;"
]
},
{
"attachments": {
"subdiv_of_points_2.gif": {
"image/gif": [
"R0lGODlhLAH/APcAABMTEx0dHSoBAS0AADAAADIAADYAAD4aGj8/ACEhISMjIykpKSw4MC46MjMzMzc3Nzg4ODo6Ojw8PD4+PjNANzRAODdDOztHPzxIQD1JQT5KQkwAAE4AAFYAAF8MDEs5MVI3L1g8PFw8PHwAAHkWFnwWFmk8PG08PHw8PEZGAHd3AHh4AEBAQEJCQkREREdHR0BMREFNRUlJSUpKSkxMTE9PT1ZURFBQUFNTU1lZWVxcXER0VFdtXVZuXVZuXlZ6Ylh8ZFp+ZmJ6XWJiYmVlZWdnZ2hoaGpqamxsbG1tbW5ubm9vb3BwcHFxcXJycnR0dHV1dXZ2dnt3d3h4eHp6ent7e319fX5+flSEZFqKal6ObmCEbGOHb2CQcGOTc2SUdGiYeGqaemycfG2efW+ff3WZgXGhgXKignSkhH+ji3ioiHqqin2tjX6ujoAAAIQAAIoAAJsEBJ8AAJ4GBpsbG50eHoY/N5kpKa4AALAAALwBAb4BAbgREaQ3L643L6U2Nqg8PKo8PLk8PL08PJd3d6xtXaV3d7R3d8QAAMcAAM8AAOgAAO4AAPcCAvoAAP8AAP8ODvYcHP8REf8oKP8xMf8/P8toWMp3d813d893d9RlZdVnZ/9ERP9SUv9XV/9eXuJ3d+Z3d+53d/9hYfZ2dvZ5eaKiALzUUtbWDNzcC+LiAP//Dfz8Lv//L8LaXYCAgIKCgoSEhIaGhoiIiIuLi42NjY6OjpKSkpSUlJaWlpubm5ycnJ6enoCkjIKkjIisjI+zjICwkIKykoS0lIi4mIy8nI2+nY6+npa6jKKioqWlpaioqKurq6ysrK6urrCwsLKysrOzs7Szs7azs7W1tbu7u7y8vL+/v4/An5DAoJTEpJbGppjIqJrKqpzMrJ7OrqDQsKLSsqTUtKbWtqjYuKraurLiwrPkw7TkxMKzs/Kzs8LCwsbGxsvLy8zMzM7OztDQ0NPT09XV1dbW1tjY2Nra2tzc3N7e3uDg4OLi4uTk5Obm5ujo6Orq6uzs7O7u7iwAAAAALAH/AEcI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsePDerny8ePlwp7HkyhTqlzJsmXFaFQs2PiQAUo0lzhz6tzJU2e0KRnQCR1KtOhQDE9u9lzKtKnTltGiBDVKtarVoRmcKH3KtatXp1GnXh1LtqxQDFq/ql3LVmI0J2LNyp1LFx2GJlvb6t3LM5oSGHUDCx5MVIOSvHwTK47oFzDhx5AjD9VwBPHiy2yjIdEgubPnz4UrYx6dcp+tGlZyDOnnL9oRx6Bjy54tVIMRywP7LXNQzR/p3wUzPfr0yMO54+doK1/O3I6jUY8uAZ9+MEKvctiza9/Ovbv37+DDi/8fT768efG9WFBfX9D6+ffw48ufT997evb4/7mvz7+////n9TJBfuztB+CBCCZYn4AErmegghBGKGF3DDY43YMTZqjhgRVa+BuGG4YoYnwdejgaiCOmqCJ4JZp4GYorykfONlm0AU6M87XoomIw4ujjiDruyFePPxaZYZBC6kWkkUwqiGSSbC3Z5JT/9SIBlItJSeWW9FmJJY/XcSkmh1d+OWSYY6bJn5dm7qWlmnCyWGabbUEARDDkgMMGGXH2SZ6VzyihAxTv+EbnU4M44skif1zj6KOQRirppJRWaumlmGaq6aacWnoHI500IsihpJZq6qlt9TPLE7LMoo+hqMb/imookEiiiTLJVMMPrLL2CiVMcRmVQVK+FptfWJKhhZuxzIIlFXNFZbVss9Ru9Faw0Mp117TVdmtQNEvEkK1yGDDBrbemNjbuulZpkMS56BIYTRKwsWtvXZTBG69ertV777+f2abvviz5k48+/zBzRAPJAeywvRoUsdU7NNSyzgu6IExwR2/66XE5922sUscf9xmyyCiRXDKcJ6Pskcorp/mkyxfBHLOYM9Nckc03b5mzzhPx3POUPwMdkdBDM1m00Q8hbeQwXWyzDRpgkOPx0kw35DSOv6jSCiuqABMz1lkvtHXSPpJddkJnox2j2mtXh6bbH7MZ985z0+2n3XcH/5233nHy3ffRfwOupuCDN1244WMinnhDECzOOJeOP74QBEGoEc7Uakze+JX98HJFoZaXbvrpqKeu+uo77aPAEkfc8irrtDtkjRPz2BPLEfjU7vtB07zBBx9vSPH78QQBKyyxyK+ufFlIDdy8yz9hO5ey0zON7GcXpJX9vtsvJ+33zIZv7/jklxoNFNY7jH36SV77sFnbwi/vEu3PDz1e9pOmrv6dKZf0+teXvwBQOe4aIAFT8r8DjitfC8zJvPzlwHtBMIIemRdnKsjBC2KQIprZIAdHWBQPfvAf/tiHPfLhD1j1i4QwHIvAGOIPffTjeAZ7Byxy4IzXxPCHcplhQf/uwQRatMAavFodPmIxgyNUYAzGaBgQp2iWiCEmB9dIIupOAIc4uEEAPgijGMdIxjKa8YxoTKMa18jGNrrxjWkEwQjmAAdCNK9tnjuSeqaHxzxKqGXH66MfIQTI3wlykAkqpO8OiUgO7fGOkmvkj+D2OEZK0j+UTJwlL7mmAfExkpxcUSYHt8lQ5siTkDRlk0bZt1KqEj6svJsrXxkgVCJvlrQsTyzjhstcjmeXa+ulhMgxjmIQAxxWu5otAwnKOJGDHNz4QhuSabJlGrKZaUKGGHaAhSxkAQ3UDJw1F4lNMSFABStIwc2AWTZh+pJF46ydO99pn3jSbp705A47s4b/z3xqZ59M66c/sVO5e5ZzoGTKnkAHWlDWLdSfDV3dQ/MZUdVNlJ4VTd1F35lR1G3Ulx093UdzGVLTjZSWJS1d5BAKpDkhDwJlCAYa1HCMcLLUSVfahzJ0QQ8tpg4CP8hGOcghDC/c9I8S8EfoRufT04GCDpYYBhnQUNOjRqgPdRCFP9bxDHs0tXTR6AAHRKDAxEXDABswQVlPyNa2uvWtcI2rXFHlD3g04667mmvc+CGDZFxjHXnVa9neAYBb4KIFu9iHYMtWD6/2Yx8LqMdisxYPJSRBUICdrM6kgYhIRAIR6dAs06JAgA1w4ABrFW2vnieUYaVWteqjQvtcC1tv/7HWKrStrbGqdz3m6RZVvA1M9H6rvmc95n3ExZL5IIPc5JpouZ1Bn3PlZVzaSHe604Gudb2H3dFolznX7e5evjuu5opXLeS1l3nPCxa4jLB+7G2K/GII3/j6xL1UrK99VzJfKh6Ff/tFCbjE5V+q6DfAGBlwgcciQARfpIELluFhHOwWA0Z4LgmkcEMgfGEMv0vDCOFwh/H1YRALRMQjFowJAzzBFAdMNPttsYtjs+LpanDGCISxc2+MY+bUWLQh7PG6fqxXzRBYyOwi8ltfiGSACTGC/qiHM2iRDHjc8B9MbvLDnnwQgyVjHr+bxy2oEboh8AMaPtTyAblMEHfkIP8ASPzdVonwABkcQYRqdiCX+WGLKbQDB3GuHT6SwYxmHIECZpBinitoRYGwgwYTaEECIOCO2qmDFJs4AgPIgA1zKHrRjC7CIUoRCoG8oh21C4QiKIEIElTh1bCOtaxnTeta2/rWuM61rnfN617fugSJmIQiAHG8aAzAAAPggVUn5IsCGCAEr+XlQZfdpUfectrUlo8i5YntbMPS2sz0doS2bVBxExLc1zS3k9BNTnUnkt3cdjeCyO3QbssbPfAu972rZM9675vfCrX3v+sZ8IH3B6BGO+krEQ40hauS4TpzuCkhTjOJh5LiLrM4JzGOMo1fkuMi87gkQb4xkTeS5AT/MzkiUb4vlQ+S5fFyuR9hji6Z55Hm3rK553DeLZ1PjufV8jnjgE4toRuO6M0yOuCQziyl643pxnK6dsKhBS+IoQvFsOnh+i1RgTfpG9woxziC0YVxKLPgQ4OmF9YQjrpx3aJeZ5I2sBAMb4RDHFqX2ds1GvcfuWIVqziFNgbvDbejvWS9MAUqUmGKHoxt7x7t+4+EIATJ4wjqxZK62zDvK82jjfO98nzSQC8r0Q+N9LEyfc9QjyrVrxPyIrW8wVl/Ktc//vAGz5FLw537Lu0+3b3XPe6D/56UWs72KzN+JWU/cOVrkvn/dj4pob9v6beS+ve2viyxL2/tS5v42v597rvBD0vxx5v8xTe/vtFvHu8Hk/vudn874a9u+fOT/ua2f0DxL279J5z/3uZ/DQeA2SaAOrNS7Nd+6sc6CJiAf7KAqwMBaSAO3fANz+SAcoJC+FAPgUU7ELAFXbAGZxAG24CB32El86AMN2AEpFM7QFUMQ1VUJmgfEuAO8rALTOU7dgKDRPUFM0ghoCM6LeiBXPAFayAGYPANP6hPoJMMsDCEqoMJj1AJj+AHS+gdhfAInBAdx4MCebAHckAI0TCGZFiGZniGaJiGariGbNiGbviGcBiHa3gCcqAHeGAIJpaHeriHfNiHfviHgKgWAQEAOw=="
]
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"![{{:tutorial:subdiv_of_points_2.gif?300|}}](attachment:subdiv_of_points_2.gif)\n",
"\n",
"This new height function generates the same polyhedral complex, yet a different subdivision of the point set. Note that the maximal cell that describes the quadrilateral now contains the point 2, but it is not a vertex of that cell. This is the reason for the yellow coloring. This corresponds to the fact that its lifting lies in the convex hull of the lifted quadrilateral, whereat it is not a vertex of the lifted polytope. Changing the height of point 2 again to `-1` the subdivision should become a triangulation of the point set. \n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$w = new Vector<Rational>([0,0,-1,0,0,3]);\n",
"$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
"print $S->MAXIMAL_CELLS;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
" {0 2 3}\n",
" {0 1 2}\n",
" {1 2 4}\n",
" {2 3 4}\n",
" {3 4 5}\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$S->VISUAL;"
]
},
{
"attachments": {
"subdiv_of_points_3.gif": {
"image/gif": [
"R0lGODlhLAH/APcAABMTEx0dHSkAACkEBC0AADYAAD8AADQSEjgUFCIiIikpKSs3Lyw4MDMzMzc3NzI+Njg4OD8/PzhEPDpGPjxIQD5KQjhQQD5WRkYAAE0AAFYAAF4LC0s5MVc8NFg8PFw8PHcAAHgAAHwAAH0aGmk8PG08PHA/N3w8PEJCQkREREZGRkBMREhGRkhISEpKSkxMTE5OTkRQSEJaSkZeTlZURFBQUFJSUlRUVFZWVlhYWFpaWlxcXF5eXk9zW1VtXVZ6YlhwYFpyYlx0ZF52Zlh8ZGJtXWBgYGJiYmRkZGZmZmhoaGpqam1tbW5ubmB4aGJ6anBwcHJycnR0dHV1dXt3d3h4eH19fX5+flqKamCEbGOHb2yDdGGRcW+Te2mZeW2efW+ff3WZgXichHqfhnCggHKignSkhHWmhXyhiH+ji3ioiHytjIAAAIQAAIoAAIAaGpsEBJ8AAJ4GBoY7M4k+NpYmJpooKKIAAK4AALAAAL0BAbgREaIiIqM2NqQ1Nak8PLk8PL08PIdAOJd3d6V3d8UAAM8AANYMDNwLC+IAAOgAAO4AAPcCAvoAAP8AAP8NDf8ODvYcHP8REf8oKPwuLv8vL/8xMf8/P8toWMp3d813d893d9RmZv9ERP9SUv9XV/9eXuJ3d+Z3d+53d/9hYfZ2dvZ5eYCAgIKCgoSEhIaGhoiIiIuLi42NjY6OjpKSkpWVlZubm56enoCkjIikjI+kjIerk4uvl4GxkYywmI6ymom5mY29nZS4oJa6opq+pr+CgqWzm6KioqWlpaioqKurq6ysrK6urrKysrWzs7S0tLe3t7q6ury8vL6+vo/An5DAoJXFpZXGpZbGppzAqJnJqZrKqpzMrJ7OrqHRsaHSsaLSsqTUtKjYuKrauqvcu63dva3eva7evrLiwrPkw7TkxLXmxbfnx7rryrztzL3uzb7vzsKzs/Kzs8LCwsbGxsvLy87OztHR0dbW1tjY2Nra2tzc3N7e3uDg4OLi4uTk5Obm5ujo6Orq6uzs7O7u7iwAAAAALAH/AEcI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsePDerDy8ZOVwp7HkyhTqlzJsmVFZTkk0OCwAgczlzhz6tzJU6cyHRXKCR1KtOjQFTdu9lzKtKnTlsp2BDVKtarVoTFsKH3KtatXp8qMTLhKtqxZojFgbP3Ktq3bh8qOjD1Lt65drGrf6t3LNC6Fu4ADC0b7Yi3fw4gjKkMyd7Djx5CFxiicuPLhxX8ja97MGasLw5ZDc9znCoaVHEf6+VOWJHPn17BjS1bhLGE/Yg2Y+RPNu+AmR6AcbSBHnJzs48iTC2pEylGm3tANIksyy5t1b0NybFnHvbv37+DDi/8fT768+fPo06P3BUXIdW+zXkSfT3B69ff4rTvRrr6///8ABhheL024lx9+8dGnIDI73Hfgg9c5ocN2AlZo4YXhUcOEgRBCmKCC8yGjg4MdlviehBRiqOKK3VGDBIcmxvghiNCJSGKMOOLnxA4psuijeNQYAWOORMInH4015nBjkUyeyOOPFVLDw5BNVjmLC0gmuWSVXOI3hBE9QskdNTlQ2eWZ8GGZJW/I4LAlmnC+NwQSYfZHTQ1OxKnngVeuyaabewZa4pwppuMNGWPgKeiifKrpp2XI3PAmo4HmAkOe1wmBBKaUdtrno5BK2qmelnJaZBBJmDpql7O0ACqkL0z/uuqDt7yg6qJAbDorka2+WhkyLcg6qi4u3Lrrg0EcYeyus6jga2LAChtnLi0seyyXQRhh7Z7NPotYtJVWe+241wXBw7ZNzpKCt4cho4K0EFKLLrn0vhfEDvN6uC67eyGTAry5pJBvvQTjOIQN+arLb78pEIFLN9msAUbAAxdsMZxD1PAEgikg08QOU8Sz28JcBdLIJ4r4sczKLLfs8sswxyzzzDTXbPPNOOc8cx2LeMIIICQHLfTQRCPWzypSqLKKPiMX7fTT/4gCiSScDCMMM/w0DfXWz/40VVU1gcb12L15HVlWYpOtNlhiJVdUWmmvLfdGcTXmtl1wz603XHLd/33cZHHvXfRidvtt+NuUCe4t4Yc3LhjgikPHmmuOV95ZDLRF/pQ/+ejzjzFIMGCc5aQ3jnltAsXzQivuqBCL55pzZF92dYpp++22+xKFEDPGfpJ9D9KO+/DEp8eemUb6nhIySMAbIX/FR+8jgcg/2Lvyso+I5hATSu99eS5Wn+P12GtkI6M71v79ikGKz+qR5cuu5LXpr++flO4H+mn8GyEzv8X1sx81dpC/Ve2Pfxlpk/PIRSgfUcMGBaTXARF4EQVejEgNBE81zuCNb+xiDem4U8UuOEEKVsSCF+QSLRJRCUokohYp5FIJTTiRSC0whaUykRCUMEISOoqGJxRVDP/xkwtb7QlVPbxWr4BoEWS44IaUIlYS45SrKQpqiUykCLiuJcUhIktZ4+pWFrUYLErJy4tnypYVZbSvMUrEXVB80BnROCtzrfE9CnPjG99VpFyo4I50XNQQcNDDPOoRIv6aFMUCychBKcp6bTykQ/xFBDXYIgUzUEMjN9mlIcBgYwrrhyyuIDJJmvKUqEylKlfJyp3sIwFNWMIrmNbKWjqkGVGYhz1SsQR82PKXB0lGG/awhzZQAZjIJAhMvnYUmySzlWYzS9ieechoBgYpgaNm5KLCzLNpRZuaC0vhYpM3cJJNnJYrpzmFVrfSGUWd6wRVO91ZFnjGcz7zpOdd7Hn/T8T4RZ+agVw/34IZgMpGoANtCuMM6jeEJhQqjGFo6Rz6ULohgXIS1WcMPlNRi0wuoyB9W+Y6OhB/7MMe+fBH0z4a0pZW5XQM8Yc++oFMzsUDFTk4RmtcylOzwLQg94ACK1DQDK2xEh+pcAESHvAFXoyup1Ct50gHkgNnGDWVJXADHNggACd49atgDatYx0rWspr1rGhNq1rXylazdkAEcnDDIJIJPOxAz354td/xrEM+W9ZVTnfNq2ChtFcEwQ+Zfz3QftQ32Mampxft6VBfa8k85y3WsZgtD/VwNNlWMiiOl80sZnuxISZ1lpXn4xKKRLu+8L2PmqlF02pZazvX/8LptKuMrZ5mS1sL2ZZbhwWmbgUVwN6mp32eCu4v/RfHKhXXuN9B7qxwq0rmkuu5osUfuWZI2f/VC7sCnFLBuOtZ71rsS4wV0wAjaMAfCte8KRzCEdLr2zKhkbyoBRQjM+hbG2yMkfjNrX45yV/wqAMd27iGOdTRokdyMsDVHTAnr1Ng7qgjHeFQQ6IAKUH3LlfCE/ZSErYQDFz0AAYWwIIZuhFiBHnYr0JscX5yYQAQhAADHLYYhFNpQxlfJ4cH2mGOt/tiysaYk0DGERJbvGNU9riRReTwkhuJRcTaoLmrqtWQ8xMEXd3XVc90IpYXpeVrVTGGVRZuGQvWRYsla//LVnJWmNc8rjaj8c0SlDNd6byqXBRLxmo8lhj3PGYczdHH+Am0pyKp5kLHS1yIjpEdF2VIxPL5TIeONJMmHadKC5ePXcq0ptF0L0B6ermg7iOkR02pQU7x1H5NtYn8CGdWGwxh42P0cv9VokXa+mIZQxesKZuCMODCDGrgBYu94etfozHYfFrXPoYRC3pclccp+AE0vNGNLgjM2S325H/hkwJ/iJKU10ZlKPiAiRTIwAzKBnekPWkCPozCH+5Ahj3SbUpkaCADH0BGmAuQARIInKQIT7jCF87whjs8dv6QhzEmnrWHM5EfLRCGM9xRcYvTMB4AeAUsUCCLfXichvX/2Hc/9qGAepzchPJoAhM+xvGXxy8ZhYhEJArBDptTsAoHyEAGEJBNn+ttmUSZptHDCRSwOXPpR286WZQO9bFZU5pPr7rTrl4XbGp9aFwHjNe/zi5ubgZtZH+V2V+D9rQjKSzdZPs33Y7Ptt2Nn3T3p90Ph/e8uwWdpOu737kCeHoKfvA9yadBD494lyg+o4xvPEoe39LIS14jlO+p5S9PkcxHtRyb57xD/vn5q1BU9BIhfenrmTjUQ6Sgq6/L6V1/ENjHfp+tp31BFnr7x+We9rzvvWNm3/jgCx8yxKe78Y8f0N+73fbMh03yjQ796B+Uo1pnqfXvPlWba3/7hvup/8e/D37TdX+g/qjHMVghDHnQ9B/kL3/lxH8QzgljHsCcxyuUIcoj8GM6GCV/E3V+AxEPORAARQVM+IYEDqBUASiAhtd9/OAKVQAPNpCAtoQPwlAMoPMAZPBUEMhQP/UOLxABKJAAEBAPttQOpcAJSLAAYPAM4wCCISiCKgAMpiAKAnEK8GBLf2AIllAIIxAFRFiERniESJiESriETNiETviEUBiFUsiEb1AIk2AIf4BYBFAABMAC9AVdYLgeUTAABeABBydc1IEdOPCFYdiG37FX1MVjaWgdwuOGdigehZU8YTaHFBZYd+iGechXyuVXfAhYbPiHgxWI1xGHTlaIXv/ih4iIWYqIR4NIWY6YH6EViY0FWe7DiKdUWTGSiZq4PptlIp7Yb82TI6I4isRTijJSiZ6VikSyiqwIJa7IWbCIWg3SJLRYixhCWuxFibClPc7VPb6IIb9lWrmYW8TIJdxziMcIJC9yJqcoScNVjNAYjWMyjWhSjYd0japljNpIHslIjctYXc0YJ7w1jt5Rjt14jjyWjrsljuMoXfoDj04mj3sCXqNoj1eEj5+oj4HCj3foj5QGkP0mkMT1JIhokIzijXpkXbtCkLSlXcyCkNYIX6tCkY5lkYJWZOXlaM7FkNklXkQGWxp5LBzpPR55kmGWkvRDkuEVjJQGkqgFk+P/spLqRUA+hJIiqSfoFT3rhWY2mVs4WS9BeTtkQpPtBVsgFl90AiVLSUdN9olPGUMVFiX+BWBFGWE/2SlZeT8as0lV2W9X+WxR+R8iNGFlaY1nSUdhuQ7nUAZqcGzawGBrGWJt+Y1vGUhZOQ7gsA7oIA1m8AsOppddyWN9uV9p2R3qIA5qIAaHyWSJ6WSL2UgZ5A1egAY1IATcsGw+tpcReZmbNAR98AiPYAc+EA3RcA2aJppu9GSjNgt3cAiIcAc+YGuwOUayGWmlUgRFAASpwmq7mUW9KWNJlik89JqV+YlHFmLJmR9ChmjFyUTHuUnRCSFCMJyUCVvPyUjZaSJT//Zgzdlv34lG4Zkj4wlgYEZX5xlDURYn6/ll3vmVglJmgdJltaYnabZcsYJG+MkoZ+ZF/elX/xlDAToqA5pCBUpZT5RCumBE47KgOtaeiPWgFmNn9AIEYFShsHVpdfZnF4RnBDNolmafRaKhKUSi26VnJ0ouKupFLCpoLtpoXCSinDSjBlSjywWijCJqE6ZoO/qhKCpHqxZpQkopw+ZZPkoqR8pqSXpFuuZXTYomQPprUcqfU0pZVcolVypvnMYtW8qkKPql8lYu5yKmsCVrofakZwohYUqNY4pabNokZvqmyJKmcrqmhXaneNohpcYqc5pbdWpobvqnp0JIVjKo1f1VqL12qIjaJK5mWozKY44qR38UqYFyMCO0pHTqPM2mqZuKa2wEW7zWa98mqmA5mdFmqrISqqq6qtviqbmVAmnADdaADd0AmrAaq6sCba3qD/hQDx3nWSmQBVygBmXgBdPAbKnqqww0lhwzD8NQA0pQSsT2A7zAbbhABM8KrUgprXyVAvEwD6OErcZKBNsaMBcArvH1SeP6D+eGrqiVAlrgrTLgBdjgrlj5SaEkDKhAr6qkCY5wCY5AB/waSHPgCJ3gHMh0AnmgB3EwCMhQsRZ7sRibsRq7sRzbsR77sSAbsiI7sh1bAnGgB3hACLq3sizbsi77sjAbszKbGAEBADs="
]
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"![{{:tutorial:subdiv_of_points_3.gif?300|}}](attachment:subdiv_of_points_3.gif)\n",
"\n",
"Indeed, the regular subdivision arising from this height function is a triangulation. Since in this case point 2 is a vertex of the subdivision it is colored red as well.\n",
"\n",
"### Generic Weights\n",
"\n",
"The weights `w` are called *generic* if they define a triangulation of the point set. If it is known in advance that the given weights are generic, then we can obtain the subdivison as a simplicial complex. If you want analyse your simplicial complex then you might want to use the polymake objects: `SimplicialComplex` or `GeometricSimplicialComplex`. The first one is a purely combinatoric version. The latter one has an embedding into a space via the property `COORDINATES`. Both objects live in the application `topaz`. The weights in the third example above are generic, so they define a simplicial complex.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$SC = new topaz::GeometricSimplicialComplex(COORDINATES=>$M, INPUT_FACES=>regular_subdivision($M,$w));"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Note that `regular_subdivision($M,$w)` produces a list of the maximal cells in the regular subdivision of the point configuration `M` respecting the weights `w`.\n",
"Now we can ask for many other properties, e.g.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6 10 5\n"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $SC->F_VECTOR;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 3 1 0\n",
"\n"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $SC->H_VECTOR;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the properties of `SimplicialComplex` for more available properties.\n",
"\n",
"\n",
"\n",
"### Non-generic Weights\n",
"\n",
"If your weights are not generic or you are unsure, then you should create a `PolyhedralComplex`. Since every `SubdivisionOfPoints` Object has its underlying `PolyhedralComplex` as a property this can be done simply by:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$M = new Matrix<Rational>([[1,0,0,0],[1,0,1,0],[1,1,0,0],[1,1,1,0],[1,0,0,1],[1,1,0,1],[1,0,1,1],[1,1,1,1],[1,0,0,2]]);\n",
"$w = new Vector<Rational>([1,0,0,1,0,1,1,0,1]);\n",
"$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
"$PC = $S->POLYHEDRAL_COMPLEX;\n",
"print $PC->MAXIMAL_POLYTOPES;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
" {0 1 2 4}\n",
" {2 4 5 7 8}\n",
" {1 2 3 7}\n",
" {1 2 4 7}\n",
" {1 4 6 7 8}\n",
" \n",
"\n",
"\n",
"As with an simplicial complex you can do some computation with it. For example:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8 18 16 5\n"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $PC->F_VECTOR;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print $PC->SIMPLICIAL;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$PC->VISUAL;"
]
},
{
"attachments": {
"reg_subdiv_polytopal_subdiv.gif": {
"image/gif": [
"R0lGODlh+gDfAMYAAP///wAAALQAAF68fT0AACBBK0ePX/Ly8ufn5/z8/FdXV0RERDo6OvX19X5+fj4+PqqqqlFRUUxMTJ2dneR+fq2trRsbG+Pj4/j4+CsrK9PT01lZWRQUFEFBQaenp/Dw8Dw8PFxcXAUFBW1tbfr6+mNjY8XFxRYWFoeHhx8fH7u7u4iIiDs7O2tra1VVVVtbW9LS0jc3NyoqKuLi4ubm5vHx8VEAAIoAAG0AABMoGuF+fhImGQMHBAcPCidPNQkTDAQJBQgRCwMGBAkUDA0cEgQKBgsXDxEkFwIGAxAjFgULBwwZEAABAQYOCQQIBYKCggcQCgsYEAYMCLS0tGVlZd0AAFOmb0sAAIAAANzc3CkpKUdHR6Ghob29vRMTE/T09Kh+ftra2unp6XZ2dqysrCEhIbe3tyAgINHR0WFhYe/v79bW1jsAAGfOicsAAJsAADQAAF26fF67fF27fFBSN167fSlSN1y5e1y4e1YAAEeOX7MAAP///////////////ywAAAAA+gDfAAAH/oAAgoOEhYaHiImKi4yNjo+QkZKTlJWWl5iZmpucnZ6foKGio6SlpqeoigGprK2ur6ECsrC0tba3hwECq7i9vr+mA7zAxMXGlAPJx8vMtgEEkAHJws3V1qYEBMON0wPX3+Cd2ZHd1OHn6JLb3OXr6e/whAbuquXK8fjxBgXk9ub5AMHN4/fI37SACK0FCFCAHiKDyRwmnIgrwD6CjaRB9Eaxoy+LBRoW3PjPo8lXFhliZKRxo8STMEVZvLiyHsl7MXOSmhmypqKbB3UKBTVT5UtCQIMOXappJk1EDgRNENQS6FGmWBc57VnTAQUKDkKQoJq0W9azkbb2NPRV0ItB/mXNop2r1YBdlSHZxcVJt28hu3a5+jRUNe5Vv0sB08yrdW+3w4h1KhZ81XG5yH0V42X807JczGcVL+aMqLBlyKApihY8uJBne6mZit5M+tBr2LGFzma96Dbu3DFFj65dyPRt4MFXs24tyLc91MjRCV/OHIBzf9E7Cqe99uH139kDCh8e0qHx69DDNxtPnfl3f+nVH2NPPdF59PL1bW9f+r3B/O+MR1553vn3HIDnCMhdd4YYaFB8CNoi4IAiEebgfxFaM2F7g93nYIbVbMihbRc+COIyTu3GX4MlmnhiMSkqtyIhHpb4IjExTsahOy1udOMvOQLGIXE9uvRjRRMu/sjVOkUaeWQtQQo5ZHFNQgThk5xEGdiQTFYJEZYoTUghV655aSWYrGg5EJdImekjmqeoOWZPw9RoJpymyDkkg9a5+Saeo4g5J51w+fknoKAIqiRvzRnqJKKeCDoogQDYaSikkSq6J2eO3oQpJ5IuShlZnT76qSWSTsqYpY6eikmqm1JaKlCuVpKqqII1OitJtU5ya6wisVpqr5Gkqmp5wpZ6JabGApvXrkkti6ixuFIGbVnEMkKtsw1dm1S2ihh7bHneRgvuIeJyW0C55p4rz7bOsoutu4KIO2638lpFr73cJsvuvulym29Z0r5ob7WCDUwwuPbe62++ANjQq5wy/gKrcFk2ZFwrxTrGe3FSEm98sMAffysyv84+DPHJAXtcMkkFA8ixZv2+7KmrM3ccq8rystyyxTabCmnOUrocNHw4N7wmsDz/eyrRRe989JeuKn3vulMjfarVCHOVtdafcl3z15dtbfXYZE8Ts3pWO3xD2p9B2ja3N9zQtLdmK911eXbDzde0c6uLL9lrZ9f20mh/HTbXOCi50OMB5CD55HfPurjSOGQ++eacd7452Z9CDVjknpfueaVZF46c6HaZ7jrnhR6NKesGvG47lUHPzrXtr5P4suq5sU467547ZDPwsbFOvOk2fTy01csXz0jJzysdfeeOVN4j8qApf/3m/o44oH2J3GMm+vDfOyKLA+IPLHfD30vew2EB+LBL7OW+b+/1Q+RARA+qqJ8PBuiDMpWrfJGx3vKGwMAmrGMhBIxgBLfBLgQiRoG8i1z/ckAFCErwgxLs0rUAJy70ua4KKBQgCFf4wQdey4KZORjxUsjCGrYQd7sCFPyWZ4Ue2vCHA+RRDvG0wwz20IdAtGEuLEfE/REvAEfsoQqTCEJ3jM8zMJyLDIkXxSNOkYoh9N2l4LRF3nUxil8EYxCXOEY0OZGLZ4yiGm8oRi9lMTTiWh4U44jGOU6wP2a6Y1ZKqMc98lGKfiSgfdxERmrp8QpXMOQhE7nGAjWpkamKnhUg/nnILqaRihK5IszcaCxNakSSnaTkS5okSNmU8olWmMc0OtlFSjbPRmByJBzt8hhaHtGWncEllnRpxljKUm2+RKIfe0O+XGaSh0V5TjI/CcTGOKiVQ3mlEZ1ikGRagZpKZKaBwMQxPRqTl9305jLF+R5yhoqH5zxmOn25zls6B5s6oZgJTbdH0cBsmnPMSDufRLHlAeCb/vynL8HJQoFeB0sFzSAUhZMUbzIUhA71DT5jEtHb9XA70VInGB3x0CN11HWr+ChFy2LRkZL0OCZVFO8qhdCVEgygVBwJFmMqpgwetKYJ3UtLk/gInm30JHKa6U8VdBqcVjN7nuHphJSq/tLxvEakT33pXp4kqNsJoqo2bepCiVrUvRzVJGLaJ/ZoqiXnYDWcOtXXj9L6Ol6AFaQadWoN0zKvG/W0d1+Np1Wv89aG9uNmfp0qSgcBVAG9p7ArlIRcDaZY5lGlsYP9Dir5eNEC8lVoGUrSYi8bKgNB9oOT4FVix6PWyRHiro410GbjeNFJ3GeuAhptYG91oaFGNrVgA1FlT/dajomyHadVpG2xQ9nt8JNGghVTj/SK2uWW7UQKsuwgJmqsIs32jHu1rlKEOx7XFQK2SWoSdSNYiZacdSK5LZ0hMJvWKn3Xk79Fxt8QFF/iFtdeZkquJSKCXef6d7vRFZSb7itH/oy2FwtYIO9s5HveBNc3kMnMryQgHOHQCqd07kDvhd102kpg4b3i+fCBGSu6Tq03W+Vda3EsrOBOMfiXEiSWgWFHGBqP2FA3RuQfk6YZGVe4bbsqLIqxEqMVM9bH0t1VkK2Q46eJpnP0gCLtvKVXKyvGyK+F8o9nNWX26u7Lm3OIiLtbLqee+S48PsSaUyWvMlcSTykCM4Jpd5d84XTJHEUz5UpD34YNDKeAyjP4EDFnNudryvVLRBZOpGjJSaTQhr5YkCNNCDBEBQBiAJFThvcSTB+sZBkexAPAAAYAnKG5w1OFmB2t6YUuBACeXsgaClw71yai0eI63kLZwAau/rbO0ooANq1RfciFENvYsU42n2dzNEkupA3YrtQwe52Dl3D3cEENGrbHTW5n+to+sw526shdbmMjO9npphbZ2D3uALgBt5JjhKm5lrYA0NsNbgC0eEin72ln9mv+xvYqAD7XyLEk3uqGGxm7/XBwM9VvHOFqDhqh7IYdV1lvEPjAOW7w2GI8AG94w48gs+/DYZwaIV95RiB+6n6DCQ5wuErH9UY4OOGc4zQH8NREPhctW3zMCiN6X3aO5I8p3S9Mt1rSn46YqCttYFSPTMuP/nHf0EsrWz/6C7+u76BLncxkJ/nR6eyorCPHAWHnejnmMIA5xCEOF3J7dAJAh7Uvn3sOc6jDAOTwobRHIw928DvbkwH4ORCe7po1vCTykIeSR5zxycB7SSWvjsorvrTX5PwlLH95/Ij+Ep9fvHNOr4nUS8r0rH+V65Eel9hvgvRCN6vtQTX7Gvd195vovaImC/zbC5/2jym+J+yth+NP6EzK9wTA7w053CNd7xtLC+QsHrfof2P7wtnDHrDvfUwEQPzkL7/51c/+9rv//ZwIBAA7"
]
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"![{{:tutorial:reg_subdiv_polytopal_subdiv.gif?300}}](attachment:reg_subdiv_polytopal_subdiv.gif)\n",
"\n",
"Check the interactive help to get more information.\n",
"For the image we have used the javaview option *Explode Group of Geometries* to make the cells of the subdivision visible. \n",
"\n",
"### Tropical Plücker Vectors and Matroid Decompositions of Hypersimplices\n",
"\n",
"A *tropical Plücker vector* (which is a special lifting function on the vertices of the *(d,n)*-hypersimplex induces a particularly interesting kind of regular subdivision. The example below is for *d=2* and *n=4*.\n",
" \n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$p=new Vector<Rational>([1,0,0,0,0,0]);\n",
"$msd=regular_subdivision(hypersimplex(2,4)->VERTICES,$p);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Each cell of this subdivision is a *matroid polytope*, that is, the convex hull of characteristic vectors of the bases of some matroid on *n* elements of rank *d*. The vertices of the hypersimplices happen to be listed in lexicographical ordering. With this extra knowledge we can cook up suitable labels for pretty-printing the maximal cells. \n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0:12 13 14 23 24\n",
"1:13 14 23 24 34\n",
"\n"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print rows_labeled($msd,undef,[\"12\",\"13\",\"14\",\"23\",\"24\",\"34\"]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"In this case the *(2,4)*-hypersimplex (a.k.a. the regular octahedron) is split into two egyptian pyramids.\n",
"\n",
"## Secondary cone and regularity of subdivisions\n",
"\n",
"The set of all the weight vectors which induce the same regular subdivision form a convex cone. In this section we will learn how to compute that cone with polymake and even how we can check whether a given subdivision is regular or not.\n",
"\n",
"### Secondary Cone of a Regular Subdivision\n",
"\n",
"Let us look at the following regular subdivision (using homogeneous coordinates):\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$points = new Matrix([[1,2,0],[1,0,2],[1,-2,0],[1,0,-2],[1,1,0],[1,0,1],[1,-1,0],[1,0,-1]]);\n",
"$cells = new Array<Set<Int>>([[0,1,4,5],[0,3,4,7],[2,3,6,7],[1,2,5,6],[4,5,6,7]]);\n",
"$S = new fan::SubdivisionOfPoints(POINTS=>$points, MAXIMAL_CELLS=>$cells);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"we can visualize the subdivision with the following command:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$S->VISUAL;"
]
},
{
"attachments": {
"square_reg_subdiv.png": {
"image/png": [
"iVBORw0KGgoAAAANSUhEUgAAAxoAAAHRCAIAAABiklhbAAAfHUlEQVR42u3d628cZ6HAYdvxLYnj+JbasZ27HbtJmuZmO7Y3t7YJTZpbmyYnUOoWiiA9aeMm9CQVElKRyuHoIPgACPhAKyFOC1KFBM2XCokihBA3IWgLhYhASpM0bUP4G87b3Xaz3nV8j7078zx6Fa3tTZsdz7zz25nxuOjfAABMQpFFAAAgpwAA5BQAgJwCAJBTAADIKQAAOQUAIKcAAOQUAAByCgBATgEAyCkAADkFAICcAgCQUwAAcgoAQE4BACCnAADkFACAnAIAkFMAAHIKAAA5BQAgpwAA5BQAgJwCAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAAOQUAICcAgCQUwAAcgoAQE4BFIhrGSwNQE4BjNuVK1fOnz9/7ty5y5cvWxqAnAIYh2vXrl29evXVV189derU4OBgiCrLBJBTAOPLqUuXLj399NMLFy686667Xn/9dcsEkFMAY3X+/PlXXnllYGCgra1t8eLFu3btklOAnAIYh5/85Cd79+7duHHj4ODgli1bdu/eLacAOQUwvpx69tlnf/3rX//ud787cOBASCs5BcgpgHF4++2333zzzffeey9U1MGDB+UUIKcAxuRshtRn/vSnP8kpQE4BjF5RiUSiqKiouLh41qxZZWVl4UH48MyZM3IKkFMAowjNVJQUQqq+vr6jo6O9vb22tjZ8mPp8Z2ennALkFMAoLRWUlZU1NDTcmhS6Kn2MKli5cqWcAuQUwEgtFcpp7ty57e3tO3fu3LVrV0tLS2VlZTqngkcffdQSA+QUwND5KEMop9ra2t7e3k8l9fT01NfXZ+ZUkL4+HUBOAQw5NJXKqZqamrVr1z744IMPP/zwsDmVSCQsN0BOAXw4GQ0Vyqm0tLShoWFFUnNzc0VFRUlJiZwC5BTAmHIqdSl6bW3t0qS6urrwYe5znO8D5BTA+0IV5R6dKi8vb2xsbEsKXSWnADkFML6cqqysXLhw4W1J4UHWT/bJKUBOAYyUU6nbeFZVVTU1NYWWcnQKkFMAo01GwykpKZmTlHsdeorlBsgpgA+kfklf7im/kqTc03ypX+FnuQFyCuADw57vG5mcAuQUwBDDHqDSUoCcAhirwcHBVatWjaWlwtOeeOIJSwyQUwBDWurQoUOLFy/edfrIyC21on91eNr999+vqAA5BZDdUsd+/PSX//ViKKphoyqEVOoJ4U9FBcgpgOFbKnOEqNqwYcOaNWvCl7K+qqgAOQUwSkulxvbt23t7e4f9kqIC5BSgpUZpqZFzSlEBcgrQUqO01Kg5pagAOQVoqZFaKowdO3aMnFOKCpBTgJaabE4pKkBOAVpqsjmlqAA5BWipyeaUogLkFKClJptTigqQU4CWyh533HHHuHJKUQFyCtBSk80pRQXIKUBLTTanFBUgp4CIOHHixGRaKpVTmzdvntjfVVSAnALi3lKTzClFBcgpIO4tNfmcUlSAnAJi3VJh3HnnnZPMKUUFyCkgvi01VTmlqAA5BcS0paYwpxQVIKeAOLbU1OZUqqgWLVoU/pGKCpBTQCxaaspzSlEBcgrI35a67777prylwrjrrrumNqcUFSCngBi11E3KKUUFyCkgLi1183IqXVThH6+oADkFRLalbmpOKSpATgHRb6mbnVOKCpBTQMRbahpySlEBcgqIcktNT04pKkBOAZFtqWnLKUUFyCkgmi01nTmlqAA5BUSwpVI51dvbO23/O0UFyCkgUi01/TmlqAA5BUSqpWYkpxQVIKeA6LRUGDt37pz+nFJUgJwCItJSM5hTigqQU0AUWmpmcypdVPfee6+iAuQUMJGWChkxsy014zmlqAA5BRR2S+VDTikqQE4BBdxSeZJTigqQU0ChtlT+5JSiAuQUUJAtlVc5pagAOQUUXkvlW04pKkBOAQXWUnmYU4oKkFPAMB5//PH8bKn8zClFBcgpoGBaKm9zSlEBcgoojJbK55xSVICcAgqgpfI8pxQVIKdAS+V7S+V/TikqQE5BTOXtz/EVYk4pKkBOgZaSU1NWVAcPHlRUIKcALSWnFBUgp4Abt1TY2RdQSxVWTikqkFOAlsrTnOrr6yugf7CiAjkFaCk5pagAOQVEpaUKNKcUFcgpQEvl0di1a1ch5pSiAjkFaCk5pagAOQVaqvBbqtBzSlGBnAK0lJxSVICcAi1VyCESjZxSVCCnAC0lp6asqA4cOKCoQE4BWkpOKSpAToGWklOKCpBTQBxaKno5lS6qffv2nTp1ynoLcgrQUtORU/39/RF7UYoK5BSgpeTUFBRVa2urogI5BWgpOaWoADkFWkpOKSpAToGWimptRD6nFBXIKUBLTUdOJRKJaL9GRQVyCtBSNysywli2bNmSJUt2nT6iqAA5BWipcbTFiv7VRUVFJSUlpUnFxcXhw/DJCHeVogI5BWipqRmpkApmzZpVW1vblhQehLRKfT7yRbV3715FBXIKuCkef/zx+LRUUFZWVldXtzKpoaGhvLw8dYwqdZhKUQFyChh3Sx04cCDi90Q4fSTdUqGc5syZs2jRoq1J4UFlZWVRBseoADkFaKkbtlTqqqkFCxZs2bLls0ldXV01NTXpo1Mp0b56TFGBnAKmsqX2798f/ftLDc2pUE7V1dXr1q37WFJ3d3d9fX368qnIn/JTVCCngCluqSVLlkT+/lJFQ4WcqqysbGxs3Lx5c09Pz6233jpv3ryso1NBHO6eoKhATgFaakzdUJSjvLy8oaFh8eLFYQlUV1eXlpbmPicOS0ZRgZwCtNREcip1dKq5uXltUlNTU0VFRe7RqZgsnNCU99xzj6ICOQVoqfEdnSorK6utrV2R1NjYmHmjhFjlVLqo9uzZo6hATgFaaqzXTqV+uK+ioqIh6UYn++KzfBQVyClAS43jBp7p831B+pfM5B6ailVOKSqQU4CWGt+NEsYi8r8XWVGBnAK01GTP940snktJUYGcArTUOM73OTSlqEBOAVpqrOPRH3/h8OHDbW1tY2mp9evX79u3b/DlLykqRQVyCtBS11vq4MGDt3+kZ+doF1Ed+9HT4Wmf/OQnFZWiAjkFvN9SoQm0VLql/vfqi6kRoirr3F/4MIRU+gmKSlGBnAK01A1baoxDUSkqkFOgpbTUxFtKUeUW1cmTJ21ZIKcgLgYHB++55x4tNcmWUlSKCuQUaKlYt9T9998/+ZZSVIoK5BRoKS314pQMRaWoQE6BltJSikpRgZwCtNTMtZSiyiqq3bt3KyqQU6ClIthShw4dunktpagUFcgp0FJaSlEpKpBTgJaa6ZZSVIoK5BRoKS2lqBQVyClAS810SykqRQVyCrSUllJUigrkFGgpLTXTLaWoFBXIKdBSWkpRKSqQU6CltFR+DEWlqEBOgZbSUopKUYGcAi2lpRRVPhXVqVOnbLkgp0BLaSlFpahAToGW0lKKSlGBnAItpaUKqKUUlaICOQX51VJ79uzRUgXXUopKUYGcAi2lpRSVogI5BVoqKi114MCBAm0pRaWoQE6BltJSikpRgZyCgm2ppUuXaqlotJSiyiqqu+++W1GBnAItpaUUlaICOQV53FLO8UWypRSVogI5BVpKSykqRQVyCrSUllJUeVZUH/nIRxQVyCnQUlPWUvfdd18cWkpRKSqQU6CltJSiUlQgp0BLaSlFpahAToGW0lKKSlGBnAItpaXi3lKKSlGBnAItpaUU1dQX1cmTJ80SIKdAS2kpRaWoQE6BltJSikpRgZwCLaWlFJWiAjkFWkpLKSpFBcgp0FIZLbV//34tpajGXlS7du1SVCCnQEtpKUWlqEBOgZbSUopKUYGcgplqqd27d2spLaWoFBXIKdBSWkpRKSqQUzDtLXX33XdrKS2lqBQVyCnQUlpKUSkqkFOgpbSUolJUIKdAS2kpQ1EpKuQUaKkYtVTY32spRaWoQE6BltJSikpRgZwCLaWlFJWiAjkFWkpLGYpKUYGcQktpKUNRKSqQU6CltJSiUlQgp0BLaSlFpahATkF+tVSYvrWUllJUigrkFGgpLaWoolZUTzzxhJkKOQVaqgBaau/evVpKUSkqkFOgpSbeUuvu3qxgFJWiAjkFWkpLKSpFBXIKJufdd9996623/vrXv/7973+/cuXKtWvXtJSWUlSKKrh06dLf/va3MDn885//NFUip2B4oZzefvvtN9544zvf+c6xY8e+8IUv/OY3v7l48eJ7772npbSUoopzUV29ejVMBT/96U+feuqpxx577Lvf/e6FCxfCWy/TJnIKhpkxwyy5devW7u7uo0ePbt++vaOj45lnnvnLX/6ipbSUoopSUe3cuXNcRXXu3Lnw/LVr195555333nvv7bff3tXV9bOf/cy0iZyCIf71r3/96le/Ci0Vdjbf+973fvnLX/7whz8cGBhYt25deKCltJSiim1RvfPOOy+//PKaNWvC5v/SSy+FivrWt7512223nT59+o033jB5IqfgunffffeLX/xiePf54osvXr169cqVK5cvX/7973+/dOnSL3/5y1pKSymq2BbVm2+++dRTT+3Zs+fnP/956jMXL14MXdXT0/PCCy/c6PJKkFPE0aVLlz7+8Y8fPnz4t7/97S9+8YuvfOUrzz777B/+8IfXX389ddmpltJSiiqeRXXu3LkjR44cO3bs1VdfTV8Y8Mc//rGzs/Pb3/62nEJOwXUXLlwIE+sjjzzyuc997oEHHkgkEtu2bQsPnn/++fDeVEsNuVenllJUcSqqP//5z9u3bz9z5kzoqsxPtrW1ff3rX5dTyCm47vz5893d3fX19R0dHV/96lfDh9/4xjdWrFixcuXKgYEBLRVa6tChQ1pKUcWwqF577bWenp7Pf/7zYVrIzKnly5d/7Wtfk1PIKfj32bNnw5vORFJ1dXVra+vRo0f/8Y9/vPPOOxcuXHj55Ze3bt0ah5YKr25F/+rU2HX6SBiZrzfVUnv27NFScSiq8K0PK0DW+hDDogqTQ2pm2LhxY5gcwlTw/PPPZ+ZUeLslp5BTCKn358qioqLi4uJZs2aVl5eXlZWFx0VJobHCc44fPx75lgp7ytRLDguhtLS0oqIi/Jn6TGo/qqXiU1Spqk5tFGE1CBtFemVIrQ8xKaqw+adecklJSVlS2DrSyyE1OTjZh5yC69Nl2G3Mnj27qakpzIyLFi2qqqoKE2jqSzU1NZFvqdS+Mwh7zblz54YlsHLlyoULF4b9aLos165dq6XiUFQdHR3pjSJUdVgNwsrQ3NwcNpD0RhGHogpTQbql5s2bt2zZsuXLlzc2NlZWVmYW1WuvvRaW2De/+U05hZwi7i2V2nPMmTNnyZIlYc8R/pw/f37m29DwYRxaKnVoKuRj2HOsWrWqpaUlLJN0TgVhh6o5oj06tt2e/naHjAjpEFaDsDKEVSKsGJkbRVhtIlxUYZPP3ChCToVpobOzM/wZ3m9kbhRdXV379+9/5ZVXzKjIKeLeUkF5eXnYbfT19YXJsbW1NcyY6Tfi0X47nj7Hl2rKsrKy8Ba8p6ent7c37DkqKioy9xzBsR89rTmiOsI3t2iosAKEkNq+ffv69eubmprC6hG3jSKVlWFC6OjoCBtFd3d3Y2Nj5vUAwac+9amLFy+aVJFTxHL9Gzpd1tXVbdy48bHHHnvggQfCpBneiGdlRBDJPUfmC0wdogtN+dBDD4U9RFgO4U15Vlau6F8tO6I6dg7NiLA+hBVg06ZNx48f/+hHPxpKoqqqKjuvo3jUNmvDDy+5urq6v7//4Ycf/vSnP71hw4as7SIsGWf6kFM4NPX+wfza2tqurq6TJ08+8sgjd9xxx7A5Fb09x66c3Wd4F75ly5aQU6dOnQpdFRZLVk45QBXhkfWNDt/6+fPnh1YIOXXs2LEdO3aE7SJrfYj8RpHOqbAcBgYGnnzyybBdNDc3Z573DM6ePWteRU4R95xKZURra2tvb2+Iqra2tqzLI6J6sUjmVVPpS4+XLl0aFkKIqvAg69opORWfQ1OpnAorQFgNwsqwadOm8GD27NlZ60PkN4r0UdsVK1Zs3LgxtFRLS0vu/JBIJMyryCliJ3VnhNwDVO3t7Rs2bFi5cmXuu/CUJ59/ZtjxX89/cfTxwvvjyf975voY13/nhevj9Av/nT2+nz3OfP9LWSPrmeEzubuN0tLShoaGzs7OdevWhd1n7jVkQdjvio/45NSSJUvWr18fVokFCxZk/qTn9Z9u+8GXhhnfH32kV8WnfvA/YYzlP5K7nuduC5lbygcjZ2sastENfU5dXV3u5BAmhJBTa9asCVNEfX19eNeR9Rw5hZxCTn0wY1ZVVYU9x6pVq9ra2kJaZR3MD8I0ui/D/g8dyHBwqHs/dF+GQxnuz3B4qP9I+liGBzJ8PMeDQw186KEMD2f4xCc+kduLqT3H8uXLV69evXjxYjklp8JqkLlR5ObUw0OlV7aBDJlrZuZKm16fM9fzj2Y4OtSRpLDhZG5Q9+bI2gwzt9D9NxC26L1JYTMf9r1WyKlbb701TBHz5s3LnRzkFHIKOfXBniO842xqagolsWzZsvnz5+dmRNiR9B+/Z4TR9597MsfIT86HkZtTqR9iamlp6ejoWLhwYeathuRU3HIqdfI3tVGkMyI3p7JW+0Ifw24U1dXVYaMITdnc3BwSM3ejkFPIKeTUB3uOVFGFuTI0RGlpae5uY1FX+2df/3qURnhFuTuP8NrDEqiqqqqsrBx29ymnYnKXhNSBmbAahJXhRhtFa1fbqde/FqURXtGwJ8HD5BDeaaR+W8AwZzyTd0gHOUW8nD17tmg4qagatiGC3kd3Ryynjjx34kbLISyEYa8eC5RHfHIqvTLknt5KbxQRy6nDzz0+7EJIbxTDTg5yCjmFA1RjFbGWGiGnRuDQVIRH7g+1jSpiLZUaReNnRkVO4QDVmETv0FRqhNc1ruXgLgkxPEA1wkYRyZwa70bh0BRyiljLuvvUCNrb2wdeOB3JnLrRFVTD2nhPv+aI9li6dOkYV4boXTWVHg++8F9hk9dSyCmYyqKqqqrakxThohrL2/FbbrnloYceOnT8Ac0R1RG+uQMDAwsWLIh5S4WNfffu3eXl5VoKOQVTU1Sp6XLfvn1xLqpFXe1HnjsRxurVqxVVtFsqfIsPP/d4WBlGWB+ieo4vs6XCJj/y5JBIJPxiGeQUZAszY5g6Exmy5so4FFUqqsII/ZQa4XGoqMxL1xVV5Fsq82fcUutDa1dbamR+NfItlfmOK3NyCI+FFHIKJi4mRTXqDwMqqji0VNzGjVoK5BQoKkVlaCkthZwCRaWoDC2lpUBOoagUlaGltBTIKVBUikpLaSmQU6CoFJWhpbQUcgoUlaIytJSWAjmFolJUhpbSUiCnQFEpKi2lpUBOgaJSVFpKS4GcAkWlqAwtpaWQU6CoFJWhpbQUyClQVIpKS2kpkFOgqBSVltJSIKdAUSkqQ0tpKeQUKCpFZWgpLQVyChSVotJSWgrkFCgqRaWltBTIKVBUikpLaSnzD3IKFJWiMrSUlgI5BYpKUWkpLQVyChSVotJSWgrkFCgqRaWltBTIKVBUisrQUloK5BQoKkWlpbQUyClQVIpKS2kpkFOgqBSVltJSIKdAUSkqLaWltBTIKVBUikpLaSmQU6CoFJWW0lIgp0BRKSotpaVAToGiUlRaSkuBnAIUlaLSUloK5BQoKkWlpbQUyClQVIpKS2kpkFOgqBSVltJSIKcARRXzotJSWgrkFCgqRaWltBTIKVBUikpLaSmQU6CoFJWW0lIgpwBFFZei0lJaCuQUKCpFpaW0FMgpUFSKSktpKZBToKgUlZbSUiCnAEUVl6LSUloK5BQoKkWlpbQUyClQVIpKS2kpkFOgqBSVltJSIKcARRWXotJSWgrkFCgqRaWltBTIKVBUikpLaSmQU4CiKqyi0lJaCuQUKCpFpaW0FMgpUFSKSktpKZBTgKIqrKLSUloK5BQoKkWlpbQUyClQVIpKS2kpkFOAoiqsotJSWgrkFCgqRaWltBTIKVBUimomikpLaSmQU6CoFJWW0lIgpwBFNRNFpaW0FMgpUFSKSktpKZBTgKKaiaLSUloK5BQoKkWlpbQUyClAUc1EUWkpLQVyChSVotJSWgrkFKCoZqKotJSWAjkFikpRTbyotJSWAjkFKKobFtWxHz29on91UYbw4c7TR7SUlgI5BSiqUYoqhFQ6oUpLSysrK2fPnl1SUpL+ZIgqLaWlQE4Bimr4otq4cWOqmYqLi0NLNTQ0rFy5sr29vba2NrOo1qxZo6W0FMgpILuowq4x5kXV++juzLN7ZWVlqZzq7OxcsGBB+DDzq61dbVpKS4GcAhTVkFE0VEVFRUtLS19fX39/f3gQPsx6gpay1YCcAhTVDQ9NlZSU1NfXd3d3Dw4OnjhxYtOmTfPnz8883xeEv6KlADkFKKrhD02Fcqqrq+vr6zueFB6EusrKqbid79NSIKcARTWOnCouLp4zZ87y5ctTF+mvX7++trY2fDK25/u0FMgpQFGN8mN9uTk1e/bs1tbW7u7urq6uJUuWhLrKzamY/HCflgI5BSiqieRURUXFLbfccltSc3NzZWVlPHNKS4GcAhTVRHIqmDVr1pw5c5qamhobG2tqakpLS3OfE/mc0lIgpwBFNcFrp9IXpM9OqqyszLoOPQ7XTmkpkFOAohrHWNTVPmxRFX8o90vRvlGClgI5BSiqKTjfN7II55SWAjkFKKopuJOnltJSIKcARTVlp/yyRPgGnloK5BSgqG76MSotBcgpQFGNXlTDHqYKIRXhOyNoKZBTgKK6KV3V1tbW2toaKirat5jSUiCnAEV1s8aOHTsSiYT7SwFyClBUckpLgZwCFJWc0lKAnAJFJae0FCCngHgVVVRzSkuBnAIUlZzSUoCcAkUlp7QUIKeAyBdVxHJKS4GcAhTVdI/t27dHJqe0FMgpQFHJKS0FyClQVHJKSwFyCohVUUUgp7QUyClAUc3k2LZt29atW7UUIKcARRXHnNJSIKcARTXzY2uSlgLkFKCo4pVTWgrkFKCo5JSWAuQUEImiKric0lIgpwBFJae0FCCngAgVVQHllJYCOQUoqnwcW7ZsKYic0lIgpwBFJae0FCCngCgWVf7nlJYC5BQoqrwuqjzPKS0FyClQVPleVPmcU1oKkFNAARRV3uaUlgLkFFAYRbUlSUsBcgpQVNHJKS0FyCmgkIoq33JKSwFyCiiwokokEvmTU1oKkFNA4RVV/uSUlgLkFFCQRZUnOaWlADkFFGpR5UNOaSlATgEFXFQznlNaCpBTQGEX1czmlJYC5BRQ8EU1gzmlpQA5BUShqBJJWgqQU4CimuDo7++f/pzSUoCcAqJTVNOfU1oKkFNApIpqmnNKSwFyCohaUYWcmrZL0bUUIKeACBbVtOWUlgLkFBDNopqeGyVoKUBOAZEtqmnIKS0FyCkgykV1s+87paUAOQVEvKhuak5pKUBOAdEvqpuXU1oKkFNALIrqJuWUlgLkFBCXoroZOaWlADkFxKiopvyu6FoKkFNAvIpqanNKSwFyCohdUU1hTmkpQE4BcSyq/iQtBcgpQFHNZE5pKUBOAfEtqsnnlJYC5BQQ66KaZE5pKUBOAXEvqsnklJYC5BSgqCaeU1oKkFOAopp4TmkpQE4BimriOaWlADkFKKqJ51Roqd1JWgqQU4Cien/0JWkpQE4BTLCoxp5TWgqQU4CimnhOaSlATgGKauI5paUAOQUoqonnlJYC5BSgqEYqqpFzSksBcgpQVKMUVWip3t5eLQXIKYBxF9WR506Ecdttt61Zs6b30d1aCpBTAGMtqlBRi7rai4qKiouLizKEqEp1lZYC5BTADYuqLbEmFU+hpSoqKuYllZWVpdMqFFVKe3v7W2+9ZdEBcgrgelG1tbWlj0WFhKqrq2tPqq2tDR+mvxSe1traevjw4cuXL1tugJwC+MCZM2cyT+2FfmpoaOhICg9KS0szv7p06dJr165ZaICcAhi+pYKKiopFixb19fVt3ry5ubm5vLw861Kql156yXID5BTA8DlVUlJSW1vb09Nz7Nixz3zmM2vXrp03b174ZOZz+vv7LTdATgF8OBkNFcqprq4u5NTg4OCJEye2bdvW2Ng4a9asrKdZboCcAnjf2bNnszqpuLi4urp69erVR44cOXr06Lp162pqarJO9gXhL1p6gJwCGD6nZs+evWzZskTS8uXL586dK6cAOQUw1pxK3yihs7Ozo6OjpaWlsrJSTgFyCmAcOVVSUlJeXr5gwYKGhoaampqsGyW4dgqQUwBDJBKJ3PN9oahmJRUnySlATgGMI6cyu2rYljpz5ozlBsgpgA8Me75vZBYaIKcAhsi9MfoIHJoC5BTAxItKSwFyCmDiRaWlADkFMMGoSiQSbjQFyCmAcTibwdIA5BQAgJwCAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAADkFAICcAgCQUwAAcgoAQE4BACCnAADkFACAnAIAkFMAAMgpAAA5BQAgpwAA5BQAAHIKAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAAOQUAICcAgCQUwAAcgoAADkFACCnAADkFACAnAIAQE4BAMgpAAA5BQAgpwAA5JRFAAAgpwAA5BQAQGH6fxqDAT9x9IFvAAAAAElFTkSuQmCC"
]
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"![{{:tutorial:square_reg_subdiv.png?400|}}](attachment:square_reg_subdiv.png)\n",
"\n",
"As one can see from the picture this subdivision should be regular, since we can easily find a weight vector which induces this subdivision. Just lift all the points in the inner square to 0 and the points on the outer square to 1. But now we want to take a look at all vectors which induce this subdivision. This can be achieved by using the method `secondary_cone`.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4\n",
" \n"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"$sc = $S->secondary_cone();\n",
"print $sc->DIM;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 0 0 1 0 -1/2 -1/2 0\n",
" \n"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $sc->RAYS;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3/2 3/2 -1/2 -1/2 1 1 0 0\n",
"-26/19 12/19 34/19 -4/19 -11/19 8/19 1 0\n",
"50/49 -8/49 10/49 68/49 40/49 11/49 20/49 1\n",
"\n"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $sc->LINEALITY_SPACE;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We see that this cone is 4-dimensional with a 3-dimensional lineality space. Every vector of the **interior** of that cone induces weights that produces the same regular subdivision. The vectors on the boundary give rise to a coarsening. As you see by looking at the coordinates, we do not need to lift the inner square to 0, there are also weight vectors which lift them in a different fashion but still produce the same subdivision.\n",
"\n",
"With the options `lift_to_zero` or `lift_face_to_zero` one can specify points or a face which must be lifted to zero. Let us see what happens if we force polymake to only allow weights that lift the inner square to zero. As we see from our input, the face which describes the inner square is the fifth one (but since polymake starts counting at zero, it has number 4).\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$sc_fixed = $S->secondary_cone(lift_face_to_zero=>4);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1\n",
" \n"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $sc_fixed->DIM;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 1 1 1 0 0 0 0\n",
" \n"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $sc_fixed->RAYS;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" \n",
"\n"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $sc_fixed->LINEALITY_SPACE;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you see that the lineality space of that cone is gone. The only way to lift our points now is by raising all points on the outer square to the same height which should be greater than 0.\n",
"\n",
"### Regularity of Subdivisions\n",
"\n",
"You might run into the situation where you want to check whether a subdivision is regular or not. Don't worry, polymake comes to rescue along with it's side-kick the `is_regular` function. The function takes the same input as the `secondary_cone` function. The output is a pair of a boolean and a vector. The boolean tells you whether or not the subdivision is regular and the vector is a weight vector which induces your subdivision. Let us check if our subdivision of the example above is regular.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"true <0 0 1 1 0 0 1/2 1/2>\n",
" \n"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print is_regular($points, $cells);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$lambda = new Vector(\"0 0 1 1 0 0 1/2 1/2\");"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{4 5 6 7}\n",
"{2 3 6 7}\n",
"{1 2 5 6}\n",
"{0 3 4 7}\n",
"{0 1 4 5}\n",
"\n"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print regular_subdivision($points, $lambda);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"As you can see polymake tells us that our subdivision is indeed regular. And the vector `0 0 1 1 0 0 1/2 1/2` produces the same subdivision we started with. Now let us see what happens if we use a subdivision which is not regular. We use the same points as above but different cells.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$nreg_cells = new Array<Set<Int>>([[0,1,5],[0,4,5],[0,3,4],[3,4,7],[2,3,7],[2,6,7],[1,2,6],[1,5,6],[4,5,6,7]]);\n",
"$nreg_pc = new fan::PolyhedralComplex(POINTS=>$points, INPUT_POLYTOPES=>$nreg_cells);\n",
"$nreg_pc->VISUAL;"
]
},
{
"attachments": {
"square_nreg_subdiv.png": {
"image/png": [
"iVBORw0KGgoAAAANSUhEUgAAAxoAAAHRCAIAAABiklhbAAAthElEQVR42u3diXPc9WH3cd+WwTaWj9r4xpYtX+H2JUuWfILk27J12MbY2GA7OHY4jQ0k0CYPz9Mk5IAAeR7oMzQP6ZMQEoKTNpOZ0Ol0Or2m0ya0aZnSkgYISQjP3/B80Y8s65Us69jjd7xe8xtGkmVA693fvvXZ9WrI/wMAYBCGuAgAAOQUAICcAgCQUwAAcgoAADkFACCnAADkFACAnAIAQE4BAMgpAAA5BQAgpwAAkFMAAHIKAEBOAQDIKQAA5BQAgJwCAJBTAAByCgBATgEAIKcAAOQUAICcAgCQUwAAyCkAADkFACCnAADkFAAAcgoAQE4BAMgpAAA5BQCAnAIAkFMAAHIKAEBOAQDIKYCEeD+PSwOQUwD99u67777xxhuvv/76O++849IA5BRAP7z//vvvvffeT37yk7vvvvv06dMhqlwmgJwC6F9Ovf3224888siVV165cePG1157zWUCyCmAvnrjjTdeffXVgwcP1tTUzJ49e/PmzXIKkFMA/fCjH/1o69atN9xww+nTpxsaGpqbm+UUIKcA+pdTzz333N/8zd/8/d///Y4dO0JaySlATgH0wy9/+cuf//znv/nNb0JF7dy5U04BcgqgT87niT7yz//8z3IKkFMAl66o+vr6IUOGDB06dPjw4SNHjgxvhHfPnDkjpwA5BXAJoZmGdAkhNWnSpNra2gULFlRXV4d3o48vWrRITgFyCuASLRWMHDly8uTJi7uErsptVMHChQvlFCCnAHprqVBOl19++YIFCzZt2rR58+YZM2ZUVVXlcio4ceKESwyQUwAXno/yhHKqrq5evXr10S4rV66cNGlSfk4FueenA8gpgAumqSinJkyYcPXVV99yyy2HDh3qMafq6+tdboCcAvjdyehCoZxGjBgxefLk+V2mT58+evToYcOGySlATgH0Kaeip6JXV1fP7TJx4sTwbvfP8XgfIKcAPhCqqPs6NWrUqKlTp9Z0CV0lpwA5BdC/nKqqqrryyis/1iW8UfA3++QUIKcAesup6GU8x44dO23atNBS1ilATgFc6mTUk2HDhl3Wpfvz0CMuN0BOAXwo+iF93R/yG9al+8N80Y/wc7kBcgrgQz0+3tc7OQXIKYAL9DhQaSlATgH01cmTJ5csWdKXlpo/f/6DDz7oEgPkFMAFLbVjx4558+atPbW995aas7J2zpw5mzdvPnfunMsNkFMAF7TULS/c13y2M6TS5MmTewyp8AkPvfFs+KeiAuQUQA8tFVKpvr5+y5Yt6+/eHd5ee2r79ddfv3jx4vBL0a/mjvDu7NmzFRUgpwAtdUFLRdNU6KdcNjU1NS1fvjw/pBQVIKcAem6pgmnqkjmVK6pNmzYpKkBOAVqqh2nqkjmlqAA5BWipj54R1X2a6ktOKSpATgFa6sNp6qabbiqYpvqYU4oKkFNA1lvqYtNU33NKUQFyCsh0S11smupXTikqQE4BGW2paJraunVr92kqHOvWret7TikqQE4BWWypXqapAeSUogLkFJCtlup9mhpYTuWKauPGjYoKkFNAyluq+WznzTfffLFpasA5pagAOQVkoqXC0dDQ0Ms0NZicUlSAnALS31KXnKYGmVOKCpBTQJpbqi/T1OBzSlEBcgpIbUv1ZZoqSk4pKkBOASlsqT5OU8XKKUUFyCkgbS3VfLazubn5ktNUEXMqV1QbNmxQVICcApLdUn2fpoqbU4oKkFNASlqq79NU0XNKUQFyCkh8S/VrmipFTkVFNXfu3KamJkUFyCkgeS3Vr2kqyqkbb7yxuDmlqAA5BSS1pfo7TYVj/fr1pcgpRQXIKSCRLdV8trOlpaXv01RJc0pRAXIKSFhLDWCaKnVOKSpATgFJaqnms53bt2/v1zRVhpxSVICcApLRUuFYu3Ztf6ep8uSUogLkFJCAlhrYNFW2nMovqrNnz/pTBuQUEK+Wiqapbdu29XeainKq6K87pagAOQUkrKUGPE2FY8OGDWXLKUUFyCkgji01mGmq/DmlqAA5BcSupZrPdobfO7BpqiI5pagAOQXEqKUGOU1VKqdyRdXY2KioADkFVLKlBjlNVTCnFBUgp4DKt1Q0TW3fvn3A01Rlc0pRAXIKqHBLDX6aqnhOKSpATgEVa6miTFNxyClFBcgpoDIt1Xy2c+fOnYOcpmKSU4oKkFNAuVuqWNNUfHJKUQFyCihrSxVrmopVTuWKKpSiogLkFFDCliriNBW3nFJUgJwCytFSRZymYphTigqQU0BpW6q401Q8c0pRAXIKKGFLFXeaim1OKSpATgElaamiT1NxzilFBcgpoPgtVfRpKuY5pagAOQVaqpgtFY7GxsbiTlPxz6n8onrwwQddr0BOAVoqXtNUInJKUQFyCrRUcY6Ghobwry3uNBWOjRs3xj+nFBXIKUBLFWeaqqmpKXqmJCWn8ovq3LlzrmkgpwAt1b9jzZo1pZimkpVTigrkFKClYjdNJS6nFBXIKUBLxWuaSspT0RUVyClAS8V0mkpoTikqkFOAlorLNJXcnMoVVUNDg6ICOQVoqUtMUwsWLChdlCQ3pxQVyClAS1V+mkp6TuWKqr6+XlGBnAK0VA/T1K5du0o6TSXxb/YpKpBTgJaK0TSVjpxSVCCnAC1VsWkqNTmlqEBOAVqqMtNUmnJKUYGcArRUBaaplOWUogI5BWipj6apnTt3lmGaSl9O5YoqXIaKCuQUkNGWKuc0lcqcUlQgp4BMt1SZp6m05lR+UZ09e9Z1GOQUkKGWKvM0FeXUihUr0pdTigrkFJDFlir/NJXunFJUIKeAzLVU+aep1OeUogI5BWSopSoyTWUhpxQVyCkgKy0VTVMLFy4sZ2SEI/wXZ86cufbU9iwUVV1dnaICOQWks6XKPE2FL23OytohQ4YMGzZsRJehQ4eGd8MHU9xVigrkFJDmlmo+27l79+7yTFNRSAXDhw+vrq6u6RLeCGkVfVxRAXIKSFhLlXOayrVUMHLkyIkTJy7sMnny5FGjRkUbVTRTKSpATgGJaamyTVNrT23PtVQop8suu2zWrFlru4Q3qqqqhuSxUQFyCkhGS5VtmspvqehZU1OmTGloaLiny/LlyydMmJBbpyIVuTQUFSCnQEslYJqK1qnx48dfe+21+7qsWLFi0qRJuadPpf4hP0UFcgpISUtF09TevXvL8KypIRcKOVVVVTV16tRVq1atXLly8eLF48aNK1inAq+eAMgpINYtVbZpKnyBQ7oZNWrU5MmTZ8+ePWfOnPHjx48YMaL756T48T5FBXIKSHxLRdNUW1tbGaap7jkVrVPTp0+/usu0adNGjx7dfZ1KfU7lF9UDDzzgdgFyCkhSS5XztaZ6XKdGjhxZXV09v8vUqVPzXyghUzmlqEBOAQNpqZ07d1a2paJpqr29vWw/oa97Tg0bNmz06NGTu1zswb4stJSiAjkFJLKlyjlNdX8Bz9zjfUHuh8x0n6YylVOKCuQUkKSWKv801f2FEvrimmuuue0rdysqQE4BsWup5rOdra2ttbXlflWn/ubUkiVLDh8+fPDgwUxFlaICOQXEvaUqMk1d7PG+Xqw+0RyO+pNbMxhVigrkFBDrlqrUNBW+9hMnToRK6EtLzZw5c8+ePYe/efae157IZlQpKpBTQExbqlLTVNRS69evv/bmVZvub+u9pY6//Mh1zauDXFFFUbXurl1RVN1yyy1ZiCpFBXIKiGNLVWSaym+pP3zvxegIUTV/zdL8igrvhpDKfUL3ospgVCkqkFOgpSr/Wp3dp6mOjo5yTlM9tlQfjx6LKj+qDh06lPqoUlQgp0BLxailms92hjQp5zQ1mJbKFdWqVau6F1UuqhYvXpz6qFJUIKdASz2bzWkqfO3Hjx8fTEtdsqiyE1WKCuQUaKnMTVPFaqm+FFVGoioqqtWrVysqkFOgpdI/TRW3pfKLqrW19WJFVRBVBw4cSF9UKSqQU6ClMjFNlaKl+l5UqY+qXFGdOXPGLQ7kFGipFE5TpWupfhVVuqNKUYGcAi1VmWlq0aJFSW+p/hZVLqrC197Z2ZmmqFJUIKdAS6Vwmgpf+7Fjx0rdUrmiWrlyZR+LKq1RpahAToGWStU0Vc6WGlhRpTKqFBXIKdBSZZqmQj2UdJoqf0sNuKjyo6qjoyMFURUV1apVqxQVyCnQUkmdpirVUoMpqpRFlaICOQVaqrTT1L59+0o3TYWv/Y477tiwYUNFWmqQRZWmqFJUIKdASyVymopDSw2+qHJRVVtb297entyoUlQgp0BLJWyaik9LFaWoCqJq//79SYwqRQVyCrRUYqapqKUq9XypXopqxYoVgymqFESVogI5BVoqAdNUPFuqiEWVH1VtbW2JiypFBXIKtFSsp6k4t1RxiyoXVQsXLkxcVCkqkFOgpWI6TcW/pfKLavfu3YMvquRGlaICOQVaKnbTVPjab7/99vi3VCmKKj+q9u7dm5SoUlQgp0BLDXyaCvf3xZ2mopZat25dIlqqREVVEFX79u2Lf1Tliur+++93WwY5BVqqr9NUuKdfvHhxxluqdEWVuKhSVCCnQEtVeJpKbkuVtKjyo2rPnj0xjypFBXIKtFTFpqmkt1SpiyoXVQsWLAhR1dnZGduoUlQgp0BLVWCaSkdLlaGokhJVigrkFGipsk5TaWqp8hRVIqJKUYGcAi11iWnqwIEDRZmm0tdSZSuqXFTV1NS0trbGMKoUFcgp0FIln6bS2lLlLKqYR5WiAjkFWqqE01S6W6rMRRXnqFJUIKdAS5VkmspCS5W/qPKjKvwXOzo6YhJVigrkFGipIk9T2WmpihRV96g6/OW7FBXIKdBS6Zmmwtd+9OjR7LRUpYoqhlGlqEBOQdZbqijTVNRSTU1NmWqpChZVflTt2rWr4lEVFdXKlSsVFcgpyGJLRdPUkiVLtNQgiypkTZmLKj+qtm7dWtmoUlQgpyCjLTX4aUpLVbyo4hNVigrkFGSxpZrPdra1tQ14mtJS8SmqXFTNnz+/glGVK6r77rvPWQLkFKS/paJp6vDhwwObprRUDIsqDlGlqEBOQYZaajDTlJbqpaiWL19e2aKqeFQpKpBTkImWGsw0paUSUVS5qApX1/JHlaICOQXpb6kBT1NaKimP+vUYVe3t7WWLKkUFcgrS3FIDnqa0VH+LaufOnXEoqkpFVVRU4XJQVCCnIG0tNbBpSkslvajyo2rLli3liSpFBXIKUthS0TR122239WuaCl/7kSNHtFQKiqr8UZX7KTSKCjkFWiolLTWAaUpLpa+oyhxVigrkFFoqPS01gGlKSxXr7/rFsKjKGVWKCuQUWurZbE5TWioLRZWLqoULF4aoCteQEkWVokJOgZbK3DSlpTJVVOWJKkWFnAItlfhpqr29fenSpVqqskUVrl2xLar8qGppaSlFVHk9KuQUaKlMTFNaKuNFVRBVe/fuLW5UKSrkFGiplE9TWkpRXSyqjj19puhFde+99zrzIKdAS6Vqmgpfe/i0tWvXailF1T2qmpubixhVigo5BVoqhdOUllJUZY4qRYWcAi2VqmlKSymqAUTVHU/dr6hATkH6W6ov05SWUlQVjCpFhZwCLZX4aUpLxaGotm/fnqyiKoiqPXv2DCaqFBVyCrRUrKepjo6OXqYpLaWoYhJVigo5BVoqvtPUkSNHLjZNRS3V0NCgpRRVHKJKUSGnQEslbJrSUjEsqhUrVmzbti2hRZUfVTfffPPAokpRIadASyVmmtJSiqpsUXX7V+9TVCCn0FJpm6ai1z3XUooqtlGlqJBToKViPU1pKUWViKhSVMgpKKtf//rXv/jFL/7t3/7tP/7jP9599933339fSzWf7WxtbV22bJmWUlTJjarBF9Xbb7/97//+7+Hk8F//9V9Olcgp6Fkop1/+8pc/+9nPnn322ePHjz/66KN/+7d/+9Zbb/3mN7/JcktF09TRo0cLpiktpagSF1UDLqr33nsvnAp+/OMfP/DAA+Hm//zzz7/55pvhWy+nTeQU9HDGDGfJtWvXhnudjo6Opqam2traz3zmM//6r/+a5ZbqcZrSUsktqq1bt6amqAqiateuXZeMqoEV1euvv/7JT37y6quv3rBhQ/ivXHPNNcuXL//zP/9zp03kFFzgt7/97V//9V+Hlgrfvn/961//q7/6q5deeungwYPXXntteCOzLZWbppo+uVNLKapERFW4CfceVbmiuueee/pycvjVr371wx/+MHxHcfr06VdeeSVU1NNPP/2xj33s/vvv/9nPfubkiZyCj/z617/+7Gc/G777fPHFF99777133333nXfe+Yd/+Idw2v3c5z6X2ZbqPk1pKUWVlKg6+uS9RSmqn//85w888EBLS8tf/MVfRB956623QleF3/6Nb3zjYk+vBDlFFr399tsHDhzYu3fv3/3d3/3lX/7lF77wheeee+4f//EfX3vttehppxlsqdw0tfbUdi2lqBIXVTfddFMvUdX3onr99dfb2tqOHz/+k5/8JPfEgH/6p39atGjRM888I6eQU/CRN998c9OmTaEVzp07t3///vr6+sbGxvDGCy+8EL43zWZLFUxTUUuFS0ZLpaaotmzZcuTFB9NXVAVRFcKxx6jqY1H9y7/8S1NT05kzZ0JX5X+wpqbmiSeekFPIKfjIG2+8Ee5dJk2aVFtb+/jjj4d3n3zyyfnz54fTcYiqDLZUwTQVtVRdXZ2WUlTJiqqmT+78KKqeuHcARfXTn/40fMLDDz8cTgv5ORXOCV/5ylfkFHIK/t/58+fDN531XcaPHz9z5syOjo7//M///NWvfvXmm2/+8Ic/DEmRhZYKX92clbXREfopHBvuac1NU7mWur6lToWkr6haWlryi6rtj06FCpm1fEF0hLfDkeKoulhRhZNDdGa44YYbwslh7dq1L7zwQn5OhW+35BRyCiH1wblyyJAhQ4cOHT58+KhRo0aOHBneHtIlNFb4nBMnTqS+pUI5RV9yuBBGjBgxevTo8M/oI9dff32oKy2VnaIKIRX6KbpRhKtBuFHkrgxBmqJqy5Yt+VGVK6q77ror3PDDzT/6kocNGzayS7h15C6H6OTgwT7kFHx0ugx3G2PGjJk2bVo4M86aNWvs2LHhBBr9UnV1depbKtRS9MWGe83LL788XALhzubKK68M96O5sqzroqVSX1QLFizI3ShCVYerQbgyTJ8+PdxAcjeKpBdV96g68sQ9BUUVfinXUuPGjbvqqqvCSWDq1KlVVVX5RfXTn/60trb2qaeeklPIKbLeUtE9x2WXXTZnzpxwDg3/vOKKK/K/DZ04cWIWWiqapiZMmBDuOZYsWTJjxoxwmeRyKgjvao50H7VN1+b+uENGhHQIV4NwZQhXiXDFyL9RzFq+IE3Pqdq8eXMuqsKNPXyx+TeKkFPhtLBo0aLwz/D9Rv6NYvny5du3b3/11VedUZFTZL2lglGjRoW7jbq6unBynDlzZjhj5r4Rj+ReIyCtj/FFTTly5MjwLXj41nz16tXhnmP06NH59xzB8Zcf0RxpPcIf7pALhStACKmmpqbrrrtu2rRp4eqR/6sp2Ki6R1VLS8v1LXX5X2Y4FYQTQm1tbbhRrFixYurUqfnPBwiOHj361ltvOakip8jk9e/C0+XEiRNvuOGGkydP7t+/P5w0w/emBRkRpDKn8r/AaKILTXnrrbeGe4hwOYRvyguycv6apbIjrcem+9sKrg/hCnDjjTfeeeednZ2doSTGjh1bcLto+6NT6fvbf/nTVHQ5jB8/fs2aNYcOHbrjjjuuv/76gttFuGQ80oecwjT1wZhfXV29fPnyu+6668iRI+vXr+8xp9L3eF/+NBXdbYTvwhsaGkJO3X333aGrwsVSkFMGqhQfBX/Q4Y/+iiuuCK0Qcur48ePr1q0Lt4uC60Oacio6oufgd8+pcDkcPHjw3nvvDbeL6dOn5z/uGZw/f955FTlF1nMqyoiZM2euXr06RFVNTU3B0yMic1bWpvhZU7mnHs+dOzdcCCGqwhsFz52SU9mZpqKcCleAcDUIV4Ybb7wxvDFmzJiC60M6nkF1yZwKl8P8+fNvuOGG0FIzZszofn6or693XkVOkTnRKyN0H6gWLFhw/fXXR2t/91UmOPnsQxc7PvHcwxc7evldvf/G/OPUH33qksfp//3pHo+LfVr3u40RI0ZMnjx50aJF1157bbj77P4csiDc74qP7OTUnDlzrrvuunCVmDJlSv7f9My58389mH98/H+e68tR8LsG9i858bWzlzyOP/NAj8fFPmfixIndTw7hhBByatmyZeEUMWnSpPBdR8HnyCnkFHLqwzPm2LFjwz3HkiVLampqQloVjPlBOI1u67L9d3bk2dmTXXl252n9nT159nZpa2trb2/f183+PAfy3JLnYE9u/Z1DeQ536d6L0T3HvHnzli5dOnv2bDklp8LVIP9G0T2n8q9Xt14odyXMv5bmX3tzV+mCa3vn73R0ae8Sbhqt3eTfrHK3tfzb4I6ebM+z9ULhZt7j91ohpxYvXhxOEePGjet+cpBTyCnk1If3HOE7zmnTpoWSuOqqq6644oruGRHuSG46056mo3tORX+JacaMGbW1tVdeeWX+Sw3JqazlVPTgb3SjyGVE95zKwo1i/Pjx4UYRmnL69OkhMbvfKOQUcgo59eE9R1RU4VwZGmLEiBHd7zbmr1n6ud++mKYjfEXd7zzC1x4ugbFjx1ZVVfV49ymnMvIqCdEwE64G4cqQ5RtF9CB4ODmE7zSinxbQ/XKIXiEd5BTZcv78+SE9iaKqx4ZI5T3H8e89crHLIVwIPT57LFAe2cmp3JWh+8Nbkc33t2XhRjG0S3Sj6PHkIKeQUxio+mTmzJl/9md/duZPHkvT/cfFcqoXpqkUHz2ulb1LWUtFx5D+c0ZFTmGg6pMFDR+rqak5ffp0yqJqc7dnzPTOqyRkcKC6mPRNUwO7UZimkFNkWsGrT/Vi2bJld/3oD8P9TcuD+0NUnTp1Kk1R1fdN4sat9Zoj3cfcuXP7eGVI32Pf+attuMlrKeQUFLOoxo0bt379+oMHD0ZFFUXV/PnzQ1T96Z/+aTqiqi/fjk+cOHHfvn2Hz31cc6T1aD154BOf+MSUKVMy3lK33Xbb7bffXvADCrUUcgoGXlTR6XL79u0FRZWLqnD3k46o6qWown1nuI8JR01NTWdnp6JKcUstW7bs+MuPLN1wQ/izztpjfPkttWXLlt5PDvX19X6wDHIKCoUzYzh11ucpOFf2WFS5qDp58mRqoiocoZ+iI7wd7mDy72wUVepbKrzb1NQUrvDRlSH/+pB/ZUh9S+V/x5V/cghvCynkFAzcxYoqiqp58+bdeeedP/jBD1L2t/+63+WEfFRUKW6ptseONTc3L1y4MMXl1PeWAjkFpSqqQ4cOdS+q7ESVokpxS+VPU1oK5BRUpqiiqLrqqqs+/vGPf//7309rVCmqtLZUBqepcGU+fPjw0aNHtRRyCspdVOvWreulqHJRdeLEibRGledRpa+lwtHY2Lht27bsTFNaCjkFcS+qXFQdP378g6e6py6qFFXKWipr05SWQk5BYooqiqq5c+emMqoUVWpaKmvTlJZCTkHyiioXVceOHXvllVfSFFWKKh0tlalpSkshpyDBRZWLqgMHDqQpqhRV0lsqU9NUuLqGG6yWQk5Bsosqiqo5c+bs378/NVEVFVVHR4eiSmJLZWea0lLIKYh1UTU1NfWrqPKj6nvf+14KokpRJbSlsjNNaSnkFCSjqG699dZ+FVUUVbNnz05HVCmqmLbUnft7aam2x47dfPPNqZ+mtBRyClJeVLmo2rdvX9KjSlElq6UyMk1pKeQUZKWoclHV2dn58ssvJzeqoqLau3fv0YdOqpmYt1QWpqlwhQw3SS2FnIIMFVUUVbNmzUp0VCmqmLTUyZMne2mpLExTWgo5Bdktqvyo+u53v5vEqFJU8W+p1E9TWgo5BYkvqvB9/yCLKhdVHR0dSYyq6Ccl79mzR1HFsKWiaWrr1q1pnaa0FHIKFFVKokpRxbal0j1NaSnkFCiqi0bVzJkzExdVuaI6oqhi01LpnqbCVe7gwYNaCjkFiurSUfWd73znsz/4aiLuDhVV3FoqxdOUlkJOgaLqR1TV1ta2t7eHqPrMD56Mf1Qpqvi0VIqnKS2FnAJFNbio+n7co0pRxaSl2h47dtNNN6VvmtJSyClQVEWIqpdeeinmURUV1e7duxVVcX8eX99bKq3TVNRSt99+u5ZCToGiGmxUtbW1haj6g/NPxPbOMtztLViw4IOievBOJVT+lkrlNKWlkFOQxaIKp/5SFFUuqvbu3RvnqIqKateuXYqqzC2VymlKSyGnQFG9WNKo+va3v/37578Sw/tORVWRlkrfNKWlQE6hqEpYVPlR9eKLL8YwqhRVmVsqfdOUlgI5haIqR1HlomrPnj0fRNUr8YoqRVXOlkrZNKWlQE5BWYuqIKoefeXL8YkqRVWelgrH2rVrUzNNhavNLbfcoqVATsGHRdXQ0FCeosqPqm9961uPfi8uURUV1c6dOxVV6VoqTdNUuMLs37/f60uBnIKKFVU8o0pRlbSl0jRNaSmQUxCXospFVWtr6ze/+c1Hvvelit/RKqrStVRqpiktBXIKYldUhVH1coWjSlGVoqVSM01pKZBTEN+iykXV7t27Q1R9+rtfrOD9rqIqeku1PXZs8+bNSZ+mtBTIKUhAUeVH1fPPP1/BqFJURWypdExT4Sqxb98+LQVyCvpRVPX19ZUqqlxU7dq162tf+1qlokpRFaulUjBNaSmQUzDworrlllsqVVQFUfWp7z5e/qiKimrHjh1HHzqppQb8L0n6NKWlQE5BsosqF1U7d+585plnPvWdckdVlouqKC2V9GlKS4GcgpQUVX5UPf3002WOqlxRHclSURWlpZI+TWkpkFOQtqIqiKqHv/OFst1JZ62oitVSiZ6mopY6cuSIlgI5BWkrqsKoeqlMUZWdoipWSyV6mtJSIKcg/UWVH1VPPfXUQy99vgz32VFRhYsixUVVxJZK7jSlpUBOQYaKKhdVO3bs+OpXv1qGqPqoqNL46glFbKnkTlNaCuQUZLGo8qPqySeffOjbpY2qtBZVcVuq7bFjGzduTNw0paVATkGmiyoXVeH/METVgy9+rnRRFRXVtm3bUlNUxW2phE5TWgrkFCiqD48tv4uqJ554onRRlaaiKnpLtT12bMOGDcmaprQUyClQVD1HVcidL3/5yyWKqnQUVdFbKonTlJYCOQWKqk9Rde7FPyz6HXyuqG5LZlGVoqUSN01pKZBTUOGiWrNmTcyLKhdVW7du/dKXvnTuW0WOquQWVSlaKnHTlJYCOQVxKaoDBw7EvKjyo+qLX/zi2W/9jyLe3yexqErUUsmapsIfXGdn52233aalQE6Bour33/4relQlq6hK1FLhaGhoCGmSiGlKS4GcAkVVnKh6/PHHz36zOFEVFVX4d8a8qErXUgmaprQUyClQVMWMqnCHGqLqgW/+98FH1UdFde7jWWupBE1TWgrkFCiqUkXV5z//+Qf+72CjKs5FVdKWSso0paVAToGiKnlUPfroo4OMqngWVUlbKinTlJYCOQWKqkxR1dLS8sgjj5z5k8cGHAdxK6pSt1QipiktBXIKFFW5o6q5uXkwURWfoip1SyVimtJSIKdAUVU4qu7/k/82gFbIFdXhyhVVGVqq7bFj69evj/M0paVAToGiSnBUVbaoytBS8Z+mtBTIKVBUMYqqm2+++dOf/vT93+hfVFWqqMrTUjGfpsKF39HRoaVATkHii6quri4FRVUQVfd947N9j6ryF1V5Wirm05SWAjkFaSuq/fv3p6CoBhxV5SyqsrVUnKcpLQVyChRVYqLqU5/61H0v9CmqPiqqsydS0FJxnqailjp8+LCWAjkFiioZUXXTTTeFqLr3hc9cMixKXVTlbKnYTlNaCuQUKKqkRtXmzZs/iKr/c4moiooq3NMXvajK2VKxnabCxdve3q6lQE6Bokp2VD388MO9R1UpiqrMLRXPaUpLgZwCRZWeqNq1a1eIqnu+/gcXi6riFlWZWyocjY2NcZumtBTIKVBUmYuqXFEdeuB4slqq7bFj69ati9U0paVAToGiejHdUfXQQw/d/fXf7x5Vgy+q8rdUDKcpLQVyChRVmovqklE1mKKqSEtF09SiRYu0FCCnQFFVJqoefPDBu//4gqjqsahCIc1fs3RInvDupvvbKttScZumtBTIKSBbRVUQVXf98aO5KMkvqpBHuYQaMWJEVVXVmDFjhg0blvtgiKpKtVSspiktBXIKyGhRFUbV8x9GVVRU8+fPj5pp6NChoaUmT568cOHC8PHq6ur8olqxYkX5WypW05SWAjkF9FBUq1ev3rdvX0aKKj+qzp07F0VVOPIf3Rs5cmSUU4sWLZoyZUp4t+CxvzL/D8dnmopa6tChQ1oK5BSQ9aIqiKohFxo9evSMGTPq6urWrFkT3gjvFnxC+aeplpaWik9TWgrkFKCoeo6qSZMm5afSsGHDwkdWrFhx+vTpU6dO3XjjjVdccUX+433Rk6iyNk2Flmpra9NSIKcARdXDUbA8hXKaOHFiXV3dnV3CG6GuCnKqnI/3xWGa0lIgpwBF1Y+cGjp06GWXXTZv3ryWLtddd111dXX4YEUe74vDNKWlQE4Biqq3I//FEXI5NWbMmJkzZ65YsWL58uVz5swJddU9p8rzl/sqPk1pKZBTgKIaSE6NHj36937v9z7WZfr06VVVVRXJqYpPU1oK5BSgqAaSU8Hw4cMvu+yyadOmTZ06dcKECSNGjOj+OWXIqcpOU1oK5BSgqAb43KncE9LHdKmqqip4Hnp5njtV2WlKS4GcAhRVP46Cn9CX/6hfpPsvleGFEio4TWkpkFOAoirC4329K3VOVXCailrq1ltv1VIgpwBF1Y9j04U/ZKayLVXBaUpLgZwCSlhUq1atSndRXewhvwJleAHPSk1TWgrkFFCOours7MzyRlWeF0OvyDSlpUBOAYqqaEXV40wVPlie1+2syDSlpUBOAYqqJF01Y8aM6dOnh4oqT0hVaprSUiCnAEVVqmPt2rUrV64s53+x/NOUlgI5BSiqVOVUmaep0FJ79+49ePCglgI5BSiqNORU22PHmpqaamtrtRQgp0BRyam4T1NaCuQUoKjSllPlnKa0FMgpQFGlMKfKNk1pKZBTgKJKYU6VbZrSUiCnAEVV1qOhoaE8OdXY2Lg5KPE0paVATgGKKp05VZ5pKmqpAwcOaCmQU0Dciyr0R2qKqjw5VYZpSkuBnAKSV1QdHR0pKKoy5FQZpiktBXIKSGpRtbW1Jb2oypBTpZ6mQkvt2bNHS4GcAhRVOnOq1NOUlgI5BSiqlOdUSacpLQVyCkhJUa1evTq5RVXSnIqmqYULF2opQE4BlyiqVatWJbSoSppTpZumopbav3+/lgI5BSiq1OZU6aap0FKtra1aCuQUoKhSnlMlmqa0FMgpQFFlIqdKNE1pKZBTQFaKau/evUkpqvr6+lLkVGNj46ZNm4o7TWkpkFOAospKTpVimopaat++fVoK5BSgqOJ1rFmzJvyvxnya0lIgpwBFlaGcKvo0paUAOQWKKtZFVfScKu40paUAOQWKKu5FVdycKu40paUAOQUkoKiKm1NFnKa0FCCngGQUVRFzqojTVGipcHFpKUBOAQkoqiLmVLGmqailOjs7tRQgp4AeimrPnj2xKqpi5VSxpiktBcgpIGFFVaycamxs3Lhx4yCnKS0FyCkgeUVVlJwqyjSlpQA5BSSyqIqSU4OfprQUIKeApBbV4HNq8NNUaKlwUXR0dGgpQE4BySuqwefUIKcpLQXIKSDZRVVXV7dy5cpKTVNaCpBTQHGKqrW1tVJFNcicGsw0paUAOQWkoagGk1Ntjx0LOTWwaUpLAXIKSElRDSanBjxNaSlATgHpKaoB59SApyktBcgpIFVFNeCcCi21YcOG/k5TWgqQU0DJiyrETTmLamA5NbBpKmqp9vZ2LQXIKaDkRbV79+7yFNXAcmoA05SWAuQUkM6iGkBODWCa0lKAnAJSW1QDyKn+TlNaCpBTQJqLqr851d9pSksBcgpIeVH1N6f6NU1FLdXW1qalADkFpLao+pVT/ZqmopZqbW3dsWOHP0dATgGpLarVq1f3Paf6Pk1FLRX+n7UUIKeAlBdV33Oq7bFja9euXbBggZYC5BSgqAaSU42NjevWrbvkNKWlADkFxLqo6urqQqYUsaj6mFN9nKa0FCCngMwVVR+fit7Y2NjU1NT7NKWlADkFZLGo+pJTfZmmQku1traGlgr/e/6MADkFJKOowj8HX1R9yalLTlNaCpBTQHaLKvxLVqxYMZhpSksBcgrIdFFdMqd6n6ailtq1a5eWAuQUkNGi6j2nep+mtBQgpwBFdYmc6mWa0lKAnAIU1SVyqpdpSksBcgpIZ1G1tLTc9+rjxcqpi01TWgqQU4CiunRORdNUTU1Njy21c+dOLQXIKUBRffhDZnrMqR6nKS0FyClAUfUpp3qcprQUIKeA7BXVj78wsJzqPk1pKUBOAYqqrznVfZrSUoCcAhRVP3KqYJrSUoCcArJeVM3Nzb0UVUFOFUxTUUvt2LFDSwFyClBUX+hLTuVPU1oKkFMAvRXV8ZcfCceyZcsWL1686f62gmlKSwFyCuCiRRUqav6apUOGDBk6dOiQPHPmzImmqdBS7e3toaW2bdvm0gPkFMAFRXXNzauieAotNXr06HFdRo4cmUurkFOhpVpaWhYuXPiLX/zCRQfIKYCPimrWrFm5LSok1MSJExd0qa6uDu/mfmnRokUzZ87cu3fvO++843ID5BTAh86cOZP/0F7op8mTJ9d2CW+MGDEi/1fnzp37/vvvu9AAOQXQc0sFo0ePnjVrVl1d3apVq6ZPnz5q1KiCp1K98sorLjdATgH0nFPDhg2rrq5euXLl8ePHjx07dvXVV48bNy58MP9z1qxZ43ID5BTA705GFwrlNHHixJBTp0+fPnXqVGNj49SpU4cPH17waS43QE4BfOD8+fMFnTR06NDx48cvXbq0ra2to6Pj2muvnTBhQsGDfUH4jS49QE4B9JxTY8aMueqqq+q7zJs37/LLL5dTgJwC6GtO5V4oYdGiRbW1tTNmzKiqqpJTgJwC6EdODRs2bNSoUVOmTJk8efKECRMKXijBc6cAOQVwgfr6+u6P94WiGt5laBc5BcgpgH7kVH5X9dhSZ86ccbkBcgrgQz0+3tc7FxogpwAu0P2F0XthmgLkFMDAi0pLAXIKYOBFpaUAOQUwwKiqr6/3QlOAnALoh/N5XBqAnAIAkFMAAMgpAAA5BQAgpwAA5BQAAHIKAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAAOQUAICcAgCQUwAAcgoAADkFACCnAADkFACAnAIAQE4BAMgpAAA5BQAgpwAA5BQAAHIKAEBOAQDIKQAAOQUAgJwCAJBTAAByCgBATgEAIKcAAOQUAICcAgCQUwAAyCkAADkFACCnAADkFACAnHIRAADIKQAAOQUAkEz/H8v6mx96i1wAAAAAAElFTkSuQmCC"
]
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"![{{:tutorial:square_nreg_subdiv.png?400|}}](attachment:square_nreg_subdiv.png)\n",
"\n",
"This is quite similar to the `mother of all examples` (See: \"Triangulations\" from DeLoera, Rambau and Santos). So with a similar argument we can see that this subdivision is indeed not regular. How does polymake feel about this?\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"false <>\n",
"\n"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print is_regular($points, $nreg_cells);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Just as expected polymake tells us that the subdivision is not regular. But although there is no weight function which induces this particular subdivision we can still create a `SubdivisionOfPoints` object with the given cells. What happens if we ask for the secondary cone of that subdivision?\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4\n",
"\n"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"$nreg_sub = new fan::SubdivisionOfPoints(POINTS=>$points, MAXIMAL_CELLS=>$nreg_cells);\n",
"$nreg_sc = $nreg_sub->secondary_cone();\n",
"print $nreg_sc->DIM;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This might be weird at first. Although our subdivision is not regular (meaning there does not exist a secondary cone for that subdivision) the secondary cone seems to be 4 dimensional. Let us investigate.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 1 1 1 0 0 0 0\n",
" \n"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $nreg_sc->RAYS;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3/2 3/2 -1/2 -1/2 1 1 0 0\n",
"-26/19 12/19 34/19 -4/19 -11/19 8/19 1 0\n",
"50/49 -8/49 10/49 68/49 40/49 11/49 20/49 1\n",
"\n"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $nreg_sc->LINEALITY_SPACE;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This looks familiar, doesn't it? We got the same secondary cone as we did in our first example. The reason for this is that the first example is the finest regular coarsening of our non regular subdivision. And this is exactly what we see here. In other words, the subdivision of our first example is the closest regular thing similar to our non regular subdivision and this is exactly what the `secondary_cone` function produces. If a subdivision is not regular it gives you the secondary cone of the next best regular subdivision.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "polymake",
"language": "polymake",
"name": "polymake"
},
"language_info": {
"codemirror_mode": "perl",
"file_extension": ".pm",
"mimetype": "text/x-polymake",
"name": "polymake"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|