This file is indexed.

/usr/share/polymake/demo/regular_subdivisions.ipynb is in polymake-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Regular subdivisons\n",
    "\n",
    "*Regular subdivsions* of point sets appear in several different applications. `polymake` allows to define regular subdivisions of point configurations (e.g. the lattice points of a lattice polytope) via weights on the points. The weights define a *height function* on the points, and the subdivision is described by the lower hull of the polytope defined by the lifted points (see [here](http://link.springer.com/book/10.1007%2F978-3-642-12971-1) for example to get an idea of the mathematical backround). Let us look at an example on how to create a regular subdivision.\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$M = new Matrix<Rational>([[1,0,0],[1,2,0],[1,1,1],[1,0,2],[1,2,2],[1,1,3]]);\n",
    "$w = new Vector<Rational>([0,0,1,0,0,3]);\n",
    "$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
    "print $S->MAXIMAL_CELLS;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n",
    "    {0 1 3 4}\n",
    "    {3 4 5}\n",
    "\n",
    "\n",
    "The six points (given by the six rows of the matrix `M`) define a pentagon with interior point `(1,1)`. The weights `w` must be given in the same order as the vertices. So in our case the interior point has weight `1`. Switching to the `fan` application we may create the regular subdivision via the polymake object `SubdivisionOfPoints`, whose input parameters are the points `M` and weights `w`. A maximal cell of the subdivision is given by a set of indices, representing the points that cell contains. In our example we got two maximal cells and the first one is a quadrilateral with vertices 0, 1, 3 and 4.\n",
    "\n",
    "We may visualize the regular subdivision if it is at most three-dimensional. \n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$S->VISUAL;"
   ]
  },
  {
   "attachments": {
    "subdiv_of_points_1.gif": {
     "image/gif": [
      "R0lGODlhLAEAAfcAAAAAAAICAg4ODhQUFBkZGRsbGyYaGjMAADQAADYAAD8AADAVFSEhISIiIiUlJScnJywsLDcrKzQ0NDY2Njc3Nzg4OD8/PzdPPz9LQ0AAAEUAAEYAAEsAAFAAAFQAAEA8PE05MVwrK148PGs8PHA/P01AOEREREVFRUZGRkdHR0FLQ0NPR0hISElJSUpKSkxMTE1NTU5OTkpTS0hUTEpXTkxYUE1ZUU5aUlBQUFFRUVJSUlNTU1RUVFZWVlBcVFFdVVJeVlNfV1hYWFpaWltbW1xcXEJyUk19XVVtXXhLQ3VtXWJiYmRkZGZmZmpqamxsbG5ubnBwcHJycnR0dHZ2dnp3d3x3d3h4eHp6ent7e3x8fH19fX9/f1ODY1SEZFyMbF+Pb2GRcWSUdGaWdmmZeWmaeWqaemycfG6efnCggHOjg3SkhHamhnioiHqqin2tjX6ujoMAAIcAAIkAAIoAAI4AAJ8gIKwAALIAALQAALwREbs8PIZYUJBtXYJ3d4V3d4B7e71lVbxtXcYAAMgAAMoAAM4AAMIXF8cYGMwSEs4SEskZGdEAANIAANUAAPUAAPUFBfIJCfsCAv0AAP8AAP8CAv8FBf8NDf8ODvgeHuM8PP8iIv4lJf8mJv4wMP80NMBCQs1iYt13d953d+J3d4CAgIGBgYKCgoSEhIeHh4mJiYqKioyMjI6OjpSUlJWVlZaWlpiYmJqampycnJ6enoCkjIGkjIyklICwkIKykoS0lIi4mIq6moy8nI6+nqKioqWlpaioqKurq62tra6urrGxsbKysrOzs7Szs7ezs7S0tLa2tri4uLq6ury8vL29vb6+vpHBoZHCoZPDo5TEpJbGppnJqZrKqpzMrJ7OrqHRsaLSsqTUtKXWtafXt6jYuKnZuarauq7fvrPkw7TkxMOzs8ezs+uurvKzs8LCwsTExMjIyMzMzM7OztDQ0NLS0tXV1dbW1tjY2Nra2t3d3d7e3uDg4OLi4uTk5Obm5ujo6Orq6uvr6+zs7O3t7e7u7iwAAAAALAEAAUcI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIseNDea3s6ZPFQp7HkyhTqlzJsmVFZi9kgACh4kUzlzhz6tzJUyczGDfICR1KtOjQGTZ7Kl3KtKlLZjGCGp1KtepQGi5uOt3KtatTqFKtih1LViiNFlq9ql3LFiIzHGHLyp1Ll1wNtG3z6l3KTEfcuoADC67BIu3ew4glMsvhQ7Djx5Cp2iicuPLhxUAia97MWTJly6BR5oNCxIkLYPz+9Q3SubXr15JROEvoDx4VLv5C6y4oihInRT+6fRM3Drbx48iJ2lDUqdKof/fq7Z4+cEuFcNiza9/Ovbv37+DDi/8fT768efJDslBfX/36+ffw48ufT/+7EPXs12txX7+///8AvndffvrxF+CBCCbY34AETrefghBGKKF4PeDXoG4PTqjhhhFWeOFuGXIo4oj98WDhh5aFSOKKLJYXw4koJrYFBS0eyA0vX+xSI30vwBjjYdbt6F8ttQjZnws+/qhXkEY2uSOSSlY2o5NUsthCklGyNWWVXHLIApZZqrVll2RG+GWYQNJY5poJpgAmmlyNyeac/qHwJpxObTEBnXz2d8KdeDKlpxlo5IIGG9f0qWh5KFwRDBM5CNNPoFw9UsknkyhB5Kacdurpp6CGKuqopJZq6qmojtoHJZ9YogmlsMb/KuusiPGzyhSoqHJPbrT26qtApFyCSSizyKJMPrz+qiyaMNlgFVKGLSstdWBpdla002a7VbXJEXWttuCu9NZf3cp1F7bhppvQYuSW21kNKaCrrq99NebuvZ7JOy+Ki/2A77+CTabvvpfpkBnACL8mMMFc2fMOLDrQkPDECNsg20D4nBJFPa5cwU+yDGf0gQFFLmoyeUhEAEjIKTF58svhpccySi7DbDN3DM7ckYo39xxOzjpvxLPPNgMddEZDE/2yh0cLbaDSMJvYtNNQ9yz11Eg/DfM1R4yhhhdvgHNyj1hnVPPLAAgwAAA9Q1n2RWdXbbLbb1ckp9xzA1q3Qnfj/63olXvbrabfJp8Z+ER9E06nm4cjPrjifdrZuESJQ77mn5NHpKflippgSuYQ6cmGNeB4MwYunJeJQin9pLOFpKDHLvvstNdu++076eOAFFHAcs+kuAff0DNYxFMPK03QI/zyByUzxyF60GEF89QT1KxR0FaP+0/tTpW99pNz79j34DfNLWfflk/w+celr7607OPr/vuwvuUsxUWdS3+Y4+JPFmED2x9o2OW/wOhPgAPMQfcKCBh4BRCBTKkXA42zMAg2RYITdFcFLfiUHPgrgxPbIAc50i8QglCEI1SMwUzIwqKgkIP+iKEMrbfCFtrQM7PhYD7qoQ9/LOEVytABa/9uSMSxWCyHBTnGEopwBeAFrx330cEMzECNIlpRLkf8Bz/e0Y52oOIJyrvdMeRwh0XUoQQzSKMa18jGNrrxjXCMoxznSMc62vGOcVxAHRBxhzhUL26pIxMR9CY7QAaSSzL7o9YOySWjCc+QjHSSI4OXtEhKkpCxq6QljTRJ3Glykzvq5O0+CcoWidJ2pCzliphGvVSqckSsZJ4rX8mhWC5vlrTUkC2Fh8tcSuhqrVykL0kETFkKc5giKuYtj7kocICDG9v4htjGhknQaeFxNitdOLjxBjF4g5raq5zJeGEEXUyDGteY5qLIpsib1QIAAQAAAJBwM7oxD5LI3JA9l4f/z3xOaJ+PZKY/JQTQ4IlzoBIC3B+xidANKZR6B22ogh56T4ZKVEKGg6hFLwqhjFaUoxxi3EJBuiGRapSkGpLcSFEqIZWelKURculHYQohzP1xTzRVkOfCOQFwZIMa2lBnTvuzOn/gw3ggs52e2pCob4wBDkOt0xXYAQ0twM6gE0jDGdgABjhwI6pEZZ06TkEMJ9pODnjAAx38cIy2uvWtcI2rXOdK17ra9a54zate91rXKswhD3ioQwoHS9jCGvawiE1s2frhDmIMgxjIUmzg9OECWjwjHZGVbN3cMQBWtMIEtMCHZus2j3r0gx/5gAA8Rvs2dzhhClMogjP0wdqm/yGDEJnIxCDKUduybSEBHvBAAh7Y23Rd7yhJKW7Ijou95CrXuEAZC/meC7/oymW61KWV+ACD3ewGaruOmZ93+RcV9OFlvFGK32awQlz0DrC87cuKe/OjXuOId76VqW9y7ovfvOjXXfztb1egcj//HVDAA8ZBgSd4YATzBS43bLCDc9I/KwJwwjgh4BWHImEMd0TDG85fvDz8YQWG2CoOJDFGQHxiFI9YxSpcYIuncmEYNwSDM6bLC208EBznGDA7VjEzdmCvHz8myA4uoZE3g+T5KnnJnWlydp8MZddIubdUrjJsrizZvhxMy93ismG9DOZ/3eAzoyVzmSuGZgv6Y/8fy/iFO/YBvNWsGX9ZpE0/3sEO5jUDC8uIxxJkwQ8737mAeTZIPmLBgCmYFXf+oEULCDAFIR76hBcbiD/WQQVXtKKJy4NHMeKxDB2sYBeXZmGe52EBBkjgAQ1ohfDMcY4t6AADZZCGOFLdwiOiYyC0QMWjaTcISHCCEXy4hbKXzexmO/vZ0I62tKdN7Wpb+9rYlnYSGrGJSBSCeiLYQAcQQE+w9scWB+AAB/7QTnMDaJDhFKi7zwPvds+7P4mEqLzvjZ5qZq6f/CbPKWsH8ICLZ+C0K7jBwYPw2Sl84d5puOx6CfHtSDyT+654dy5uzYxr3OL+nhzFP/6zkDdu5B//53jmUK5xlYvc4yTHjstPDvOYz/xwLK/4LilZc5Lv3JM9//jPRxl0jQ8dlUXXuclxnnSIH712OXf60gMX9YUrk5dNt/rU91Z1g1+d5zE3z9eBHvbyjJ3oZSfP2ZGe9vGsHepZN/iLtNf1JnmjGnBwQzS2IdQ+sbOVGzVZLtLwDW7k4gvfAOdKffbMXoShF33n099n2jNu6MILvfBG5CW/9bo9vEy9QMIFuuCF0qPhZQXF3ee7hAQANKAAACgZzFJ/u9WzXp7lthntlRr3gO+e4L3n9+8THvx7D9/hxZ/38QuZfHcvP3YRbXs4ng+66Led+v8OvPSxQ1F+an/73X/k//elH36Djr/t5Vf9+dPuUe9vHzztF//7vxN/88/fO/VX//27k//ar7/sJkV5+5cdAeh+A6gdBSh/B0iAnfc21pd2CWh/C4gdMmWAE1iBCniBDehb/xd2GCiBE2hTLxWCG4g1mzOB4SCC94RTE7hTN4WC4eCCEMWCCyiDK9gLa5AGbEANm5d2q6MPzZAK0DBsCZdVPJgNZqAL+4cCUYAKTvAEV6V6E9AG2BAOTgVV97c6/OA6UVh7E0AGu7ANu3AGvrCErMOFRCg7xwAKiRAIcLAGb5BO9ycIdrAHxiAPysAOSTU7x1AIleAJjhACTjCIhFiIhniIiJiIiriIjNiIji/4iJAYiYtIAo7gCZJgCMfAPFSgABowAuVTBRnAAVTAY6RYiqZ4iqiYiqq4iusREAA7"
     ]
    }
   },
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "If you use javaview for visualization, then this might look similar to the following:\n",
    "\n",
    "![{{:tutorial:subdiv_of_points_1.gif?300|}}](attachment:subdiv_of_points_1.gif)\n",
    "\n",
    "Note that the quadrilateral contains point 2 in its interior and that this point is colored black. This corresponds to the fact that the lifted point 2 lies above the convex hull of the lifted points 0,1,3 and 4. Therefore the maximal cell describing the quadrilateral does not contain the point 2. We may change the lifting function by giving point 2 height `0` as well:\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$w = new Vector<Rational>([0,0,0,0,0,3]);\n",
    "$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
    "print $S->MAXIMAL_CELLS;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n",
    "    {0 1 2 3 4}\n",
    "    {3 4 5}\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$S->VISUAL;"
   ]
  },
  {
   "attachments": {
    "subdiv_of_points_2.gif": {
     "image/gif": [
      "R0lGODlhLAH/APcAABMTEx0dHSoBAS0AADAAADIAADYAAD4aGj8/ACEhISMjIykpKSw4MC46MjMzMzc3Nzg4ODo6Ojw8PD4+PjNANzRAODdDOztHPzxIQD1JQT5KQkwAAE4AAFYAAF8MDEs5MVI3L1g8PFw8PHwAAHkWFnwWFmk8PG08PHw8PEZGAHd3AHh4AEBAQEJCQkREREdHR0BMREFNRUlJSUpKSkxMTE9PT1ZURFBQUFNTU1lZWVxcXER0VFdtXVZuXVZuXlZ6Ylh8ZFp+ZmJ6XWJiYmVlZWdnZ2hoaGpqamxsbG1tbW5ubm9vb3BwcHFxcXJycnR0dHV1dXZ2dnt3d3h4eHp6ent7e319fX5+flSEZFqKal6ObmCEbGOHb2CQcGOTc2SUdGiYeGqaemycfG2efW+ff3WZgXGhgXKignSkhH+ji3ioiHqqin2tjX6ujoAAAIQAAIoAAJsEBJ8AAJ4GBpsbG50eHoY/N5kpKa4AALAAALwBAb4BAbgREaQ3L643L6U2Nqg8PKo8PLk8PL08PJd3d6xtXaV3d7R3d8QAAMcAAM8AAOgAAO4AAPcCAvoAAP8AAP8ODvYcHP8REf8oKP8xMf8/P8toWMp3d813d893d9RlZdVnZ/9ERP9SUv9XV/9eXuJ3d+Z3d+53d/9hYfZ2dvZ5eaKiALzUUtbWDNzcC+LiAP//Dfz8Lv//L8LaXYCAgIKCgoSEhIaGhoiIiIuLi42NjY6OjpKSkpSUlJaWlpubm5ycnJ6enoCkjIKkjIisjI+zjICwkIKykoS0lIi4mIy8nI2+nY6+npa6jKKioqWlpaioqKurq6ysrK6urrCwsLKysrOzs7Szs7azs7W1tbu7u7y8vL+/v4/An5DAoJTEpJbGppjIqJrKqpzMrJ7OrqDQsKLSsqTUtKbWtqjYuKraurLiwrPkw7TkxMKzs/Kzs8LCwsbGxsvLy8zMzM7OztDQ0NPT09XV1dbW1tjY2Nra2tzc3N7e3uDg4OLi4uTk5Obm5ujo6Orq6uzs7O7u7iwAAAAALAH/AEcI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsePDerny8ePlwp7HkyhTqlzJsmXFaFQs2PiQAUo0lzhz6tzJU2e0KRnQCR1KtOhQDE9u9lzKtKnTltGiBDVKtarVoRmcKH3KtatXp1GnXh1LtqxQDFq/ql3LVmI0J2LNyp1LFx2GJlvb6t3LM5oSGHUDCx5MVIOSvHwTK47oFzDhx5AjD9VwBPHiy2yjIdEgubPnz4UrYx6dcp+tGlZyDOnnL9oRx6Bjy54tVIMRywP7LXNQzR/p3wUzPfr0yMO54+doK1/O3I6jUY8uAZ9+MEKvctiza9/Ovbv37+DDi/8fT768efG9WFBfX9D6+ffw48ufT997evb4/7mvz7+////n9TJBfuztB+CBCCZYn4AErmegghBGKGF3DDY43YMTZqjhgRVa+BuGG4YoYnwdejgaiCOmqCJ4JZp4GYorykfONlm0AU6M87XoomIw4ujjiDruyFePPxaZYZBC6kWkkUwqiGSSbC3Z5JT/9SIBlItJSeWW9FmJJY/XcSkmh1d+OWSYY6bJn5dm7qWlmnCyWGabbUEARDDkgMMGGXH2SZ6VzyihAxTv+EbnU4M44skif1zj6KOQRirppJRWaumlmGaq6aacWnoHI500IsihpJZq6qlt9TPLE7LMoo+hqMb/imookEiiiTLJVMMPrLL2CiVMcRmVQVK+FptfWJKhhZuxzIIlFXNFZbVss9Ru9Faw0Mp117TVdmtQNEvEkK1yGDDBrbemNjbuulZpkMS56BIYTRKwsWtvXZTBG69ertV777+f2abvviz5k48+/zBzRAPJAeywvRoUsdU7NNSyzgu6IExwR2/66XE5922sUscf9xmyyCiRXDKcJ6Pskcorp/mkyxfBHLOYM9Nckc03b5mzzhPx3POUPwMdkdBDM1m00Q8hbeQwXWyzDRpgkOPx0kw35DSOv6jSCiuqABMz1lkvtHXSPpJddkJnox2j2mtXh6bbH7MZ985z0+2n3XcH/5233nHy3ffRfwOupuCDN1244WMinnhDECzOOJeOP74QBEGoEc7Uakze+JX98HJFoZaXbvrpqKeu+uo77aPAEkfc8irrtDtkjRPz2BPLEfjU7vtB07zBBx9vSPH78QQBKyyxyK+ufFlIDdy8yz9hO5ey0zON7GcXpJX9vtsvJ+33zIZv7/jklxoNFNY7jH36SV77sFnbwi/vEu3PDz1e9pOmrv6dKZf0+teXvwBQOe4aIAFT8r8DjitfC8zJvPzlwHtBMIIemRdnKsjBC2KQIprZIAdHWBQPfvAf/tiHPfLhD1j1i4QwHIvAGOIPffTjeAZ7Byxy4IzXxPCHcplhQf/uwQRatMAavFodPmIxgyNUYAzGaBgQp2iWiCEmB9dIIupOAIc4uEEAPgijGMdIxjKa8YxoTKMa18jGNrrxjWkEwQjmAAdCNK9tnjuSeqaHxzxKqGXH66MfIQTI3wlykAkqpO8OiUgO7fGOkmvkj+D2OEZK0j+UTJwlL7mmAfExkpxcUSYHt8lQ5siTkDRlk0bZt1KqEj6svJsrXxkgVCJvlrQsTyzjhstcjmeXa+ulhMgxjmIQAxxWu5otAwnKOJGDHNz4QhuSabJlGrKZaUKGGHaAhSxkAQ3UDJw1F4lNMSFABStIwc2AWTZh+pJF46ydO99pn3jSbp705A47s4b/z3xqZ59M66c/sVO5e5ZzoGTKnkAHWlDWLdSfDV3dQ/MZUdVNlJ4VTd1F35lR1G3Ulx093UdzGVLTjZSWJS1d5BAKpDkhDwJlCAYa1HCMcLLUSVfahzJ0QQ8tpg4CP8hGOcghDC/c9I8S8EfoRufT04GCDpYYBhnQUNOjRqgPdRCFP9bxDHs0tXTR6AAHRKDAxEXDABswQVlPyNa2uvWtcI2rXFHlD3g04667mmvc+CGDZFxjHXnVa9neAYBb4KIFu9iHYMtWD6/2Yx8LqMdisxYPJSRBUICdrM6kgYhIRAIR6dAs06JAgA1w4ABrFW2vnieUYaVWteqjQvtcC1tv/7HWKrStrbGqdz3m6RZVvA1M9H6rvmc95n3ExZL5IIPc5JpouZ1Bn3PlZVzaSHe604Gudb2H3dFolznX7e5evjuu5opXLeS1l3nPCxa4jLB+7G2K/GII3/j6xL1UrK99VzJfKh6Ff/tFCbjE5V+q6DfAGBlwgcciQARfpIELluFhHOwWA0Z4LgmkcEMgfGEMv0vDCOFwh/H1YRALRMQjFowJAzzBFAdMNPttsYtjs+LpanDGCISxc2+MY+bUWLQh7PG6fqxXzRBYyOwi8ltfiGSACTGC/qiHM2iRDHjc8B9MbvLDnnwQgyVjHr+bxy2oEboh8AMaPtTyAblMEHfkIP8ASPzdVonwABkcQYRqdiCX+WGLKbQDB3GuHT6SwYxmHIECZpBinitoRYGwgwYTaEECIOCO2qmDFJs4AgPIgA1zKHrRjC7CIUoRCoG8oh21C4QiKIEIElTh1bCOtaxnTeta2/rWuM61rnfN617fugSJmIQiAHG8aAzAAAPggVUn5IsCGCAEr+XlQZfdpUfectrUlo8i5YntbMPS2sz0doS2bVBxExLc1zS3k9BNTnUnkt3cdjeCyO3QbssbPfAu972rZM9675vfCrX3v+sZ8IH3B6BGO+krEQ40hauS4TpzuCkhTjOJh5LiLrM4JzGOMo1fkuMi87gkQb4xkTeS5AT/MzkiUb4vlQ+S5fFyuR9hji6Z55Hm3rK553DeLZ1PjufV8jnjgE4toRuO6M0yOuCQziyl643pxnK6dsKhBS+IoQvFsOnh+i1RgTfpG9woxziC0YVxKLPgQ4OmF9YQjrpx3aJeZ5I2sBAMb4RDHFqX2ds1GvcfuWIVqziFNgbvDbejvWS9MAUqUmGKHoxt7x7t+4+EIATJ4wjqxZK62zDvK82jjfO98nzSQC8r0Q+N9LEyfc9QjyrVrxPyIrW8wVl/Ktc//vAGz5FLw537Lu0+3b3XPe6D/56UWs72KzN+JWU/cOVrkvn/dj4pob9v6beS+ve2viyxL2/tS5v42v597rvBD0vxx5v8xTe/vtFvHu8Hk/vudn874a9u+fOT/ua2f0DxL279J5z/3uZ/DQeA2SaAOrNS7Nd+6sc6CJiAf7KAqwMBaSAO3fANz+SAcoJC+FAPgUU7ELAFXbAGZxAG24CB32El86AMN2AEpFM7QFUMQ1VUJmgfEuAO8rALTOU7dgKDRPUFM0ghoCM6LeiBXPAFayAGYPANP6hPoJMMsDCEqoMJj1AJj+AHS+gdhfAInBAdx4MCebAHckAI0TCGZFiGZniGaJiGariGbNiGbviGcBiHa3gCcqAHeGAIJpaHeriHfNiHfviHgKgWAQEAOw=="
     ]
    }
   },
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "![{{:tutorial:subdiv_of_points_2.gif?300|}}](attachment:subdiv_of_points_2.gif)\n",
    "\n",
    "This new height function generates the same polyhedral complex, yet a different subdivision of the point set. Note that the maximal cell that describes the quadrilateral now contains the point 2, but it is not a vertex of that cell. This is the reason for the yellow coloring. This corresponds to the fact that its lifting lies in the convex hull of the lifted quadrilateral, whereat it is not a vertex of the lifted polytope. Changing the height of point 2 again to `-1` the subdivision should become a triangulation of the point set. \n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$w = new Vector<Rational>([0,0,-1,0,0,3]);\n",
    "$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
    "print $S->MAXIMAL_CELLS;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n",
    "    {0 2 3}\n",
    "    {0 1 2}\n",
    "    {1 2 4}\n",
    "    {2 3 4}\n",
    "    {3 4 5}\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$S->VISUAL;"
   ]
  },
  {
   "attachments": {
    "subdiv_of_points_3.gif": {
     "image/gif": [
      "R0lGODlhLAH/APcAABMTEx0dHSkAACkEBC0AADYAAD8AADQSEjgUFCIiIikpKSs3Lyw4MDMzMzc3NzI+Njg4OD8/PzhEPDpGPjxIQD5KQjhQQD5WRkYAAE0AAFYAAF4LC0s5MVc8NFg8PFw8PHcAAHgAAHwAAH0aGmk8PG08PHA/N3w8PEJCQkREREZGRkBMREhGRkhISEpKSkxMTE5OTkRQSEJaSkZeTlZURFBQUFJSUlRUVFZWVlhYWFpaWlxcXF5eXk9zW1VtXVZ6YlhwYFpyYlx0ZF52Zlh8ZGJtXWBgYGJiYmRkZGZmZmhoaGpqam1tbW5ubmB4aGJ6anBwcHJycnR0dHV1dXt3d3h4eH19fX5+flqKamCEbGOHb2yDdGGRcW+Te2mZeW2efW+ff3WZgXichHqfhnCggHKignSkhHWmhXyhiH+ji3ioiHytjIAAAIQAAIoAAIAaGpsEBJ8AAJ4GBoY7M4k+NpYmJpooKKIAAK4AALAAAL0BAbgREaIiIqM2NqQ1Nak8PLk8PL08PIdAOJd3d6V3d8UAAM8AANYMDNwLC+IAAOgAAO4AAPcCAvoAAP8AAP8NDf8ODvYcHP8REf8oKPwuLv8vL/8xMf8/P8toWMp3d813d893d9RmZv9ERP9SUv9XV/9eXuJ3d+Z3d+53d/9hYfZ2dvZ5eYCAgIKCgoSEhIaGhoiIiIuLi42NjY6OjpKSkpWVlZubm56enoCkjIikjI+kjIerk4uvl4GxkYywmI6ymom5mY29nZS4oJa6opq+pr+CgqWzm6KioqWlpaioqKurq6ysrK6urrKysrWzs7S0tLe3t7q6ury8vL6+vo/An5DAoJXFpZXGpZbGppzAqJnJqZrKqpzMrJ7OrqHRsaHSsaLSsqTUtKjYuKrauqvcu63dva3eva7evrLiwrPkw7TkxLXmxbfnx7rryrztzL3uzb7vzsKzs/Kzs8LCwsbGxsvLy87OztHR0dbW1tjY2Nra2tzc3N7e3uDg4OLi4uTk5Obm5ujo6Orq6uzs7O7u7iwAAAAALAH/AEcI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsePDerDy8ZOVwp7HkyhTqlzJsmVFZTkk0OCwAgczlzhz6tzJU6cyHRXKCR1KtOjQFTdu9lzKtKnTlsp2BDVKtarVoTFsKH3KtatXp8qMTLhKtqxZojFgbP3Ktq3bh8qOjD1Lt65drGrf6t3LNC6Fu4ADC0b7Yi3fw4gjKkMyd7Djx5CFxiicuPLhxX8ja97MGasLw5ZDc9znCoaVHEf6+VOWJHPn17BjS1bhLGE/Yg2Y+RPNu+AmR6AcbSBHnJzs48iTC2pEylGm3tANIksyy5t1b0NybFnHvbv37+DDi/8fT768+fPo06P3BUXIdW+zXkSfT3B69ff4rTvRrr6///8ABhheL024lx9+8dGnIDI73Hfgg9c5ocN2AlZo4YXhUcOEgRBCmKCC8yGjg4MdlviehBRiqOKK3VGDBIcmxvghiNCJSGKMOOLnxA4psuijeNQYAWOORMInH4015nBjkUyeyOOPFVLDw5BNVjmLC0gmuWSVXOI3hBE9QskdNTlQ2eWZ8GGZJW/I4LAlmnC+NwQSYfZHTQ1OxKnngVeuyaabewZa4pwppuMNGWPgKeiifKrpp2XI3PAmo4HmAkOe1wmBBKaUdtrno5BK2qmelnJaZBBJmDpql7O0ACqkL0z/uuqDt7yg6qJAbDorka2+WhkyLcg6qi4u3Lrrg0EcYeyus6jga2LAChtnLi0seyyXQRhh7Z7NPotYtJVWe+241wXBw7ZNzpKCt4cho4K0EFKLLrn0vhfEDvN6uC67eyGTAry5pJBvvQTjOIQN+arLb78pEIFLN9msAUbAAxdsMZxD1PAEgikg08QOU8Sz28JcBdLIJ4r4sczKLLfs8sswxyzzzDTXbPPNOOc8cx2LeMIIICQHLfTQRCPWzypSqLKKPiMX7fTT/4gCiSScDCMMM/w0DfXWz/40VVU1gcb12L15HVlWYpOtNlhiJVdUWmmvLfdGcTXmtl1wz603XHLd/33cZHHvXfRidvtt+NuUCe4t4Yc3LhjgikPHmmuOV95ZDLRF/pQ/+ejzjzFIMGCc5aQ3jnltAsXzQivuqBCL55pzZF92dYpp++22+xKFEDPGfpJ9D9KO+/DEp8eemUb6nhIySMAbIX/FR+8jgcg/2Lvyso+I5hATSu99eS5Wn+P12GtkI6M71v79ikGKz+qR5cuu5LXpr++flO4H+mn8GyEzv8X1sx81dpC/Ve2Pfxlpk/PIRSgfUcMGBaTXARF4EQVejEgNBE81zuCNb+xiDem4U8UuOEEKVsSCF+QSLRJRCUokohYp5FIJTTiRSC0whaUykRCUMEISOoqGJxRVDP/xkwtb7QlVPbxWr4BoEWS44IaUIlYS45SrKQpqiUykCLiuJcUhIktZ4+pWFrUYLErJy4tnypYVZbSvMUrEXVB80BnROCtzrfE9CnPjG99VpFyo4I50XNQQcNDDPOoRIv6aFMUCychBKcp6bTykQ/xFBDXYIgUzUEMjN9mlIcBgYwrrhyyuIDJJmvKUqEylKlfJyp3sIwFNWMIrmNbKWjqkGVGYhz1SsQR82PKXB0lGG/awhzZQAZjIJAhMvnYUmySzlWYzS9ieechoBgYpgaNm5KLCzLNpRZuaC0vhYpM3cJJNnJYrpzmFVrfSGUWd6wRVO91ZFnjGcz7zpOdd7Hn/T8T4RZ+agVw/34IZgMpGoANtCuMM6jeEJhQqjGFo6Rz6ULohgXIS1WcMPlNRi0wuoyB9W+Y6OhB/7MMe+fBH0z4a0pZW5XQM8Yc++oFMzsUDFTk4RmtcylOzwLQg94ACK1DQDK2xEh+pcAESHvAFXoyup1Ct50gHkgNnGDWVJXADHNggACd49atgDatYx0rWspr1rGhNq1rXylazdkAEcnDDIJIJPOxAz354td/xrEM+W9ZVTnfNq2ChtFcEwQ+Zfz3QftQ32Mampxft6VBfa8k85y3WsZgtD/VwNNlWMiiOl80sZnuxISZ1lpXn4xKKRLu+8L2PmqlF02pZazvX/8LptKuMrZ5mS1sL2ZZbhwWmbgUVwN6mp32eCu4v/RfHKhXXuN9B7qxwq0rmkuu5osUfuWZI2f/VC7sCnFLBuOtZ71rsS4wV0wAjaMAfCte8KRzCEdLr2zKhkbyoBRQjM+hbG2yMkfjNrX45yV/wqAMd27iGOdTRokdyMsDVHTAnr1Ng7qgjHeFQQ6IAKUH3LlfCE/ZSErYQDFz0AAYWwIIZuhFiBHnYr0JscX5yYQAQhAADHLYYhFNpQxlfJ4cH2mGOt/tiysaYk0DGERJbvGNU9riRReTwkhuJRcTaoLmrqtWQ8xMEXd3XVc90IpYXpeVrVTGGVRZuGQvWRYsla//LVnJWmNc8rjaj8c0SlDNd6byqXBRLxmo8lhj3PGYczdHH+Am0pyKp5kLHS1yIjpEdF2VIxPL5TIeONJMmHadKC5ePXcq0ptF0L0B6ermg7iOkR02pQU7x1H5NtYn8CGdWGwxh42P0cv9VokXa+mIZQxesKZuCMODCDGrgBYu94etfozHYfFrXPoYRC3pclccp+AE0vNGNLgjM2S325H/hkwJ/iJKU10ZlKPiAiRTIwAzKBnekPWkCPozCH+5Ahj3SbUpkaCADH0BGmAuQARIInKQIT7jCF87whjs8dv6QhzEmnrWHM5EfLRCGM9xRcYvTMB4AeAUsUCCLfXichvX/2Hc/9qGAepzchPJoAhM+xvGXxy8ZhYhEJArBDptTsAoHyEAGEJBNn+ttmUSZptHDCRSwOXPpR286WZQO9bFZU5pPr7rTrl4XbGp9aFwHjNe/zi5ubgZtZH+V2V+D9rQjKSzdZPs33Y7Ptt2Nn3T3p90Ph/e8uwWdpOu737kCeHoKfvA9yadBD494lyg+o4xvPEoe39LIS14jlO+p5S9PkcxHtRyb57xD/vn5q1BU9BIhfenrmTjUQ6Sgq6/L6V1/ENjHfp+tp31BFnr7x+We9rzvvWNm3/jgCx8yxKe78Y8f0N+73fbMh03yjQ796B+Uo1pnqfXvPlWba3/7hvup/8e/D37TdX+g/qjHMVghDHnQ9B/kL3/lxH8QzgljHsCcxyuUIcoj8GM6GCV/E3V+AxEPORAARQVM+IYEDqBUASiAhtd9/OAKVQAPNpCAtoQPwlAMoPMAZPBUEMhQP/UOLxABKJAAEBAPttQOpcAJSLAAYPAM4wCCISiCKgAMpiAKAnEK8GBLf2AIllAIIxAFRFiERniESJiESriETNiETviEUBiFUsiEb1AIk2AIf4BYBFAABMAC9AVdYLgeUTAABeABBydc1IEdOPCFYdiG37FX1MVjaWgdwuOGdigehZU8YTaHFBZYd+iGechXyuVXfAhYbPiHgxWI1xGHTlaIXv/ih4iIWYqIR4NIWY6YH6EViY0FWe7DiKdUWTGSiZq4PptlIp7Yb82TI6I4isRTijJSiZ6VikSyiqwIJa7IWbCIWg3SJLRYixhCWuxFibClPc7VPb6IIb9lWrmYW8TIJdxziMcIJC9yJqcoScNVjNAYjWMyjWhSjYd0japljNpIHslIjctYXc0YJ7w1jt5Rjt14jjyWjrsljuMoXfoDj04mj3sCXqNoj1eEj5+oj4HCj3foj5QGkP0mkMT1JIhokIzijXpkXbtCkLSlXcyCkNYIX6tCkY5lkYJWZOXlaM7FkNklXkQGWxp5LBzpPR55kmGWkvRDkuEVjJQGkqgFk+P/spLqRUA+hJIiqSfoFT3rhWY2mVs4WS9BeTtkQpPtBVsgFl90AiVLSUdN9olPGUMVFiX+BWBFGWE/2SlZeT8as0lV2W9X+WxR+R8iNGFlaY1nSUdhuQ7nUAZqcGzawGBrGWJt+Y1vGUhZOQ7gsA7oIA1m8AsOppddyWN9uV9p2R3qIA5qIAaHyWSJ6WSL2UgZ5A1egAY1IATcsGw+tpcReZmbNAR98AiPYAc+EA3RcA2aJppu9GSjNgt3cAiIcAc+YGuwOUayGWmlUgRFAASpwmq7mUW9KWNJlik89JqV+YlHFmLJmR9ChmjFyUTHuUnRCSFCMJyUCVvPyUjZaSJT//Zgzdlv34lG4Zkj4wlgYEZX5xlDURYn6/ll3vmVglJmgdJltaYnabZcsYJG+MkoZ+ZF/elX/xlDAToqA5pCBUpZT5RCumBE47KgOtaeiPWgFmNn9AIEYFShsHVpdfZnF4RnBDNolmafRaKhKUSi26VnJ0ouKupFLCpoLtpoXCSinDSjBlSjywWijCJqE6ZoO/qhKCpHqxZpQkopw+ZZPkoqR8pqSXpFuuZXTYomQPprUcqfU0pZVcolVypvnMYtW8qkKPql8lYu5yKmsCVrofakZwohYUqNY4pabNokZvqmyJKmcrqmhXaneNohpcYqc5pbdWpobvqnp0JIVjKo1f1VqL12qIjaJK5mWozKY44qR38UqYFyMCO0pHTqPM2mqZuKa2wEW7zWa98mqmA5mdFmqrISqqq6qtviqbmVAmnADdaADd0AmrAaq6sCba3qD/hQDx3nWSmQBVygBmXgBdPAbKnqqww0lhwzD8NQA0pQSsT2A7zAbbhABM8KrUgprXyVAvEwD6OErcZKBNsaMBcArvH1SeP6D+eGrqiVAlrgrTLgBdjgrlj5SaEkDKhAr6qkCY5wCY5AB/waSHPgCJ3gHMh0AnmgB3EwCMhQsRZ7sRibsRq7sRzbsR77sSAbsiI7sh1bAnGgB3hACLq3sizbsi77sjAbszKbGAEBADs="
     ]
    }
   },
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "![{{:tutorial:subdiv_of_points_3.gif?300|}}](attachment:subdiv_of_points_3.gif)\n",
    "\n",
    "Indeed, the regular subdivision arising from this height function is a triangulation. Since in this case point 2 is a vertex of the subdivision it is colored red as well.\n",
    "\n",
    "### Generic Weights\n",
    "\n",
    "The weights `w` are called *generic* if they define a triangulation of the point set. If it is known in advance that the given weights are generic, then we can obtain the subdivison as a simplicial complex. If you want analyse your simplicial complex then you might want to use the polymake objects: `SimplicialComplex` or `GeometricSimplicialComplex`. The first one is a purely combinatoric version. The latter one has an embedding into a space via the property `COORDINATES`. Both objects live in the application `topaz`. The weights in the third example above are generic, so they define a simplicial complex.\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$SC = new topaz::GeometricSimplicialComplex(COORDINATES=>$M, INPUT_FACES=>regular_subdivision($M,$w));"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "Note that `regular_subdivision($M,$w)` produces a list of the maximal cells in the regular subdivision of the point configuration `M` respecting the weights `w`.\n",
    "Now we can ask for many other properties, e.g.\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "6 10 5\n"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $SC->F_VECTOR;"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1 3 1 0\n",
       "\n"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $SC->H_VECTOR;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Check the properties of `SimplicialComplex` for more available properties.\n",
    "\n",
    "\n",
    "\n",
    "### Non-generic Weights\n",
    "\n",
    "If your weights are not generic or you are unsure, then you should create a `PolyhedralComplex`. Since every `SubdivisionOfPoints` Object has its underlying `PolyhedralComplex` as a property this can be done simply by:\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$M = new Matrix<Rational>([[1,0,0,0],[1,0,1,0],[1,1,0,0],[1,1,1,0],[1,0,0,1],[1,1,0,1],[1,0,1,1],[1,1,1,1],[1,0,0,2]]);\n",
    "$w = new Vector<Rational>([1,0,0,1,0,1,1,0,1]);\n",
    "$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);\n",
    "$PC = $S->POLYHEDRAL_COMPLEX;\n",
    "print $PC->MAXIMAL_POLYTOPES;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n",
    "    {0 1 2 4}\n",
    "    {2 4 5 7 8}\n",
    "    {1 2 3 7}\n",
    "    {1 2 4 7}\n",
    "    {1 4 6 7 8}\n",
    "    \n",
    "\n",
    "\n",
    "As with an simplicial complex you can do some computation with it. For example:\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "8 18 16 5\n"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $PC->F_VECTOR;"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print $PC->SIMPLICIAL;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$PC->VISUAL;"
   ]
  },
  {
   "attachments": {
    "reg_subdiv_polytopal_subdiv.gif": {
     "image/gif": [
      "R0lGODlh+gDfAMYAAP///wAAALQAAF68fT0AACBBK0ePX/Ly8ufn5/z8/FdXV0RERDo6OvX19X5+fj4+PqqqqlFRUUxMTJ2dneR+fq2trRsbG+Pj4/j4+CsrK9PT01lZWRQUFEFBQaenp/Dw8Dw8PFxcXAUFBW1tbfr6+mNjY8XFxRYWFoeHhx8fH7u7u4iIiDs7O2tra1VVVVtbW9LS0jc3NyoqKuLi4ubm5vHx8VEAAIoAAG0AABMoGuF+fhImGQMHBAcPCidPNQkTDAQJBQgRCwMGBAkUDA0cEgQKBgsXDxEkFwIGAxAjFgULBwwZEAABAQYOCQQIBYKCggcQCgsYEAYMCLS0tGVlZd0AAFOmb0sAAIAAANzc3CkpKUdHR6Ghob29vRMTE/T09Kh+ftra2unp6XZ2dqysrCEhIbe3tyAgINHR0WFhYe/v79bW1jsAAGfOicsAAJsAADQAAF26fF67fF27fFBSN167fSlSN1y5e1y4e1YAAEeOX7MAAP///////////////ywAAAAA+gDfAAAH/oAAgoOEhYaHiImKi4yNjo+QkZKTlJWWl5iZmpucnZ6foKGio6SlpqeoigGprK2ur6ECsrC0tba3hwECq7i9vr+mA7zAxMXGlAPJx8vMtgEEkAHJws3V1qYEBMON0wPX3+Cd2ZHd1OHn6JLb3OXr6e/whAbuquXK8fjxBgXk9ub5AMHN4/fI37SACK0FCFCAHiKDyRwmnIgrwD6CjaRB9Eaxoy+LBRoW3PjPo8lXFhliZKRxo8STMEVZvLiyHsl7MXOSmhmypqKbB3UKBTVT5UtCQIMOXappJk1EDgRNENQS6FGmWBc57VnTAQUKDkKQoJq0W9azkbb2NPRV0ItB/mXNop2r1YBdlSHZxcVJt28hu3a5+jRUNe5Vv0sB08yrdW+3w4h1KhZ81XG5yH0V42X807JczGcVL+aMqLBlyKApihY8uJBne6mZit5M+tBr2LGFzma96Dbu3DFFj65dyPRt4MFXs24tyLc91MjRCV/OHIBzf9E7Cqe99uH139kDCh8e0qHx69DDNxtPnfl3f+nVH2NPPdF59PL1bW9f+r3B/O+MR1553vn3HIDnCMhdd4YYaFB8CNoi4IAiEebgfxFaM2F7g93nYIbVbMihbRc+COIyTu3GX4MlmnhiMSkqtyIhHpb4IjExTsahOy1udOMvOQLGIXE9uvRjRRMu/sjVOkUaeWQtQQo5ZHFNQgThk5xEGdiQTFYJEZYoTUghV655aSWYrGg5EJdImekjmqeoOWZPw9RoJpymyDkkg9a5+Saeo4g5J51w+fknoKAIqiRvzRnqJKKeCDoogQDYaSikkSq6J2eO3oQpJ5IuShlZnT76qSWSTsqYpY6eikmqm1JaKlCuVpKqqII1OitJtU5ya6wisVpqr5Gkqmp5wpZ6JabGApvXrkkti6ixuFIGbVnEMkKtsw1dm1S2ihh7bHneRgvuIeJyW0C55p4rz7bOsoutu4KIO2638lpFr73cJsvuvulym29Z0r5ob7WCDUwwuPbe62++ANjQq5wy/gKrcFk2ZFwrxTrGe3FSEm98sMAffysyv84+DPHJAXtcMkkFA8ixZv2+7KmrM3ccq8rystyyxTabCmnOUrocNHw4N7wmsDz/eyrRRe989JeuKn3vulMjfarVCHOVtdafcl3z15dtbfXYZE8Ts3pWO3xD2p9B2ja3N9zQtLdmK911eXbDzde0c6uLL9lrZ9f20mh/HTbXOCi50OMB5CD55HfPurjSOGQ++eacd7452Z9CDVjknpfueaVZF46c6HaZ7jrnhR6NKesGvG47lUHPzrXtr5P4suq5sU467547ZDPwsbFOvOk2fTy01csXz0jJzysdfeeOVN4j8qApf/3m/o44oH2J3GMm+vDfOyKLA+IPLHfD30vew2EB+LBL7OW+b+/1Q+RARA+qqJ8PBuiDMpWrfJGx3vKGwMAmrGMhBIxgBLfBLgQiRoG8i1z/ckAFCErwgxLs0rUAJy70ua4KKBQgCFf4wQdey4KZORjxUsjCGrYQd7sCFPyWZ4Ue2vCHA+RRDvG0wwz20IdAtGEuLEfE/REvAEfsoQqTCEJ3jM8zMJyLDIkXxSNOkYoh9N2l4LRF3nUxil8EYxCXOEY0OZGLZ4yiGm8oRi9lMTTiWh4U44jGOU6wP2a6Y1ZKqMc98lGKfiSgfdxERmrp8QpXMOQhE7nGAjWpkamKnhUg/nnILqaRihK5IszcaCxNakSSnaTkS5okSNmU8olWmMc0OtlFSjbPRmByJBzt8hhaHtGWncEllnRpxljKUm2+RKIfe0O+XGaSh0V5TjI/CcTGOKiVQ3mlEZ1ikGRagZpKZKaBwMQxPRqTl9305jLF+R5yhoqH5zxmOn25zls6B5s6oZgJTbdH0cBsmnPMSDufRLHlAeCb/vynL8HJQoFeB0sFzSAUhZMUbzIUhA71DT5jEtHb9XA70VInGB3x0CN11HWr+ChFy2LRkZL0OCZVFO8qhdCVEgygVBwJFmMqpgwetKYJ3UtLk/gInm30JHKa6U8VdBqcVjN7nuHphJSq/tLxvEakT33pXp4kqNsJoqo2bepCiVrUvRzVJGLaJ/ZoqiXnYDWcOtXXj9L6Ol6AFaQadWoN0zKvG/W0d1+Np1Wv89aG9uNmfp0qSgcBVAG9p7ArlIRcDaZY5lGlsYP9Dir5eNEC8lVoGUrSYi8bKgNB9oOT4FVix6PWyRHiro410GbjeNFJ3GeuAhptYG91oaFGNrVgA1FlT/dajomyHadVpG2xQ9nt8JNGghVTj/SK2uWW7UQKsuwgJmqsIs32jHu1rlKEOx7XFQK2SWoSdSNYiZacdSK5LZ0hMJvWKn3Xk79Fxt8QFF/iFtdeZkquJSKCXef6d7vRFZSb7itH/oy2FwtYIO9s5HveBNc3kMnMryQgHOHQCqd07kDvhd102kpg4b3i+fCBGSu6Tq03W+Vda3EsrOBOMfiXEiSWgWFHGBqP2FA3RuQfk6YZGVe4bbsqLIqxEqMVM9bH0t1VkK2Q46eJpnP0gCLtvKVXKyvGyK+F8o9nNWX26u7Lm3OIiLtbLqee+S48PsSaUyWvMlcSTykCM4Jpd5d84XTJHEUz5UpD34YNDKeAyjP4EDFnNudryvVLRBZOpGjJSaTQhr5YkCNNCDBEBQBiAJFThvcSTB+sZBkexAPAAAYAnKG5w1OFmB2t6YUuBACeXsgaClw71yai0eI63kLZwAau/rbO0ooANq1RfciFENvYsU42n2dzNEkupA3YrtQwe52Dl3D3cEENGrbHTW5n+to+sw526shdbmMjO9npphbZ2D3uALgBt5JjhKm5lrYA0NsNbgC0eEin72ln9mv+xvYqAD7XyLEk3uqGGxm7/XBwM9VvHOFqDhqh7IYdV1lvEPjAOW7w2GI8AG94w48gs+/DYZwaIV95RiB+6n6DCQ5wuErH9UY4OOGc4zQH8NREPhctW3zMCiN6X3aO5I8p3S9Mt1rSn46YqCttYFSPTMuP/nHf0EsrWz/6C7+u76BLncxkJ/nR6eyorCPHAWHnejnmMIA5xCEOF3J7dAJAh7Uvn3sOc6jDAOTwobRHIw928DvbkwH4ORCe7po1vCTykIeSR5zxycB7SSWvjsorvrTX5PwlLH95/Ij+Ep9fvHNOr4nUS8r0rH+V65Eel9hvgvRCN6vtQTX7Gvd195vovaImC/zbC5/2jym+J+yth+NP6EzK9wTA7w053CNd7xtLC+QsHrfof2P7wtnDHrDvfUwEQPzkL7/51c/+9rv//ZwIBAA7"
     ]
    }
   },
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "![{{:tutorial:reg_subdiv_polytopal_subdiv.gif?300}}](attachment:reg_subdiv_polytopal_subdiv.gif)\n",
    "\n",
    "Check the interactive help to get more information.\n",
    "For the image we have used the javaview option *Explode Group of Geometries* to make the cells of the subdivision visible. \n",
    "\n",
    "### Tropical Plücker Vectors and Matroid Decompositions of Hypersimplices\n",
    "\n",
    "A *tropical Plücker vector* (which is a special lifting function on the vertices of the *(d,n)*-hypersimplex induces a particularly interesting kind of regular subdivision.  The example below is for *d=2* and *n=4*.\n",
    " \n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$p=new Vector<Rational>([1,0,0,0,0,0]);\n",
    "$msd=regular_subdivision(hypersimplex(2,4)->VERTICES,$p);"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "Each cell of this subdivision is a *matroid polytope*, that is, the convex hull of characteristic vectors of the bases of some matroid on *n* elements of rank *d*.  The vertices of the hypersimplices happen to be listed in lexicographical ordering.  With this extra knowledge we can cook up suitable labels for pretty-printing the maximal cells. \n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0:12 13 14 23 24\n",
       "1:13 14 23 24 34\n",
       "\n"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print rows_labeled($msd,undef,[\"12\",\"13\",\"14\",\"23\",\"24\",\"34\"]);"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "In this case the *(2,4)*-hypersimplex (a.k.a. the regular octahedron) is split into two egyptian pyramids.\n",
    "\n",
    "## Secondary cone and regularity of subdivisions\n",
    "\n",
    "The set of all the weight vectors which induce the same regular subdivision form a convex cone. In this section we will learn how to compute that cone with polymake and even how we can check whether a given subdivision is regular or not.\n",
    "\n",
    "### Secondary Cone of a Regular Subdivision\n",
    "\n",
    "Let us look at the following regular subdivision (using homogeneous coordinates):\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$points = new Matrix([[1,2,0],[1,0,2],[1,-2,0],[1,0,-2],[1,1,0],[1,0,1],[1,-1,0],[1,0,-1]]);\n",
    "$cells = new Array<Set<Int>>([[0,1,4,5],[0,3,4,7],[2,3,6,7],[1,2,5,6],[4,5,6,7]]);\n",
    "$S = new fan::SubdivisionOfPoints(POINTS=>$points, MAXIMAL_CELLS=>$cells);"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "we can visualize the subdivision with the following command:\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$S->VISUAL;"
   ]
  },
  {
   "attachments": {
    "square_reg_subdiv.png": {
     "image/png": [
      "iVBORw0KGgoAAAANSUhEUgAAAxoAAAHRCAIAAABiklhbAAAfHUlEQVR42u3d628cZ6HAYdvxLYnj+JbasZ27HbtJmuZmO7Y3t7YJTZpbmyYnUOoWiiA9aeMm9CQVElKRyuHoIPgACPhAKyFOC1KFBM2XCokihBA3IWgLhYhASpM0bUP4G87b3Xaz3nV8j7078zx6Fa3tTZsdz7zz25nxuOjfAABMQpFFAAAgpwAA5BQAgJwCAJBTAADIKQAAOQUAIKcAAOQUAAByCgBATgEAyCkAADkFAICcAgCQUwAAcgoAQE4BACCnAADkFACAnAIAkFMAAHIKAAA5BQAgpwAA5BQAgJwCAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAAOQUAICcAgCQUwAAcgoAQE4BFIhrGSwNQE4BjNuVK1fOnz9/7ty5y5cvWxqAnAIYh2vXrl29evXVV189derU4OBgiCrLBJBTAOPLqUuXLj399NMLFy686667Xn/9dcsEkFMAY3X+/PlXXnllYGCgra1t8eLFu3btklOAnAIYh5/85Cd79+7duHHj4ODgli1bdu/eLacAOQUwvpx69tlnf/3rX//ud787cOBASCs5BcgpgHF4++2333zzzffeey9U1MGDB+UUIKcAxuRshtRn/vSnP8kpQE4BjF5RiUSiqKiouLh41qxZZWVl4UH48MyZM3IKkFMAowjNVJQUQqq+vr6jo6O9vb22tjZ8mPp8Z2ennALkFMAoLRWUlZU1NDTcmhS6Kn2MKli5cqWcAuQUwEgtFcpp7ty57e3tO3fu3LVrV0tLS2VlZTqngkcffdQSA+QUwND5KEMop9ra2t7e3k8l9fT01NfXZ+ZUkL4+HUBOAQw5NJXKqZqamrVr1z744IMPP/zwsDmVSCQsN0BOAXw4GQ0Vyqm0tLShoWFFUnNzc0VFRUlJiZwC5BTAmHIqdSl6bW3t0qS6urrwYe5znO8D5BTA+0IV5R6dKi8vb2xsbEsKXSWnADkFML6cqqysXLhw4W1J4UHWT/bJKUBOAYyUU6nbeFZVVTU1NYWWcnQKkFMAo01GwykpKZmTlHsdeorlBsgpgA+kfklf7im/kqTc03ypX+FnuQFyCuADw57vG5mcAuQUwBDDHqDSUoCcAhirwcHBVatWjaWlwtOeeOIJSwyQUwBDWurQoUOLFy/edfrIyC21on91eNr999+vqAA5BZDdUsd+/PSX//ViKKphoyqEVOoJ4U9FBcgpgOFbKnOEqNqwYcOaNWvCl7K+qqgAOQUwSkulxvbt23t7e4f9kqIC5BSgpUZpqZFzSlEBcgrQUqO01Kg5pagAOQVoqZFaKowdO3aMnFOKCpBTgJaabE4pKkBOAVpqsjmlqAA5BWipyeaUogLkFKClJptTigqQU4CWyh533HHHuHJKUQFyCtBSk80pRQXIKUBLTTanFBUgp4CIOHHixGRaKpVTmzdvntjfVVSAnALi3lKTzClFBcgpIO4tNfmcUlSAnAJi3VJh3HnnnZPMKUUFyCkgvi01VTmlqAA5BcS0paYwpxQVIKeAOLbU1OZUqqgWLVoU/pGKCpBTQCxaaspzSlEBcgrI35a67777prylwrjrrrumNqcUFSCngBi11E3KKUUFyCkgLi1183IqXVThH6+oADkFRLalbmpOKSpATgHRb6mbnVOKCpBTQMRbahpySlEBcgqIcktNT04pKkBOAZFtqWnLKUUFyCkgmi01nTmlqAA5BUSwpVI51dvbO23/O0UFyCkgUi01/TmlqAA5BUSqpWYkpxQVIKeA6LRUGDt37pz+nFJUgJwCItJSM5hTigqQU0AUWmpmcypdVPfee6+iAuQUMJGWChkxsy014zmlqAA5BRR2S+VDTikqQE4BBdxSeZJTigqQU0ChtlT+5JSiAuQUUJAtlVc5pagAOQUUXkvlW04pKkBOAQXWUnmYU4oKkFPAMB5//PH8bKn8zClFBcgpoGBaKm9zSlEBcgoojJbK55xSVICcAgqgpfI8pxQVIKdAS+V7S+V/TikqQE5BTOXtz/EVYk4pKkBOgZaSU1NWVAcPHlRUIKcALSWnFBUgp4Abt1TY2RdQSxVWTikqkFOAlsrTnOrr6yugf7CiAjkFaCk5pagAOQVEpaUKNKcUFcgpQEvl0di1a1ch5pSiAjkFaCk5pagAOQVaqvBbqtBzSlGBnAK0lJxSVICcAi1VyCESjZxSVCCnAC0lp6asqA4cOKCoQE4BWkpOKSpAToGWklOKCpBTQBxaKno5lS6qffv2nTp1ynoLcgrQUtORU/39/RF7UYoK5BSgpeTUFBRVa2urogI5BWgpOaWoADkFWkpOKSpAToGWimptRD6nFBXIKUBLTUdOJRKJaL9GRQVyCtBSNysywli2bNmSJUt2nT6iqAA5BWipcbTFiv7VRUVFJSUlpUnFxcXhw/DJCHeVogI5BWipqRmpkApmzZpVW1vblhQehLRKfT7yRbV3715FBXIKuCkef/zx+LRUUFZWVldXtzKpoaGhvLw8dYwqdZhKUQFyChh3Sx04cCDi90Q4fSTdUqGc5syZs2jRoq1J4UFlZWVRBseoADkFaKkbtlTqqqkFCxZs2bLls0ldXV01NTXpo1Mp0b56TFGBnAKmsqX2798f/ftLDc2pUE7V1dXr1q37WFJ3d3d9fX368qnIn/JTVCCngCluqSVLlkT+/lJFQ4WcqqysbGxs3Lx5c09Pz6233jpv3ryso1NBHO6eoKhATgFaakzdUJSjvLy8oaFh8eLFYQlUV1eXlpbmPicOS0ZRgZwCtNREcip1dKq5uXltUlNTU0VFRe7RqZgsnNCU99xzj6ICOQVoqfEdnSorK6utrV2R1NjYmHmjhFjlVLqo9uzZo6hATgFaaqzXTqV+uK+ioqIh6UYn++KzfBQVyClAS43jBp7p831B+pfM5B6ailVOKSqQU4CWGt+NEsYi8r8XWVGBnAK01GTP940snktJUYGcArTUOM73OTSlqEBOAVpqrOPRH3/h8OHDbW1tY2mp9evX79u3b/DlLykqRQVyCtBS11vq4MGDt3+kZ+doF1Ed+9HT4Wmf/OQnFZWiAjkFvN9SoQm0VLql/vfqi6kRoirr3F/4MIRU+gmKSlGBnAK01A1baoxDUSkqkFOgpbTUxFtKUeUW1cmTJ21ZIKcgLgYHB++55x4tNcmWUlSKCuQUaKlYt9T9998/+ZZSVIoK5BRoKS314pQMRaWoQE6BltJSikpRgZwCtNTMtZSiyiqq3bt3KyqQU6ClIthShw4dunktpagUFcgp0FJaSlEpKpBTgJaa6ZZSVIoK5BRoKS2lqBQVyClAS810SykqRQVyCrSUllJUigrkFGgpLTXTLaWoFBXIKdBSWkpRKSqQU6CltFR+DEWlqEBOgZbSUopKUYGcAi2lpRRVPhXVqVOnbLkgp0BLaSlFpahAToGW0lKKSlGBnAItpaUKqKUUlaICOQX51VJ79uzRUgXXUopKUYGcAi2lpRSVogI5BVoqKi114MCBAm0pRaWoQE6BltJSikpRgZyCgm2ppUuXaqlotJSiyiqqu+++W1GBnAItpaUUlaICOQV53FLO8UWypRSVogI5BVpKSykqRQVyCrSUllJUeVZUH/nIRxQVyCnQUlPWUvfdd18cWkpRKSqQU6CltJSiUlQgp0BLaSlFpahAToGW0lKKSlGBnAItpaXi3lKKSlGBnAItpaUU1dQX1cmTJ80SIKdAS2kpRaWoQE6BltJSikpRgZwCLaWlFJWiAjkFWkpLKSpFBcgp0FIZLbV//34tpajGXlS7du1SVCCnQEtpKUWlqEBOgZbSUopKUYGcgplqqd27d2spLaWoFBXIKdBSWkpRKSqQUzDtLXX33XdrKS2lqBQVyCnQUlpKUSkqkFOgpbSUolJUIKdAS2kpQ1EpKuQUaKkYtVTY32spRaWoQE6BltJSikpRgZwCLaWlFJWiAjkFWkpLGYpKUYGcQktpKUNRKSqQU6CltJSiUlQgp0BLaSlFpahATkF+tVSYvrWUllJUigrkFGgpLaWoolZUTzzxhJkKOQVaqgBaau/evVpKUSkqkFOgpSbeUuvu3qxgFJWiAjkFWkpLKSpFBXIKJufdd9996623/vrXv/7973+/cuXKtWvXtJSWUlSKKrh06dLf/va3MDn885//NFUip2B4oZzefvvtN9544zvf+c6xY8e+8IUv/OY3v7l48eJ7772npbSUoopzUV29ejVMBT/96U+feuqpxx577Lvf/e6FCxfCWy/TJnIKhpkxwyy5devW7u7uo0ePbt++vaOj45lnnvnLX/6ipbSUoopSUe3cuXNcRXXu3Lnw/LVr195555333nvv7bff3tXV9bOf/cy0iZyCIf71r3/96le/Ci0Vdjbf+973fvnLX/7whz8cGBhYt25deKCltJSiim1RvfPOOy+//PKaNWvC5v/SSy+FivrWt7512223nT59+o033jB5IqfgunffffeLX/xiePf54osvXr169cqVK5cvX/7973+/dOnSL3/5y1pKSymq2BbVm2+++dRTT+3Zs+fnP/956jMXL14MXdXT0/PCCy/c6PJKkFPE0aVLlz7+8Y8fPnz4t7/97S9+8YuvfOUrzz777B/+8IfXX389ddmpltJSiiqeRXXu3LkjR44cO3bs1VdfTV8Y8Mc//rGzs/Pb3/62nEJOwXUXLlwIE+sjjzzyuc997oEHHkgkEtu2bQsPnn/++fDeVEsNuVenllJUcSqqP//5z9u3bz9z5kzoqsxPtrW1ff3rX5dTyCm47vz5893d3fX19R0dHV/96lfDh9/4xjdWrFixcuXKgYEBLRVa6tChQ1pKUcWwqF577bWenp7Pf/7zYVrIzKnly5d/7Wtfk1PIKfj32bNnw5vORFJ1dXVra+vRo0f/8Y9/vPPOOxcuXHj55Ze3bt0ah5YKr25F/+rU2HX6SBiZrzfVUnv27NFScSiq8K0PK0DW+hDDogqTQ2pm2LhxY5gcwlTw/PPPZ+ZUeLslp5BTCKn358qioqLi4uJZs2aVl5eXlZWFx0VJobHCc44fPx75lgp7ytRLDguhtLS0oqIi/Jn6TGo/qqXiU1Spqk5tFGE1CBtFemVIrQ8xKaqw+adecklJSVlS2DrSyyE1OTjZh5yC69Nl2G3Mnj27qakpzIyLFi2qqqoKE2jqSzU1NZFvqdS+Mwh7zblz54YlsHLlyoULF4b9aLos165dq6XiUFQdHR3pjSJUdVgNwsrQ3NwcNpD0RhGHogpTQbql5s2bt2zZsuXLlzc2NlZWVmYW1WuvvRaW2De/+U05hZwi7i2V2nPMmTNnyZIlYc8R/pw/f37m29DwYRxaKnVoKuRj2HOsWrWqpaUlLJN0TgVhh6o5oj06tt2e/naHjAjpEFaDsDKEVSKsGJkbRVhtIlxUYZPP3ChCToVpobOzM/wZ3m9kbhRdXV379+9/5ZVXzKjIKeLeUkF5eXnYbfT19YXJsbW1NcyY6Tfi0X47nj7Hl2rKsrKy8Ba8p6ent7c37DkqKioy9xzBsR89rTmiOsI3t2iosAKEkNq+ffv69eubmprC6hG3jSKVlWFC6OjoCBtFd3d3Y2Nj5vUAwac+9amLFy+aVJFTxHL9Gzpd1tXVbdy48bHHHnvggQfCpBneiGdlRBDJPUfmC0wdogtN+dBDD4U9RFgO4U15Vlau6F8tO6I6dg7NiLA+hBVg06ZNx48f/+hHPxpKoqqqKjuvo3jUNmvDDy+5urq6v7//4Ycf/vSnP71hw4as7SIsGWf6kFM4NPX+wfza2tqurq6TJ08+8sgjd9xxx7A5Fb09x66c3Wd4F75ly5aQU6dOnQpdFRZLVk45QBXhkfWNDt/6+fPnh1YIOXXs2LEdO3aE7SJrfYj8RpHOqbAcBgYGnnzyybBdNDc3Z573DM6ePWteRU4R95xKZURra2tvb2+Iqra2tqzLI6J6sUjmVVPpS4+XLl0aFkKIqvAg69opORWfQ1OpnAorQFgNwsqwadOm8GD27NlZ60PkN4r0UdsVK1Zs3LgxtFRLS0vu/JBIJMyryCliJ3VnhNwDVO3t7Rs2bFi5cmXuu/CUJ59/ZtjxX89/cfTxwvvjyf975voY13/nhevj9Av/nT2+nz3OfP9LWSPrmeEzubuN0tLShoaGzs7OdevWhd1n7jVkQdjvio/45NSSJUvWr18fVokFCxZk/qTn9Z9u+8GXhhnfH32kV8WnfvA/YYzlP5K7nuduC5lbygcjZ2sastENfU5dXV3u5BAmhJBTa9asCVNEfX19eNeR9Rw5hZxCTn0wY1ZVVYU9x6pVq9ra2kJaZR3MD8I0ui/D/g8dyHBwqHs/dF+GQxnuz3B4qP9I+liGBzJ8PMeDQw186KEMD2f4xCc+kduLqT3H8uXLV69evXjxYjklp8JqkLlR5ObUw0OlV7aBDJlrZuZKm16fM9fzj2Y4OtSRpLDhZG5Q9+bI2gwzt9D9NxC26L1JYTMf9r1WyKlbb701TBHz5s3LnRzkFHIKOfXBniO842xqagolsWzZsvnz5+dmRNiR9B+/Z4TR9597MsfIT86HkZtTqR9iamlp6ejoWLhwYeathuRU3HIqdfI3tVGkMyI3p7JW+0Ifw24U1dXVYaMITdnc3BwSM3ejkFPIKeTUB3uOVFGFuTI0RGlpae5uY1FX+2df/3qURnhFuTuP8NrDEqiqqqqsrBx29ymnYnKXhNSBmbAahJXhRhtFa1fbqde/FqURXtGwJ8HD5BDeaaR+W8AwZzyTd0gHOUW8nD17tmg4qagatiGC3kd3Ryynjjx34kbLISyEYa8eC5RHfHIqvTLknt5KbxQRy6nDzz0+7EJIbxTDTg5yCjmFA1RjFbGWGiGnRuDQVIRH7g+1jSpiLZUaReNnRkVO4QDVmETv0FRqhNc1ruXgLgkxPEA1wkYRyZwa70bh0BRyiljLuvvUCNrb2wdeOB3JnLrRFVTD2nhPv+aI9li6dOkYV4boXTWVHg++8F9hk9dSyCmYyqKqqqrakxThohrL2/FbbrnloYceOnT8Ac0R1RG+uQMDAwsWLIh5S4WNfffu3eXl5VoKOQVTU1Sp6XLfvn1xLqpFXe1HnjsRxurVqxVVtFsqfIsPP/d4WBlGWB+ieo4vs6XCJj/y5JBIJPxiGeQUZAszY5g6Exmy5so4FFUqqsII/ZQa4XGoqMxL1xVV5Fsq82fcUutDa1dbamR+NfItlfmOK3NyCI+FFHIKJi4mRTXqDwMqqji0VNzGjVoK5BQoKkVlaCkthZwCRaWoDC2lpUBOoagUlaGltBTIKVBUikpLaSmQU6CoFJWhpbQUcgoUlaIytJSWAjmFolJUhpbSUiCnQFEpKi2lpUBOgaJSVFpKS4GcAkWlqAwtpaWQU6CoFJWhpbQUyClQVIpKS2kpkFOgqBSVltJSIKdAUSkqQ0tpKeQUKCpFZWgpLQVyChSVotJSWgrkFCgqRaWltBTIKVBUikpLaSnzD3IKFJWiMrSUlgI5BYpKUWkpLQVyChSVotJSWgrkFCgqRaWltBTIKVBUisrQUloK5BQoKkWlpbQUyClQVIpKS2kpkFOgqBSVltJSIKdAUSkqLaWltBTIKVBUikpLaSmQU6CoFJWW0lIgp0BRKSotpaVAToGiUlRaSkuBnAIUlaLSUloK5BQoKkWlpbQUyClQVIpKS2kpkFOgqBSVltJSIKcARRXzotJSWgrkFCgqRaWltBTIKVBUikpLaSmQU6CoFJWW0lIgpwBFFZei0lJaCuQUKCpFpaW0FMgpUFSKSktpKZBToKgUlZbSUiCnAEUVl6LSUloK5BQoKkWlpbQUyClQVIpKS2kpkFOgqBSVltJSIKcARRWXotJSWgrkFCgqRaWltBTIKVBUikpLaSmQU4CiKqyi0lJaCuQUKCpFpaW0FMgpUFSKSktpKZBTgKIqrKLSUloK5BQoKkWlpbQUyClQVIpKS2kpkFOAoiqsotJSWgrkFCgqRaWltBTIKVBUimomikpLaSmQU6CoFJWW0lIgpwBFNRNFpaW0FMgpUFSKSktpKZBTgKKaiaLSUloK5BQoKkWlpbQUyClAUc1EUWkpLQVyChSVotJSWgrkFKCoZqKotJSWAjkFikpRTbyotJSWAjkFKKobFtWxHz29on91UYbw4c7TR7SUlgI5BSiqUYoqhFQ6oUpLSysrK2fPnl1SUpL+ZIgqLaWlQE4Bimr4otq4cWOqmYqLi0NLNTQ0rFy5sr29vba2NrOo1qxZo6W0FMgpILuowq4x5kXV++juzLN7ZWVlqZzq7OxcsGBB+DDzq61dbVpKS4GcAhTVkFE0VEVFRUtLS19fX39/f3gQPsx6gpay1YCcAhTVDQ9NlZSU1NfXd3d3Dw4OnjhxYtOmTfPnz8883xeEv6KlADkFKKrhD02Fcqqrq+vr6zueFB6EusrKqbid79NSIKcARTWOnCouLp4zZ87y5ctTF+mvX7++trY2fDK25/u0FMgpQFGN8mN9uTk1e/bs1tbW7u7urq6uJUuWhLrKzamY/HCflgI5BSiqieRURUXFLbfccltSc3NzZWVlPHNKS4GcAhTVRHIqmDVr1pw5c5qamhobG2tqakpLS3OfE/mc0lIgpwBFNcFrp9IXpM9OqqyszLoOPQ7XTmkpkFOAohrHWNTVPmxRFX8o90vRvlGClgI5BSiqKTjfN7II55SWAjkFKKopuJOnltJSIKcARTVlp/yyRPgGnloK5BSgqG76MSotBcgpQFGNXlTDHqYKIRXhOyNoKZBTgKK6KV3V1tbW2toaKirat5jSUiCnAEV1s8aOHTsSiYT7SwFyClBUckpLgZwCFJWc0lKAnAJFJae0FCCngHgVVVRzSkuBnAIUlZzSUoCcAkUlp7QUIKeAyBdVxHJKS4GcAhTVdI/t27dHJqe0FMgpQFHJKS0FyClQVHJKSwFyCohVUUUgp7QUyClAUc3k2LZt29atW7UUIKcARRXHnNJSIKcARTXzY2uSlgLkFKCo4pVTWgrkFKCo5JSWAuQUEImiKric0lIgpwBFJae0FCCngAgVVQHllJYCOQUoqnwcW7ZsKYic0lIgpwBFJae0FCCngCgWVf7nlJYC5BQoqrwuqjzPKS0FyClQVPleVPmcU1oKkFNAARRV3uaUlgLkFFAYRbUlSUsBcgpQVNHJKS0FyCmgkIoq33JKSwFyCiiwokokEvmTU1oKkFNA4RVV/uSUlgLkFFCQRZUnOaWlADkFFGpR5UNOaSlATgEFXFQznlNaCpBTQGEX1czmlJYC5BRQ8EU1gzmlpQA5BUShqBJJWgqQU4CimuDo7++f/pzSUoCcAqJTVNOfU1oKkFNApIpqmnNKSwFyCohaUYWcmrZL0bUUIKeACBbVtOWUlgLkFBDNopqeGyVoKUBOAZEtqmnIKS0FyCkgykV1s+87paUAOQVEvKhuak5pKUBOAdEvqpuXU1oKkFNALIrqJuWUlgLkFBCXoroZOaWlADkFxKiopvyu6FoKkFNAvIpqanNKSwFyCohdUU1hTmkpQE4BcSyq/iQtBcgpQFHNZE5pKUBOAfEtqsnnlJYC5BQQ66KaZE5pKUBOAXEvqsnklJYC5BSgqCaeU1oKkFOAopp4TmkpQE4BimriOaWlADkFKKqJ51Roqd1JWgqQU4Cien/0JWkpQE4BTLCoxp5TWgqQU4CimnhOaSlATgGKauI5paUAOQUoqonnlJYC5BSgqEYqqpFzSksBcgpQVKMUVWip3t5eLQXIKYBxF9WR506Ecdttt61Zs6b30d1aCpBTAGMtqlBRi7rai4qKiouLizKEqEp1lZYC5BTADYuqLbEmFU+hpSoqKuYllZWVpdMqFFVKe3v7W2+9ZdEBcgrgelG1tbWlj0WFhKqrq2tPqq2tDR+mvxSe1traevjw4cuXL1tugJwC+MCZM2cyT+2FfmpoaOhICg9KS0szv7p06dJr165ZaICcAhi+pYKKiopFixb19fVt3ry5ubm5vLw861Kql156yXID5BTA8DlVUlJSW1vb09Nz7Nixz3zmM2vXrp03b174ZOZz+vv7LTdATgF8OBkNFcqprq4u5NTg4OCJEye2bdvW2Ng4a9asrKdZboCcAnjf2bNnszqpuLi4urp69erVR44cOXr06Lp162pqarJO9gXhL1p6gJwCGD6nZs+evWzZskTS8uXL586dK6cAOQUw1pxK3yihs7Ozo6OjpaWlsrJSTgFyCmAcOVVSUlJeXr5gwYKGhoaampqsGyW4dgqQUwBDJBKJ3PN9oahmJRUnySlATgGMI6cyu2rYljpz5ozlBsgpgA8Me75vZBYaIKcAhsi9MfoIHJoC5BTAxItKSwFyCmDiRaWlADkFMMGoSiQSbjQFyCmAcTibwdIA5BQAgJwCAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAADkFAICcAgCQUwAAcgoAQE4BACCnAADkFACAnAIAkFMAAMgpAAA5BQAgpwAA5BQAAHIKAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAAOQUAICcAgCQUwAAcgoAADkFACCnAADkFACAnAIAQE4BAMgpAAA5BQAgpwAA5JRFAAAgpwAA5BQAQGH6fxqDAT9x9IFvAAAAAElFTkSuQmCC"
     ]
    }
   },
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "![{{:tutorial:square_reg_subdiv.png?400|}}](attachment:square_reg_subdiv.png)\n",
    "\n",
    "As one can see from the picture this subdivision should be regular, since we can easily find a weight vector which induces this subdivision. Just lift all the points in the inner square to 0 and the points on the outer square to 1. But now we want to take a look at all vectors which induce this subdivision. This can be achieved by using the method `secondary_cone`.\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4\n",
       "    \n"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "$sc = $S->secondary_cone();\n",
    "print $sc->DIM;"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1 0 0 1 0 -1/2 -1/2 0\n",
       "    \n"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $sc->RAYS;"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3/2 3/2 -1/2 -1/2 1 1 0 0\n",
       "-26/19 12/19 34/19 -4/19 -11/19 8/19 1 0\n",
       "50/49 -8/49 10/49 68/49 40/49 11/49 20/49 1\n",
       "\n"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $sc->LINEALITY_SPACE;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We see that this cone is 4-dimensional with a 3-dimensional lineality space. Every vector of the **interior** of that cone induces weights that produces the same regular subdivision. The vectors on the boundary give rise to a coarsening. As you see by looking at the coordinates, we do not need to lift the inner square to 0, there are also weight vectors which lift them in a different fashion but still produce the same subdivision.\n",
    "\n",
    "With the options `lift_to_zero` or `lift_face_to_zero` one can specify points or a face which must be lifted to zero. Let us see what happens if we force polymake to only allow weights that lift the inner square to zero. As we see from our input, the face which describes the inner square is the fifth one (but since polymake starts counting at zero, it has number 4).\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$sc_fixed = $S->secondary_cone(lift_face_to_zero=>4);"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1\n",
       "    \n"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $sc_fixed->DIM;"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1 1 1 1 0 0 0 0\n",
       "    \n"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $sc_fixed->RAYS;"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "   \n",
       "\n"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $sc_fixed->LINEALITY_SPACE;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now you see that the lineality space of that cone is gone. The only way to lift our points now is by raising all points on the outer square to the same height which should be greater than 0.\n",
    "\n",
    "### Regularity of Subdivisions\n",
    "\n",
    "You might run into the situation where you want to check whether a subdivision is regular or not. Don't worry, polymake comes to rescue along with it's side-kick the `is_regular` function. The function takes the same input as the `secondary_cone` function. The output is a pair of a boolean and a vector. The boolean tells you whether or not the subdivision is regular and the vector is a weight vector which induces your subdivision. Let us check if our subdivision of the example above is regular.\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "true <0 0 1 1 0 0 1/2 1/2>\n",
       "    \n"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print is_regular($points, $cells);"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$lambda = new Vector(\"0 0 1 1 0 0 1/2 1/2\");"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{4 5 6 7}\n",
       "{2 3 6 7}\n",
       "{1 2 5 6}\n",
       "{0 3 4 7}\n",
       "{0 1 4 5}\n",
       "\n"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print regular_subdivision($points, $lambda);"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As you can see polymake tells us that our subdivision is indeed regular. And the vector `0 0 1 1 0 0 1/2 1/2` produces the same subdivision we started with. Now let us see what happens if we use a subdivision which is not regular. We use the same points as above but different cells.\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "$nreg_cells = new Array<Set<Int>>([[0,1,5],[0,4,5],[0,3,4],[3,4,7],[2,3,7],[2,6,7],[1,2,6],[1,5,6],[4,5,6,7]]);\n",
    "$nreg_pc = new fan::PolyhedralComplex(POINTS=>$points, INPUT_POLYTOPES=>$nreg_cells);\n",
    "$nreg_pc->VISUAL;"
   ]
  },
  {
   "attachments": {
    "square_nreg_subdiv.png": {
     "image/png": [
      "iVBORw0KGgoAAAANSUhEUgAAAxoAAAHRCAIAAABiklhbAAAthElEQVR42u3diXPc9WH3cd+WwTaWj9r4xpYtX+H2JUuWfILk27J12MbY2GA7OHY4jQ0k0CYPz9Mk5IAAeR7oMzQP6ZMQEoKTNpOZ0Ol0Or2m0ya0aZnSkgYISQjP3/B80Y8s65Us69jjd7xe8xtGkmVA693fvvXZ9WrI/wMAYBCGuAgAAOQUAICcAgCQUwAAcgoAADkFACCnAADkFACAnAIAQE4BAMgpAAA5BQAgpwAAkFMAAHIKAEBOAQDIKQAA5BQAgJwCAJBTAAByCgBATgEAIKcAAOQUAICcAgCQUwAAyCkAADkFACCnAADkFAAAcgoAQE4BAMgpAAA5BQCAnAIAkFMAAHIKAEBOAQDIKYCEeD+PSwOQUwD99u67777xxhuvv/76O++849IA5BRAP7z//vvvvffeT37yk7vvvvv06dMhqlwmgJwC6F9Ovf3224888siVV165cePG1157zWUCyCmAvnrjjTdeffXVgwcP1tTUzJ49e/PmzXIKkFMA/fCjH/1o69atN9xww+nTpxsaGpqbm+UUIKcA+pdTzz333N/8zd/8/d///Y4dO0JaySlATgH0wy9/+cuf//znv/nNb0JF7dy5U04BcgqgT87niT7yz//8z3IKkFMAl66o+vr6IUOGDB06dPjw4SNHjgxvhHfPnDkjpwA5BXAJoZmGdAkhNWnSpNra2gULFlRXV4d3o48vWrRITgFyCuASLRWMHDly8uTJi7uErsptVMHChQvlFCCnAHprqVBOl19++YIFCzZt2rR58+YZM2ZUVVXlcio4ceKESwyQUwAXno/yhHKqrq5evXr10S4rV66cNGlSfk4FueenA8gpgAumqSinJkyYcPXVV99yyy2HDh3qMafq6+tdboCcAvjdyehCoZxGjBgxefLk+V2mT58+evToYcOGySlATgH0Kaeip6JXV1fP7TJx4sTwbvfP8XgfIKcAPhCqqPs6NWrUqKlTp9Z0CV0lpwA5BdC/nKqqqrryyis/1iW8UfA3++QUIKcAesup6GU8x44dO23atNBS1ilATgFc6mTUk2HDhl3Wpfvz0CMuN0BOAXwo+iF93R/yG9al+8N80Y/wc7kBcgrgQz0+3tc7OQXIKYAL9DhQaSlATgH01cmTJ5csWdKXlpo/f/6DDz7oEgPkFMAFLbVjx4558+atPbW995aas7J2zpw5mzdvPnfunMsNkFMAF7TULS/c13y2M6TS5MmTewyp8AkPvfFs+KeiAuQUQA8tFVKpvr5+y5Yt6+/eHd5ee2r79ddfv3jx4vBL0a/mjvDu7NmzFRUgpwAtdUFLRdNU6KdcNjU1NS1fvjw/pBQVIKcAem6pgmnqkjmVK6pNmzYpKkBOAVqqh2nqkjmlqAA5BWipj54R1X2a6ktOKSpATgFa6sNp6qabbiqYpvqYU4oKkFNA1lvqYtNU33NKUQFyCsh0S11smupXTikqQE4BGW2paJraunVr92kqHOvWret7TikqQE4BWWypXqapAeSUogLkFJCtlup9mhpYTuWKauPGjYoKkFNAyluq+WznzTfffLFpasA5pagAOQVkoqXC0dDQ0Ms0NZicUlSAnALS31KXnKYGmVOKCpBTQJpbqi/T1OBzSlEBcgpIbUv1ZZoqSk4pKkBOASlsqT5OU8XKKUUFyCkgbS3VfLazubn5ktNUEXMqV1QbNmxQVICcApLdUn2fpoqbU4oKkFNASlqq79NU0XNKUQFyCkh8S/VrmipFTkVFNXfu3KamJkUFyCkgeS3Vr2kqyqkbb7yxuDmlqAA5BSS1pfo7TYVj/fr1pcgpRQXIKSCRLdV8trOlpaXv01RJc0pRAXIKSFhLDWCaKnVOKSpATgFJaqnms53bt2/v1zRVhpxSVICcApLRUuFYu3Ztf6ep8uSUogLkFJCAlhrYNFW2nMovqrNnz/pTBuQUEK+Wiqapbdu29XeainKq6K87pagAOQUkrKUGPE2FY8OGDWXLKUUFyCkgji01mGmq/DmlqAA5BcSupZrPdobfO7BpqiI5pagAOQXEqKUGOU1VKqdyRdXY2KioADkFVLKlBjlNVTCnFBUgp4DKt1Q0TW3fvn3A01Rlc0pRAXIKqHBLDX6aqnhOKSpATgEVa6miTFNxyClFBcgpoDIt1Xy2c+fOnYOcpmKSU4oKkFNAuVuqWNNUfHJKUQFyCihrSxVrmopVTuWKKpSiogLkFFDCliriNBW3nFJUgJwCytFSRZymYphTigqQU0BpW6q401Q8c0pRAXIKKGFLFXeaim1OKSpATgElaamiT1NxzilFBcgpoPgtVfRpKuY5pagAOQVaqpgtFY7GxsbiTlPxz6n8onrwwQddr0BOAVoqXtNUInJKUQFyCrRUcY6Ghobwry3uNBWOjRs3xj+nFBXIKUBLFWeaqqmpKXqmJCWn8ovq3LlzrmkgpwAt1b9jzZo1pZimkpVTigrkFKClYjdNJS6nFBXIKUBLxWuaSspT0RUVyClAS8V0mkpoTikqkFOAlorLNJXcnMoVVUNDg6ICOQVoqUtMUwsWLChdlCQ3pxQVyClAS1V+mkp6TuWKqr6+XlGBnAK0VA/T1K5du0o6TSXxb/YpKpBTgJaK0TSVjpxSVCCnAC1VsWkqNTmlqEBOAVqqMtNUmnJKUYGcArRUBaaplOWUogI5BWipj6apnTt3lmGaSl9O5YoqXIaKCuQUkNGWKuc0lcqcUlQgp4BMt1SZp6m05lR+UZ09e9Z1GOQUkKGWKvM0FeXUihUr0pdTigrkFJDFlir/NJXunFJUIKeAzLVU+aep1OeUogI5BWSopSoyTWUhpxQVyCkgKy0VTVMLFy4sZ2SEI/wXZ86cufbU9iwUVV1dnaICOQWks6XKPE2FL23OytohQ4YMGzZsRJehQ4eGd8MHU9xVigrkFJDmlmo+27l79+7yTFNRSAXDhw+vrq6u6RLeCGkVfVxRAXIKSFhLlXOayrVUMHLkyIkTJy7sMnny5FGjRkUbVTRTKSpATgGJaamyTVNrT23PtVQop8suu2zWrFlru4Q3qqqqhuSxUQFyCkhGS5VtmspvqehZU1OmTGloaLiny/LlyydMmJBbpyIVuTQUFSCnQEslYJqK1qnx48dfe+21+7qsWLFi0qRJuadPpf4hP0UFcgpISUtF09TevXvL8KypIRcKOVVVVTV16tRVq1atXLly8eLF48aNK1inAq+eAMgpINYtVbZpKnyBQ7oZNWrU5MmTZ8+ePWfOnPHjx48YMaL756T48T5FBXIKSHxLRdNUW1tbGaap7jkVrVPTp0+/usu0adNGjx7dfZ1KfU7lF9UDDzzgdgFyCkhSS5XztaZ6XKdGjhxZXV09v8vUqVPzXyghUzmlqEBOAQNpqZ07d1a2paJpqr29vWw/oa97Tg0bNmz06NGTu1zswb4stJSiAjkFJLKlyjlNdX8Bz9zjfUHuh8x0n6YylVOKCuQUkKSWKv801f2FEvrimmuuue0rdysqQE4BsWup5rOdra2ttbXlflWn/ubUkiVLDh8+fPDgwUxFlaICOQXEvaUqMk1d7PG+Xqw+0RyO+pNbMxhVigrkFBDrlqrUNBW+9hMnToRK6EtLzZw5c8+ePYe/efae157IZlQpKpBTQExbqlLTVNRS69evv/bmVZvub+u9pY6//Mh1zauDXFFFUbXurl1RVN1yyy1ZiCpFBXIKiGNLVWSaym+pP3zvxegIUTV/zdL8igrvhpDKfUL3ospgVCkqkFOgpSr/Wp3dp6mOjo5yTlM9tlQfjx6LKj+qDh06lPqoUlQgp0BLxailms92hjQp5zQ1mJbKFdWqVau6F1UuqhYvXpz6qFJUIKdASz2bzWkqfO3Hjx8fTEtdsqiyE1WKCuQUaKnMTVPFaqm+FFVGoioqqtWrVysqkFOgpdI/TRW3pfKLqrW19WJFVRBVBw4cSF9UKSqQU6ClMjFNlaKl+l5UqY+qXFGdOXPGLQ7kFGipFE5TpWupfhVVuqNKUYGcAi1VmWlq0aJFSW+p/hZVLqrC197Z2ZmmqFJUIKdAS6Vwmgpf+7Fjx0rdUrmiWrlyZR+LKq1RpahAToGWStU0Vc6WGlhRpTKqFBXIKdBSZZqmQj2UdJoqf0sNuKjyo6qjoyMFURUV1apVqxQVyCnQUkmdpirVUoMpqpRFlaICOQVaqrTT1L59+0o3TYWv/Y477tiwYUNFWmqQRZWmqFJUIKdASyVymopDSw2+qHJRVVtb297entyoUlQgp0BLJWyaik9LFaWoCqJq//79SYwqRQVyCrRUYqapqKUq9XypXopqxYoVgymqFESVogI5BVoqAdNUPFuqiEWVH1VtbW2JiypFBXIKtFSsp6k4t1RxiyoXVQsXLkxcVCkqkFOgpWI6TcW/pfKLavfu3YMvquRGlaICOQVaKnbTVPjab7/99vi3VCmKKj+q9u7dm5SoUlQgp0BLDXyaCvf3xZ2mopZat25dIlqqREVVEFX79u2Lf1Tliur+++93WwY5BVqqr9NUuKdfvHhxxluqdEWVuKhSVCCnQEtVeJpKbkuVtKjyo2rPnj0xjypFBXIKtFTFpqmkt1SpiyoXVQsWLAhR1dnZGduoUlQgp0BLVWCaSkdLlaGokhJVigrkFGipsk5TaWqp8hRVIqJKUYGcAi11iWnqwIEDRZmm0tdSZSuqXFTV1NS0trbGMKoUFcgp0FIln6bS2lLlLKqYR5WiAjkFWqqE01S6W6rMRRXnqFJUIKdAS5VkmspCS5W/qPKjKvwXOzo6YhJVigrkFGipIk9T2WmpihRV96g6/OW7FBXIKdBS6Zmmwtd+9OjR7LRUpYoqhlGlqEBOQdZbqijTVNRSTU1NmWqpChZVflTt2rWr4lEVFdXKlSsVFcgpyGJLRdPUkiVLtNQgiypkTZmLKj+qtm7dWtmoUlQgpyCjLTX4aUpLVbyo4hNVigrkFGSxpZrPdra1tQ14mtJS8SmqXFTNnz+/glGVK6r77rvPWQLkFKS/paJp6vDhwwObprRUDIsqDlGlqEBOQYZaajDTlJbqpaiWL19e2aKqeFQpKpBTkImWGsw0paUSUVS5qApX1/JHlaICOQXpb6kBT1NaKimP+vUYVe3t7WWLKkUFcgrS3FIDnqa0VH+LaufOnXEoqkpFVVRU4XJQVCCnIG0tNbBpSkslvajyo2rLli3liSpFBXIKUthS0TR122239WuaCl/7kSNHtFQKiqr8UZX7KTSKCjkFWiolLTWAaUpLpa+oyhxVigrkFFoqPS01gGlKSxXr7/rFsKjKGVWKCuQUWurZbE5TWioLRZWLqoULF4aoCteQEkWVokJOgZbK3DSlpTJVVOWJKkWFnAItlfhpqr29fenSpVqqskUVrl2xLar8qGppaSlFVHk9KuQUaKlMTFNaKuNFVRBVe/fuLW5UKSrkFGiplE9TWkpRXSyqjj19puhFde+99zrzIKdAS6Vqmgpfe/i0tWvXailF1T2qmpubixhVigo5BVoqhdOUllJUZY4qRYWcAi2VqmlKSymqAUTVHU/dr6hATkH6W6ov05SWUlQVjCpFhZwCLZX4aUpLxaGotm/fnqyiKoiqPXv2DCaqFBVyCrRUrKepjo6OXqYpLaWoYhJVigo5BVoqvtPUkSNHLjZNRS3V0NCgpRRVHKJKUSGnQEslbJrSUjEsqhUrVmzbti2hRZUfVTfffPPAokpRIadASyVmmtJSiqpsUXX7V+9TVCCn0FJpm6ai1z3XUooqtlGlqJBToKViPU1pKUWViKhSVMgpKKtf//rXv/jFL/7t3/7tP/7jP9599933339fSzWf7WxtbV22bJmWUlTJjarBF9Xbb7/97//+7+Hk8F//9V9Olcgp6Fkop1/+8pc/+9nPnn322ePHjz/66KN/+7d/+9Zbb/3mN7/JcktF09TRo0cLpiktpagSF1UDLqr33nsvnAp+/OMfP/DAA+Hm//zzz7/55pvhWy+nTeQU9HDGDGfJtWvXhnudjo6Opqam2traz3zmM//6r/+a5ZbqcZrSUsktqq1bt6amqAqiateuXZeMqoEV1euvv/7JT37y6quv3rBhQ/ivXHPNNcuXL//zP/9zp03kFFzgt7/97V//9V+Hlgrfvn/961//q7/6q5deeungwYPXXntteCOzLZWbppo+uVNLKapERFW4CfceVbmiuueee/pycvjVr371wx/+MHxHcfr06VdeeSVU1NNPP/2xj33s/vvv/9nPfubkiZyCj/z617/+7Gc/G777fPHFF99777133333nXfe+Yd/+Idw2v3c5z6X2ZbqPk1pKUWVlKg6+uS9RSmqn//85w888EBLS8tf/MVfRB956623QleF3/6Nb3zjYk+vBDlFFr399tsHDhzYu3fv3/3d3/3lX/7lF77wheeee+4f//EfX3vttehppxlsqdw0tfbUdi2lqBIXVTfddFMvUdX3onr99dfb2tqOHz/+k5/8JPfEgH/6p39atGjRM888I6eQU/CRN998c9OmTaEVzp07t3///vr6+sbGxvDGCy+8EL43zWZLFUxTUUuFS0ZLpaaotmzZcuTFB9NXVAVRFcKxx6jqY1H9y7/8S1NT05kzZ0JX5X+wpqbmiSeekFPIKfjIG2+8Ee5dJk2aVFtb+/jjj4d3n3zyyfnz54fTcYiqDLZUwTQVtVRdXZ2WUlTJiqqmT+78KKqeuHcARfXTn/40fMLDDz8cTgv5ORXOCV/5ylfkFHIK/t/58+fDN531XcaPHz9z5syOjo7//M///NWvfvXmm2/+8Ic/DEmRhZYKX92clbXREfopHBvuac1NU7mWur6lToWkr6haWlryi6rtj06FCpm1fEF0hLfDkeKoulhRhZNDdGa44YYbwslh7dq1L7zwQn5OhW+35BRyCiH1wblyyJAhQ4cOHT58+KhRo0aOHBneHtIlNFb4nBMnTqS+pUI5RV9yuBBGjBgxevTo8M/oI9dff32oKy2VnaIKIRX6KbpRhKtBuFHkrgxBmqJqy5Yt+VGVK6q77ror3PDDzT/6kocNGzayS7h15C6H6OTgwT7kFHx0ugx3G2PGjJk2bVo4M86aNWvs2LHhBBr9UnV1depbKtRS9MWGe83LL788XALhzubKK68M96O5sqzroqVSX1QLFizI3ShCVYerQbgyTJ8+PdxAcjeKpBdV96g68sQ9BUUVfinXUuPGjbvqqqvCSWDq1KlVVVX5RfXTn/60trb2qaeeklPIKbLeUtE9x2WXXTZnzpxwDg3/vOKKK/K/DZ04cWIWWiqapiZMmBDuOZYsWTJjxoxwmeRyKgjvao50H7VN1+b+uENGhHQIV4NwZQhXiXDFyL9RzFq+IE3Pqdq8eXMuqsKNPXyx+TeKkFPhtLBo0aLwz/D9Rv6NYvny5du3b3/11VedUZFTZL2lglGjRoW7jbq6unBynDlzZjhj5r4Rj+ReIyCtj/FFTTly5MjwLXj41nz16tXhnmP06NH59xzB8Zcf0RxpPcIf7pALhStACKmmpqbrrrtu2rRp4eqR/6sp2Ki6R1VLS8v1LXX5X2Y4FYQTQm1tbbhRrFixYurUqfnPBwiOHj361ltvOakip8jk9e/C0+XEiRNvuOGGkydP7t+/P5w0w/emBRkRpDKn8r/AaKILTXnrrbeGe4hwOYRvyguycv6apbIjrcem+9sKrg/hCnDjjTfeeeednZ2doSTGjh1bcLto+6NT6fvbf/nTVHQ5jB8/fs2aNYcOHbrjjjuuv/76gttFuGQ80oecwjT1wZhfXV29fPnyu+6668iRI+vXr+8xp9L3eF/+NBXdbYTvwhsaGkJO3X333aGrwsVSkFMGqhQfBX/Q4Y/+iiuuCK0Qcur48ePr1q0Lt4uC60Oacio6oufgd8+pcDkcPHjw3nvvDbeL6dOn5z/uGZw/f955FTlF1nMqyoiZM2euXr06RFVNTU3B0yMic1bWpvhZU7mnHs+dOzdcCCGqwhsFz52SU9mZpqKcCleAcDUIV4Ybb7wxvDFmzJiC60M6nkF1yZwKl8P8+fNvuOGG0FIzZszofn6or693XkVOkTnRKyN0H6gWLFhw/fXXR2t/91UmOPnsQxc7PvHcwxc7evldvf/G/OPUH33qksfp//3pHo+LfVr3u40RI0ZMnjx50aJF1157bbj77P4csiDc74qP7OTUnDlzrrvuunCVmDJlSv7f9My58389mH98/H+e68tR8LsG9i858bWzlzyOP/NAj8fFPmfixIndTw7hhBByatmyZeEUMWnSpPBdR8HnyCnkFHLqwzPm2LFjwz3HkiVLampqQloVjPlBOI1u67L9d3bk2dmTXXl252n9nT159nZpa2trb2/f183+PAfy3JLnYE9u/Z1DeQ536d6L0T3HvHnzli5dOnv2bDklp8LVIP9G0T2n8q9Xt14odyXMv5bmX3tzV+mCa3vn73R0ae8Sbhqt3eTfrHK3tfzb4I6ebM+z9ULhZt7j91ohpxYvXhxOEePGjet+cpBTyCnk1If3HOE7zmnTpoWSuOqqq6644oruGRHuSG46056mo3tORX+JacaMGbW1tVdeeWX+Sw3JqazlVPTgb3SjyGVE95zKwo1i/Pjx4UYRmnL69OkhMbvfKOQUcgo59eE9R1RU4VwZGmLEiBHd7zbmr1n6ud++mKYjfEXd7zzC1x4ugbFjx1ZVVfV49ymnMvIqCdEwE64G4cqQ5RtF9CB4ODmE7zSinxbQ/XKIXiEd5BTZcv78+SE9iaKqx4ZI5T3H8e89crHLIVwIPT57LFAe2cmp3JWh+8Nbkc33t2XhRjG0S3Sj6PHkIKeQUxio+mTmzJl/9md/duZPHkvT/cfFcqoXpqkUHz2ulb1LWUtFx5D+c0ZFTmGg6pMFDR+rqak5ffp0yqJqc7dnzPTOqyRkcKC6mPRNUwO7UZimkFNkWsGrT/Vi2bJld/3oD8P9TcuD+0NUnTp1Kk1R1fdN4sat9Zoj3cfcuXP7eGVI32Pf+attuMlrKeQUFLOoxo0bt379+oMHD0ZFFUXV/PnzQ1T96Z/+aTqiqi/fjk+cOHHfvn2Hz31cc6T1aD154BOf+MSUKVMy3lK33Xbb7bffXvADCrUUcgoGXlTR6XL79u0FRZWLqnD3k46o6qWown1nuI8JR01NTWdnp6JKcUstW7bs+MuPLN1wQ/izztpjfPkttWXLlt5PDvX19X6wDHIKCoUzYzh11ucpOFf2WFS5qDp58mRqoiocoZ+iI7wd7mDy72wUVepbKrzb1NQUrvDRlSH/+pB/ZUh9S+V/x5V/cghvCynkFAzcxYoqiqp58+bdeeedP/jBD1L2t/+63+WEfFRUKW6ptseONTc3L1y4MMXl1PeWAjkFpSqqQ4cOdS+q7ESVokpxS+VPU1oK5BRUpqiiqLrqqqs+/vGPf//7309rVCmqtLZUBqepcGU+fPjw0aNHtRRyCspdVOvWreulqHJRdeLEibRGledRpa+lwtHY2Lht27bsTFNaCjkFcS+qXFQdP378g6e6py6qFFXKWipr05SWQk5BYooqiqq5c+emMqoUVWpaKmvTlJZCTkHyiioXVceOHXvllVfSFFWKKh0tlalpSkshpyDBRZWLqgMHDqQpqhRV0lsqU9NUuLqGG6yWQk5Bsosqiqo5c+bs378/NVEVFVVHR4eiSmJLZWea0lLIKYh1UTU1NfWrqPKj6nvf+14KokpRJbSlsjNNaSnkFCSjqG699dZ+FVUUVbNnz05HVCmqmLbUnft7aam2x47dfPPNqZ+mtBRyClJeVLmo2rdvX9KjSlElq6UyMk1pKeQUZKWoclHV2dn58ssvJzeqoqLau3fv0YdOqpmYt1QWpqlwhQw3SS2FnIIMFVUUVbNmzUp0VCmqmLTUyZMne2mpLExTWgo5Bdktqvyo+u53v5vEqFJU8W+p1E9TWgo5BYkvqvB9/yCLKhdVHR0dSYyq6Ccl79mzR1HFsKWiaWrr1q1pnaa0FHIKFFVKokpRxbal0j1NaSnkFCiqi0bVzJkzExdVuaI6oqhi01LpnqbCVe7gwYNaCjkFiurSUfWd73znsz/4aiLuDhVV3FoqxdOUlkJOgaLqR1TV1ta2t7eHqPrMD56Mf1Qpqvi0VIqnKS2FnAJFNbio+n7co0pRxaSl2h47dtNNN6VvmtJSyClQVEWIqpdeeinmURUV1e7duxVVcX8eX99bKq3TVNRSt99+u5ZCToGiGmxUtbW1haj6g/NPxPbOMtztLViw4IOievBOJVT+lkrlNKWlkFOQxaIKp/5SFFUuqvbu3RvnqIqKateuXYqqzC2VymlKSyGnQFG9WNKo+va3v/37578Sw/tORVWRlkrfNKWlQE6hqEpYVPlR9eKLL8YwqhRVmVsqfdOUlgI5haIqR1HlomrPnj0fRNUr8YoqRVXOlkrZNKWlQE5BWYuqIKoefeXL8YkqRVWelgrH2rVrUzNNhavNLbfcoqVATsGHRdXQ0FCeosqPqm9961uPfi8uURUV1c6dOxVV6VoqTdNUuMLs37/f60uBnIKKFVU8o0pRlbSl0jRNaSmQUxCXospFVWtr6ze/+c1Hvvelit/RKqrStVRqpiktBXIKYldUhVH1coWjSlGVoqVSM01pKZBTEN+iykXV7t27Q1R9+rtfrOD9rqIqeku1PXZs8+bNSZ+mtBTIKUhAUeVH1fPPP1/BqFJURWypdExT4Sqxb98+LQVyCvpRVPX19ZUqqlxU7dq162tf+1qlokpRFaulUjBNaSmQUzDworrlllsqVVQFUfWp7z5e/qiKimrHjh1HHzqppQb8L0n6NKWlQE5BsosqF1U7d+585plnPvWdckdVlouqKC2V9GlKS4GcgpQUVX5UPf3002WOqlxRHclSURWlpZI+TWkpkFOQtqIqiKqHv/OFst1JZ62oitVSiZ6mopY6cuSIlgI5BWkrqsKoeqlMUZWdoipWSyV6mtJSIKcg/UWVH1VPPfXUQy99vgz32VFRhYsixUVVxJZK7jSlpUBOQYaKKhdVO3bs+OpXv1qGqPqoqNL46glFbKnkTlNaCuQUZLGo8qPqySeffOjbpY2qtBZVcVuq7bFjGzduTNw0paVATkGmiyoXVeH/METVgy9+rnRRFRXVtm3bUlNUxW2phE5TWgrkFCiqD48tv4uqJ554onRRlaaiKnpLtT12bMOGDcmaprQUyClQVD1HVcidL3/5yyWKqnQUVdFbKonTlJYCOQWKqk9Rde7FPyz6HXyuqG5LZlGVoqUSN01pKZBTUOGiWrNmTcyLKhdVW7du/dKXvnTuW0WOquQWVSlaKnHTlJYCOQVxKaoDBw7EvKjyo+qLX/zi2W/9jyLe3yexqErUUsmapsIfXGdn52233aalQE6Bour33/4relQlq6hK1FLhaGhoCGmSiGlKS4GcAkVVnKh6/PHHz36zOFEVFVX4d8a8qErXUgmaprQUyClQVMWMqnCHGqLqgW/+98FH1UdFde7jWWupBE1TWgrkFCiqUkXV5z//+Qf+72CjKs5FVdKWSso0paVAToGiKnlUPfroo4OMqngWVUlbKinTlJYCOQWKqkxR1dLS8sgjj5z5k8cGHAdxK6pSt1QipiktBXIKFFW5o6q5uXkwURWfoip1SyVimtJSIKdAUVU4qu7/k/82gFbIFdXhyhVVGVqq7bFj69evj/M0paVAToGiSnBUVbaoytBS8Z+mtBTIKVBUMYqqm2+++dOf/vT93+hfVFWqqMrTUjGfpsKF39HRoaVATkHii6quri4FRVUQVfd947N9j6ryF1V5Wirm05SWAjkFaSuq/fv3p6CoBhxV5SyqsrVUnKcpLQVyChRVYqLqU5/61H0v9CmqPiqqsydS0FJxnqailjp8+LCWAjkFiioZUXXTTTeFqLr3hc9cMixKXVTlbKnYTlNaCuQUKKqkRtXmzZs/iKr/c4moiooq3NMXvajK2VKxnabCxdve3q6lQE6Bokp2VD388MO9R1UpiqrMLRXPaUpLgZwCRZWeqNq1a1eIqnu+/gcXi6riFlWZWyocjY2NcZumtBTIKVBUmYuqXFEdeuB4slqq7bFj69ati9U0paVAToGiejHdUfXQQw/d/fXf7x5Vgy+q8rdUDKcpLQVyChRVmovqklE1mKKqSEtF09SiRYu0FCCnQFFVJqoefPDBu//4gqjqsahCIc1fs3RInvDupvvbKttScZumtBTIKSBbRVUQVXf98aO5KMkvqpBHuYQaMWJEVVXVmDFjhg0blvtgiKpKtVSspiktBXIKyGhRFUbV8x9GVVRU8+fPj5pp6NChoaUmT568cOHC8PHq6ur8olqxYkX5WypW05SWAjkF9FBUq1ev3rdvX0aKKj+qzp07F0VVOPIf3Rs5cmSUU4sWLZoyZUp4t+CxvzL/D8dnmopa6tChQ1oK5BSQ9aIqiKohFxo9evSMGTPq6urWrFkT3gjvFnxC+aeplpaWik9TWgrkFKCoeo6qSZMm5afSsGHDwkdWrFhx+vTpU6dO3XjjjVdccUX+433Rk6iyNk2Flmpra9NSIKcARdXDUbA8hXKaOHFiXV3dnV3CG6GuCnKqnI/3xWGa0lIgpwBF1Y+cGjp06GWXXTZv3ryWLtddd111dXX4YEUe74vDNKWlQE4Biqq3I//FEXI5NWbMmJkzZ65YsWL58uVz5swJddU9p8rzl/sqPk1pKZBTgKIaSE6NHj36937v9z7WZfr06VVVVRXJqYpPU1oK5BSgqAaSU8Hw4cMvu+yyadOmTZ06dcKECSNGjOj+OWXIqcpOU1oK5BSgqAb43KncE9LHdKmqqip4Hnp5njtV2WlKS4GcAhRVP46Cn9CX/6hfpPsvleGFEio4TWkpkFOAoirC4329K3VOVXCailrq1ltv1VIgpwBF1Y9j04U/ZKayLVXBaUpLgZwCSlhUq1atSndRXewhvwJleAHPSk1TWgrkFFCOours7MzyRlWeF0OvyDSlpUBOAYqqaEXV40wVPlie1+2syDSlpUBOAYqqJF01Y8aM6dOnh4oqT0hVaprSUiCnAEVVqmPt2rUrV64s53+x/NOUlgI5BSiqVOVUmaep0FJ79+49ePCglgI5BSiqNORU22PHmpqaamtrtRQgp0BRyam4T1NaCuQUoKjSllPlnKa0FMgpQFGlMKfKNk1pKZBTgKJKYU6VbZrSUiCnAEVV1qOhoaE8OdXY2Lg5KPE0paVATgGKKp05VZ5pKmqpAwcOaCmQU0Dciyr0R2qKqjw5VYZpSkuBnAKSV1QdHR0pKKoy5FQZpiktBXIKSGpRtbW1Jb2oypBTpZ6mQkvt2bNHS4GcAhRVOnOq1NOUlgI5BSiqlOdUSacpLQVyCkhJUa1evTq5RVXSnIqmqYULF2opQE4BlyiqVatWJbSoSppTpZumopbav3+/lgI5BSiq1OZU6aap0FKtra1aCuQUoKhSnlMlmqa0FMgpQFFlIqdKNE1pKZBTQFaKau/evUkpqvr6+lLkVGNj46ZNm4o7TWkpkFOAospKTpVimopaat++fVoK5BSgqOJ1rFmzJvyvxnya0lIgpwBFlaGcKvo0paUAOQWKKtZFVfScKu40paUAOQWKKu5FVdycKu40paUAOQUkoKiKm1NFnKa0FCCngGQUVRFzqojTVGipcHFpKUBOAQkoqiLmVLGmqailOjs7tRQgp4AeimrPnj2xKqpi5VSxpiktBcgpIGFFVaycamxs3Lhx4yCnKS0FyCkgeUVVlJwqyjSlpQA5BSSyqIqSU4OfprQUIKeApBbV4HNq8NNUaKlwUXR0dGgpQE4BySuqwefUIKcpLQXIKSDZRVVXV7dy5cpKTVNaCpBTQHGKqrW1tVJFNcicGsw0paUAOQWkoagGk1Ntjx0LOTWwaUpLAXIKSElRDSanBjxNaSlATgHpKaoB59SApyktBcgpIFVFNeCcCi21YcOG/k5TWgqQU0DJiyrETTmLamA5NbBpKmqp9vZ2LQXIKaDkRbV79+7yFNXAcmoA05SWAuQUkM6iGkBODWCa0lKAnAJSW1QDyKn+TlNaCpBTQJqLqr851d9pSksBcgpIeVH1N6f6NU1FLdXW1qalADkFpLao+pVT/ZqmopZqbW3dsWOHP0dATgGpLarVq1f3Paf6Pk1FLRX+n7UUIKeAlBdV33Oq7bFja9euXbBggZYC5BSgqAaSU42NjevWrbvkNKWlADkFxLqo6urqQqYUsaj6mFN9nKa0FCCngMwVVR+fit7Y2NjU1NT7NKWlADkFZLGo+pJTfZmmQku1traGlgr/e/6MADkFJKOowj8HX1R9yalLTlNaCpBTQHaLKvxLVqxYMZhpSksBcgrIdFFdMqd6n6ailtq1a5eWAuQUkNGi6j2nep+mtBQgpwBFdYmc6mWa0lKAnAIU1SVyqpdpSksBcgpIZ1G1tLTc9+rjxcqpi01TWgqQU4CiunRORdNUTU1Njy21c+dOLQXIKUBRffhDZnrMqR6nKS0FyClAUfUpp3qcprQUIKeA7BXVj78wsJzqPk1pKUBOAYqqrznVfZrSUoCcAhRVP3KqYJrSUoCcArJeVM3Nzb0UVUFOFUxTUUvt2LFDSwFyClBUX+hLTuVPU1oKkFMAvRXV8ZcfCceyZcsWL1686f62gmlKSwFyCuCiRRUqav6apUOGDBk6dOiQPHPmzImmqdBS7e3toaW2bdvm0gPkFMAFRXXNzauieAotNXr06HFdRo4cmUurkFOhpVpaWhYuXPiLX/zCRQfIKYCPimrWrFm5LSok1MSJExd0qa6uDu/mfmnRokUzZ87cu3fvO++843ID5BTAh86cOZP/0F7op8mTJ9d2CW+MGDEi/1fnzp37/vvvu9AAOQXQc0sFo0ePnjVrVl1d3apVq6ZPnz5q1KiCp1K98sorLjdATgH0nFPDhg2rrq5euXLl8ePHjx07dvXVV48bNy58MP9z1qxZ43ID5BTA705GFwrlNHHixJBTp0+fPnXqVGNj49SpU4cPH17waS43QE4BfOD8+fMFnTR06NDx48cvXbq0ra2to6Pj2muvnTBhQsGDfUH4jS49QE4B9JxTY8aMueqqq+q7zJs37/LLL5dTgJwC6GtO5V4oYdGiRbW1tTNmzKiqqpJTgJwC6EdODRs2bNSoUVOmTJk8efKECRMKXijBc6cAOQVwgfr6+u6P94WiGt5laBc5BcgpgH7kVH5X9dhSZ86ccbkBcgrgQz0+3tc7FxogpwAu0P2F0XthmgLkFMDAi0pLAXIKYOBFpaUAOQUwwKiqr6/3QlOAnALoh/N5XBqAnAIAkFMAAMgpAAA5BQAgpwAA5BQAAHIKAEBOAQDIKQAAOQUAIKcAAJBTAAByCgBATgEAyCkAAOQUAICcAgCQUwAAcgoAADkFACCnAADkFACAnAIAQE4BAMgpAAA5BQAgpwAA5BQAAHIKAEBOAQDIKQAAOQUAgJwCAJBTAAByCgBATgEAIKcAAOQUAICcAgCQUwAAyCkAADkFACCnAADkFACAnHIRAADIKQAAOQUAkEz/H8v6mx96i1wAAAAAAElFTkSuQmCC"
     ]
    }
   },
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "![{{:tutorial:square_nreg_subdiv.png?400|}}](attachment:square_nreg_subdiv.png)\n",
    "\n",
    "This is quite similar to the `mother of all examples` (See: \"Triangulations\" from DeLoera, Rambau and Santos). So with a similar argument we can see that this subdivision is indeed not regular. How does polymake feel about this?\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "false <>\n",
       "\n"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print is_regular($points, $nreg_cells);"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Just as expected polymake tells us that the subdivision is not regular. But although there is no weight function which induces this particular subdivision we can still create a `SubdivisionOfPoints` object with the given cells. What happens if we ask for the secondary cone of that subdivision?\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4\n",
       "\n"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "$nreg_sub = new fan::SubdivisionOfPoints(POINTS=>$points, MAXIMAL_CELLS=>$nreg_cells);\n",
    "$nreg_sc = $nreg_sub->secondary_cone();\n",
    "print $nreg_sc->DIM;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This might be weird at first. Although our subdivision is not regular (meaning there does not exist a secondary cone for that subdivision) the secondary cone seems to be 4 dimensional. Let us investigate.\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1 1 1 1 0 0 0 0\n",
       "    \n"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $nreg_sc->RAYS;"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3/2 3/2 -1/2 -1/2 1 1 0 0\n",
       "-26/19 12/19 34/19 -4/19 -11/19 8/19 1 0\n",
       "50/49 -8/49 10/49 68/49 40/49 11/49 20/49 1\n",
       "\n"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print $nreg_sc->LINEALITY_SPACE;"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This looks familiar, doesn't it? We got the same secondary cone as we did in our first example. The reason for this is that the first example is the finest regular coarsening of our non regular subdivision. And this is exactly what we see here. In other words, the subdivision of our first example is the closest regular thing similar to our non regular subdivision and this is exactly what the `secondary_cone` function produces. If a subdivision is not regular it gives you the secondary cone of the next best regular subdivision.\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "polymake",
   "language": "polymake",
   "name": "polymake"
  },
  "language_info": {
   "codemirror_mode": "perl",
   "file_extension": ".pm",
   "mimetype": "text/x-polymake",
   "name": "polymake"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}