This file is indexed.

/usr/share/povray-3.7/include/math.inc is in povray-includes 1:3.7.0.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
// letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

//    Persistence of Vision Ray Tracer version 3.5 Include File
//    File: math.inc
//    Last updated: 2004.07.23
//    Description: This file contains various math macros and functions

#ifndef(MATH_INC_TEMP)
#declare MATH_INC_TEMP = version;
#version 3.5;

#ifdef(View_POV_Include_Stack)
   #debug "including math.inc\n"
#end

#include "functions.inc"

// --------------------------------------------------------
// Statistics macros: (some from variate.inc)
// --------------------------------------------------------

// Mean(rewritten, original from basemcr.inc by Margus Ramst)
#macro Mean(A)
   #local N = dimension_size(A,1);
   #local C = 0;
//    (
//    #while(C<N-1)
//        A[C]+
//        #local C=C+1;
//    #end
//    A[C])/N
   #local V = 0;
   #while(C < N)
      #local V = V + A[C];
      #local C=C+1;
   #end
   (V/N)
#end

// Standard deviation(rewritten, original from basemcr.inc by Margus Ramst)
#macro Std_Dev(A, M)
   #local N = dimension_size(A,1);
   #local C = 0;
//    sqrt((
//    #while(C<N-1)
//        pow(A[C]-M,2)+
//        #local C=C+1;
//    #end
//    pow(A[C]-M,2))/N)
   #local V = 0;
   #while(C < N)
      #local V = V + pow(A[C] - M, 2);
      #local C=C+1;
   #end
   sqrt(V/N)
#end

// Macros for statistical analysis
// Input: an array of values
// Output: a global array "StatisticsArray" is
//         declared containing: N, Mean, Min, Max, StdDev
#macro GetStats(ValArr)
   #local SquareSum=0; #local Sum=0;
   #local Min=10e15;   #local Max=-10e15;
   #local N=dimension_size(ValArr,1);
   #local I=0;
   #while (I<N)
      #local Val=ValArr[I];
      #local Sum=Sum+Val;
      #local SquareSum=SquareSum+(Val*Val);
      #if (Val>Max)
         #local Max=Val;
      #end
      #if (Val<Min)
         #local Min=Val;
      #end
      #local I=I+1;
   #end
   #local Avg=Sum/N;
   #local StdDev=sqrt((SquareSum/N)-Avg*Avg);
   #debug concat("\nN      = ",str(N,0,0),"\n")
   #debug concat("Mean   = ",str(Avg,0,-1),"\n")
   #debug concat("Min    = ",str(Min,0,-1),"\n")
   #debug concat("Max    = ",str(Max,0,-1),"\n")
   #debug concat("StdDev = ",str(StdDev,0,-1),"\n")
   #declare StatisticsArray=array[5]{N,Avg,Min,Max,StdDev}
#end

// Input: an array with values and the wanted amount of intervals / bins.
// Output: a global array "HistogramArray" is declared,
//         it is a two dimensional array, the first value is the center
//         of the interval / bin, the second the amount of values
//         in that interval.
#macro Histogram(ValArr, Intervals)
   GetStats(ValArr)
   #local Min=StatisticsArray[2];
   #local Max=StatisticsArray[3];

   #local Intervals=int(Intervals);
   #local Width=(Max-Min)/(Intervals);

   #local HistArr=array[Intervals][2]
   #local I=0;
   #while(I<Intervals)
      #local HistArr[I][0]=Min+Width*(I+0.5);  // center of interval
      #local HistArr[I][1]=0;
      #local I=I+1;
   #end

   #local I=0;
   #while (I<N)                                // 'put' the values into the right
      #local Index=int((ValArr[I]-Min)/Width); // intervals and count them.
      #if (Index>=Intervals)
         #local Index=Index-1;
      #end
      #local HistArr[Index][1]=HistArr[Index][1]+1;
      #local I=I+1;
   #end
   #declare HistogramArray=HistArr
#end


// --------------------------------------------------------
// Trig:
// --------------------------------------------------------

#declare sind = function (x) {sin(radians(x))}
#declare cosd = function (x) {cos(radians(x))}
#declare tand = function (x) {tan(radians(x))}

#declare asind = function (x) {degrees(asin(x))}
#declare acosd = function (x) {degrees(acos(x))}
#declare atand = function (x) {degrees(atan(x))} 
#declare atan2d = function (x, y) {degrees(atan2(x, y))}


// --------------------------------------------------------
// Misc:
// --------------------------------------------------------

#declare max3 = function (x, y, z) {max(x,y,z)}
#declare min3 = function (x, y, z) {min(x,y,z)}

#declare even = function(x) {select(mod(x, 2), 0, 1, 0)}
#declare odd  = function(x) {select(mod(x, 2), 1, 0, 1)}

// Squares the value
#declare f_sqr = function (x) {(x*x)}

// Returns the sign of a value
#declare sgn = function (x) {select(x,-1, 0, 1)}
//#declare sgn = function (x) {x/abs(x)}

// Range handling
// clips a number (x) to the range [Min, Max] ([y, z]). Values above Max return Max,
// below Min return Min.
#declare clip = function (x, y, z) {min(z, max(x, y))}

// Clamps a number (x) to the range [Min, Max] ([y, z]).
// Values outside this range wrap around.
#declare clamp = function (x, y, z) {mod(x - y, z - y) + select(mod(x - y, z - y), z, y)}

// Adjusts input values (x) in the range [0, 1] to output values in range [Rmn, Rmx] ([y, z]).
#declare adj_range = function (x, y, z) {x*(z - y) + y}

// Adjusts values in a specified range [Rmn, Rmx] to the specified range [Min, Max]
#declare adj_range2 = 
  function (x, y, z, _Math_INC_OMn, _Math_INC_OMx) {
    ((x - y)/(z - y))*(_Math_INC_OMx - _Math_INC_OMn) + _Math_INC_OMn
  }

// Interpolate author: Margus Ramst
// Interpolation
// GC - global current
// GS - global start
// GE - global end
// TS - target start
// TE - target end
// Method - interpolation method:
//          Method = 0 - cosine interpolation
//          Method > 0 - exponential (1 - linear, etc)
#macro Interpolate(GC, GS, GE, TS, TE, Method)
   (#if(Method!=0)
      (TS+(TE-TS)*pow((GC-GS)/(GE-GS),Method))
   #else
      #local X=(GC-GS)/(GE-GS);
      #local F=(1-cos(X*pi))*.5;
      (TS*(1-F)+TE*F)
   #end)
#end

// --------------------------------------------------------
// Vector macros:
// --------------------------------------------------------

// Squares the components of a vector
#macro VSqr(V) (V*V) #end

// Raises the components of a vector to a given power
#macro VPow(V, P) <pow(V.x, P), pow(V.y, P), pow(V.z, P)> #end
#macro VPow5D(V, P) <pow(V.x, P), pow(V.y, P), pow(V.z, P), pow(V.filter, P), pow(V.transmit, P)> #end

// Returns true if vectors are equal, otherwise false
#macro VEq(V1, V2) (V1.x = V2.x & V1.y = V2.y & V1.z = V2.z) #end
#macro VEq5D(V1, V2)
   ( V1.x = V2.x
   & V1.y = V2.y
   & V1.z = V2.z
   & V1.filter = V2.filter
   & V1.transmit = V2.transmit)
#end

// Returns true if vector is <0,0,0>, otherwise false
#macro VZero(V1) (V1.x = 0 & V1.y = 0 & V1.z = 0) #end
// Returns true if vector is <0,0,0,0,0>, otherwise false
#macro VZero5D(V1) (V1.x = 0 & V1.y = 0 & V1.z = 0 & V1.filter = 0 & V1.transmit = 0) #end

#macro VLength5D(V) sqrt(V.x*V.x + V.y*V.y + V.z*V.z + V.filter*V.filter + V.transmit*V.transmit) #end

#macro VNormalize5D(V) (V/sqrt(V.x*V.x + V.y*V.y + V.z*V.z + V.filter*V.filter + V.transmit*V.transmit)) #end

#macro VDot5D(V1, V2) (V1.x*V2.x + V1.y*V2.y + V1.z*V2.z + V1.filter*V2.filter + V1.transmit*V2.transmit) #end

// Cosine of angle between V1 and V2
#macro VCos_Angle(V1, V2) vdot(vnormalize(V1), vnormalize(V2)) #end

// Angle in radians between V1 and V2
#macro VAngle(V1, V2) acos(min(1, vdot(vnormalize(V1), vnormalize(V2)))) #end
// Angle in degrees between V1 and V2
#macro VAngleD(V1, V2) degrees(acos(min(1,vdot(vnormalize(V1), vnormalize(V2))))) #end

// VRotation() will find the rotation angle from V1 to V2
// around Axis. Axis should be perpendicular to both V1
// and V2. The output will be in the range between -pi and
// pi radians or between -180 degrees and 180 degrees if
// you are using the degree version. However, if Axis is
// set to <0,0,0> the output will always be positive or
// zero, the same result you will get with the VAngle() macros.
// Author: Rune S. Johansen
#macro VRotation(V1, V2, Axis)
   (acos(min(vdot(vnormalize(V1),vnormalize(V2)),1))
   *(vdot(Axis,vcross(V1,V2))<0?-1:1))
#end
#macro VRotationD(V1, V2, Axis)
   (degrees(acos(min(vdot(vnormalize(V1),vnormalize(V2)),1)))
   *(vdot(Axis,vcross(V1,V2))<0?-1:1))
#end

// Distance between V1 and V2
#macro VDist(V1, V2) vlength(V1 - V2) #end

// Returns a vector perpendicular to V
// Author: Tor Olav Kristensen
#macro VPerp_To_Vector(v0)
   #if (vlength(v0) = 0)
      #local vN = <0, 0, 0>;
   #else
      #local Dm = min(abs(v0.x), abs(v0.y), abs(v0.z));
      #if (abs(v0.z) = Dm)
         #local vN = vnormalize(vcross(v0, z));
      #else
         #if (abs(v0.y) = Dm)
            #local vN = vnormalize(vcross(v0, y));
         #else
            #local vN = vnormalize(vcross(v0, x));
         #end
      #end
   #end
   vN
#end

// Returns a vector perpendicular to V1 and V2
#macro VPerp_To_Plane(V1, V2) (vnormalize(vcross(V1, V2))) #end

// Find a vector perpendicular to Axis and in the plane of
// V1 and Axis. In other words, the new vector is a version
// of V1 adjusted to be perpendicular to Axis.
#macro VPerp_Adjust(V, Axis)
   vnormalize(vcross(vcross(Axis, V), Axis))
#end

// Projects a vector onto the plane defined by Axis.
// Based on code by Ron Parker
#macro VProject_Plane(V, Axis)
   #local A = vnormalize(Axis);
   (V - vdot(V, A)*A)
#end

// Projects a vector onto the an axis.
// Based on code by Ron Parker
#macro VProject_Axis(V, Axis)
   (Axis*vdot(V, Axis)/vdot(Axis, Axis))
#end

// Smallest component of V
#macro VMin(V) (min3(V.x, V.y, V.z)) #end

// Largest component of V
#macro VMax(V) (max3(V.x, V.y, V.z)) #end

// Creates a vector going in the direction of the
// given vector with the specified length
#macro VWith_Len(V, Len) (Len*vnormalize(V)) #end

// --------------------------------------------------------
// Vector analysis macros
// --------------------------------------------------------
// Authors: Christoph Hormann and Tor Olav Kristensen

// Various functions of vector analysis in form of macros
// that can be used in user defined functions or expressions
//
// all macros make use of a constant named
// '__Gradient_Fn_Accuracy_' for numerical approximation
// of the derivatives.
// This constant can be changed with the
// 'SetGradientAccuracy()' macro, the default value is 0.001.
//
// Because vector functions can only be created as pigment
// or transform/spline functions and can not be passed as
// a macro parameter there is no fn_Curl() function and the
// divergence and curl macros use 3 float functions for
// defining the vector field.

#ifndef (__Gradient_Fn_Accuracy_)
   #declare __Gradient_Fn_Accuracy_=0.001;
#end

#macro SetGradientAccuracy(Value)
   #declare __Gradient_Fn_Accuracy_=abs(Value);
#end

// macro calculating the gradient of a function
// as a function
//
// Parameters:
//     __Gradient_Fn: function to calculate the gradient from
//
// Output: the length of the gradient as a function
#macro fn_Gradient(__Gradient_Fn)

   function {
      f_r(
         __Gradient_Fn(x + __Gradient_Fn_Accuracy_, y, z) - __Gradient_Fn(x - __Gradient_Fn_Accuracy_, y, z),
         __Gradient_Fn(x, y + __Gradient_Fn_Accuracy_, z) - __Gradient_Fn(x, y - __Gradient_Fn_Accuracy_, z),
         __Gradient_Fn(x, y, z + __Gradient_Fn_Accuracy_) - __Gradient_Fn(x, y, z - __Gradient_Fn_Accuracy_)
      )/(2*__Gradient_Fn_Accuracy_)
   }

#end

// macro calculating the gradient of a function
// in one direction as a function
//
// Parameters:
//     __Gradient_Fn:  function to calculate the gradient from
//     Dir:            direction to calculate the gradient
//
// Output: the gradient in that direction as a function
#macro fn_Gradient_Directional(__Gradient_Fn, Dir)

   #local Dirx = vnormalize(Dir).x;
   #local Diry = vnormalize(Dir).y;
   #local Dirz = vnormalize(Dir).z;

   function {
      (
         (__Gradient_Fn(x + __Gradient_Fn_Accuracy_, y, z) - __Gradient_Fn(x - __Gradient_Fn_Accuracy_, y, z))*Dirx +
         (__Gradient_Fn(x, y + __Gradient_Fn_Accuracy_, z) - __Gradient_Fn(x, y - __Gradient_Fn_Accuracy_, z))*Diry +
         (__Gradient_Fn(x, y, z + __Gradient_Fn_Accuracy_) - __Gradient_Fn(x, y, z - __Gradient_Fn_Accuracy_))*Dirz
      )/(2*__Gradient_Fn_Accuracy_)
   }

#end

// macro calculating the divergence of a (vector) function
// as a function
//
// Parameters:
//     __Gradient_Fnx,
//     __Gradient_Fny,
//     __Gradient_Fnz: x, y and z components of a vector function
//
// Output: the divergence as a function
#macro fn_Divergence(__Gradient_Fnx, __Gradient_Fny, __Gradient_Fnz)

   function {
      (
       __Gradient_Fnx(x + __Gradient_Fn_Accuracy_, y, z) - __Gradient_Fnx(x - __Gradient_Fn_Accuracy_, y, z)+
       __Gradient_Fny(x, y + __Gradient_Fn_Accuracy_, z) - __Gradient_Fny(x, y - __Gradient_Fn_Accuracy_, z)+
       __Gradient_Fnz(x, y, z + __Gradient_Fn_Accuracy_) - __Gradient_Fnz(x, y, z - __Gradient_Fn_Accuracy_)
      )/(2*__Gradient_Fn_Accuracy_)
   }

#end

// macro calculating the gradient of a function
// as a vector expression
//
// Parameters:
//     __Gradient_Fn: function to calculate the gradient from
//     p0:            point where to calculate the gradient
//
// Output: the gradient as a vector expression
#macro vGradient(__Gradient_Fn, p0)

  #local p0x=p0.x;
  #local p0y=p0.y;
  #local p0z=p0.z;

   (
    <
     __Gradient_Fn(p0x + __Gradient_Fn_Accuracy_, p0y, p0z) - __Gradient_Fn(p0x - __Gradient_Fn_Accuracy_, p0y, p0z),
     __Gradient_Fn(p0x, p0y + __Gradient_Fn_Accuracy_, p0z) - __Gradient_Fn(p0x, p0y - __Gradient_Fn_Accuracy_, p0z),
     __Gradient_Fn(p0x, p0y, p0z + __Gradient_Fn_Accuracy_) - __Gradient_Fn(p0x, p0y, p0z - __Gradient_Fn_Accuracy_)
    >/(2*__Gradient_Fn_Accuracy_)
   )

#end

// macro calculating the curl of a (vector) function
// as a vector expression
//
// Parameters:
//     __Gradient_Fnx,
//     __Gradient_Fny,
//     __Gradient_Fnz: x, y and z components of a vector function
//     p0:             point where to calculate the curl
//
// Output: the curl as a vector expression
#macro vCurl(__Gradient_Fnx, __Gradient_Fny, __Gradient_Fnz, p0)

  #local p0x=p0.x;
  #local p0y=p0.y;
  #local p0z=p0.z;
  
  (
    <
      __Gradient_Fnz(p0x, p0y + __Gradient_Fn_Accuracy_, p0z) - __Gradient_Fnz(p0x, p0y - __Gradient_Fn_Accuracy_, p0z) -
      __Gradient_Fny(p0x, p0y, p0z + __Gradient_Fn_Accuracy_) + __Gradient_Fny(p0x, p0y, p0z - __Gradient_Fn_Accuracy_),
      
      __Gradient_Fnx(p0x, p0y, p0z + __Gradient_Fn_Accuracy_) - __Gradient_Fnx(p0x, p0y, p0z - __Gradient_Fn_Accuracy_) -
      __Gradient_Fnz(p0x + __Gradient_Fn_Accuracy_, p0y, p0z) + __Gradient_Fnz(p0x - __Gradient_Fn_Accuracy_, p0y, p0z),

      __Gradient_Fny(p0x + __Gradient_Fn_Accuracy_, p0y, p0z) - __Gradient_Fny(p0x - __Gradient_Fn_Accuracy_, p0y, p0z) -
      __Gradient_Fnx(p0x, p0y + __Gradient_Fn_Accuracy_, p0z) + __Gradient_Fnx(p0x, p0y - __Gradient_Fn_Accuracy_, p0z)
    >/(2*__Gradient_Fn_Accuracy_)
  )

#end

// macro calculating the divergence of a (vector) function
// as a float expression
//
// Parameters:
//     __Gradient_Fnx,
//     __Gradient_Fny,
//     __Gradient_Fnz: x, y and z components of a vector function
//     p0:             point where to calculate the divergence
//
// Output: the divergence as a float expression
#macro Divergence(__Gradient_Fnx, __Gradient_Fny, __Gradient_Fnz, p0)

  #local p0x=p0.x;
  #local p0y=p0.y;
  #local p0z=p0.z;
  
   (
    (
     __Gradient_Fnx(p0x + __Gradient_Fn_Accuracy_, p0y, p0z) - __Gradient_Fnx(p0x - __Gradient_Fn_Accuracy_, p0y, p0z)+
     __Gradient_Fny(p0x, p0y + __Gradient_Fn_Accuracy_, p0z) - __Gradient_Fny(p0x, p0y - __Gradient_Fn_Accuracy_, p0z)+
     __Gradient_Fnz(p0x, p0y, p0z + __Gradient_Fn_Accuracy_) - __Gradient_Fnz(p0x, p0y, p0z - __Gradient_Fn_Accuracy_)
    )/(2*__Gradient_Fn_Accuracy_)
   )

#end

// macro calculating the length of the gradient
// of a function as a float expression
//
// Parameters:
//     __Gradient_Fn:  function to calculate the gradient from
//     p0:             point where to calculate the gradient
//
// Output: the length of the gradient as a float expression
#macro Gradient_Length(__Gradient_Fn, p0)
   vlength(vGradient( function { __Gradient_Fn(x, y, z) } , p0))
#end

// macro calculating the gradient of a function
// in one direction as a float expression
//
// Parameters:
//     __Gradient_Fn:  function to calculate the gradient from
//     p0:             point where to calculate the gradient
//     Dir:            direction to calculate the gradient
//
// Output: the gradient in that direction as a float expression
#macro Gradient_Directional(__Gradient_Fn, p0, Dir)
   vdot(
      vGradient( function { __Gradient_Fn(x, y, z) }, p0),
      vnormalize(Dir)
   )
#end

#version MATH_INC_TEMP;
#end//math.inc