/usr/share/polymake/demo/transformations.ipynb is in polymake-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | {
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Polytopes and Linear Maps\n",
"\n",
"polymake works with [homogeneous coordinates](tutorial/coordinates), which is why *projective* linear transformations are natural to apply to polytopes. Affine transformations are a special case. By the way, a *transformation* is always bijective, by definition.\n",
"\n",
"### Transformations\n",
"\n",
"We start out with a regular 3-cube ...\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$c=cube(3);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 -1 -1 -1\n",
"1 1 -1 -1\n",
"1 -1 1 -1\n",
"1 1 1 -1\n",
"1 -1 -1 1\n",
"1 1 -1 1\n",
"1 -1 1 1\n",
"1 1 1 1\n",
"\n"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $c->VERTICES;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"... and a homethetic image:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$T=new Matrix<Rational>([[1,0,0,0],[0,2,0,0],[0,0,3,0],[0,0,0,4]]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$ct=transform($c,$T);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 -2 -3 -4\n",
"1 2 -3 -4\n",
"1 -2 3 -4\n",
"1 2 3 -4\n",
"1 -2 -3 4\n",
"1 2 -3 4\n",
"1 -2 3 4\n",
"1 2 3 4\n",
"\n"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $ct->VERTICES;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Our points are row vectors, so (projective) linear transformations are applied by multiplying the corresponding matrix from the right. In the above example the first column of the matrix T is the vector [1,0,0,0] which means that T acts as an affine map on *R³*. Also the first row reads [1,0,0,0], and this says that T fixes the origin. This is to say, T acts linearly.\n",
"\n",
"The purpose of the function transform used above is not only to work on the VERTICES but also on the FACETS (if available).\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 1 0 0\n",
"1 -1 0 0\n",
"1 0 1 0\n",
"1 0 -1 0\n",
"1 0 0 1\n",
"1 0 0 -1\n",
" \n"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $c->FACETS;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 1/2 0 0\n",
"1 -1/2 0 0\n",
"1 0 1/3 0\n",
"1 0 -1/3 0\n",
"1 0 0 1/4\n",
"1 0 0 -1/4\n",
"\n"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $ct->FACETS;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"If we also read the FACETS as row vectors then the corresponding action is given by the transpose of the inverse of T.\n",
"\n",
"\n",
"### Non-Bijective Linear Maps\n",
"\n",
"Sometimes we are interested in images of polytopes under a linear map which is not bijective. An interesting case are projections, for instance, onto a coordinate subspace.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$A=new Matrix<Rational>([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,0]]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Using transform would not work in this case:\n",
"\n",
" \n",
" # polytope > transform($c,$A);\n",
" polymake: ERROR: matrix not invertible\n",
"\n",
"The above error says that transform is not the proper function to deal with this situation as the linear map given by A is not invertible. \n",
"\n",
"To produce the image the following command works:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$ca=new Polytope<Rational>(POINTS=>$c->VERTICES*$A);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 -1 -1 0\n",
"1 1 -1 0\n",
"1 -1 1 0\n",
"1 1 1 0\n",
"\n"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $ca->VERTICES;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Since we are applying a non-bijective map, the images of VERTICES do not have to be VERTICES. Moreover, even if this is the case, multiple VERTICES may be mapped to the same (like two onto one as in the example above). If a polytope already has a double description, that is, both VERTICES and FACETS are known, then the VERTICES and FACETS of the image under a transformation (that is, a bijective map) cane be read off right away. However, in the non-bijective case a convex hull computation is required to compute the FACETS of the image.\n",
"\n",
"\n",
"### Special Examples of Linear Maps to Apply\n",
"\n",
"[to be continued]\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "polymake",
"language": "polymake",
"name": "polymake"
},
"language_info": {
"codemirror_mode": "perl",
"file_extension": ".pm",
"mimetype": "text/x-polymake",
"name": "polymake"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|