/usr/share/psychtoolbox-3/PsychDemos/IsomerizationsInEyeDemo.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | % IsomerizationsInEyeDemo
%
% Shows how to compute photoreceptor isomerizations using toolbox
% routines. These calculations are for the human eye,
% starting with a spectrum as measured by the PR-650
% in watts/sr-m^2-wlinterval, or with a relative spectrum
% and a photopic troland value.
%
% NOTE, DHB, 7/19/13. This demo routine and its associated data routines
% (DefaultPhotoreceptors, FillInPhotoreceptors, PrintPhotoreceptors)
% should be better integrated with the more recent code that
% implements the CIE physiological cone fundamentals, and the
% whole set of stuff should be better documented. See also
% IsomerizationsInDishDemo
% CIEConeFundamentalsTest
% ComputeCIEConeFundamentals
% ComputeRawConeFundamentals
% DefaultPhotoreceptors
% FillInPhotoreceptors
% PrintPhotoreceptors
% RetIrradianceToIsoRecSec
% In particular, there should be some default for the
% photoreceptors structure that gives one the CIE cone
% fundamentals in all their parametric glory, plus additional
% parameters that yield real energy/quantal sensitivites so
% that the resulting coordinates are isomerization rates in
% real units. I think that we're close to having that, but
% better documentation and tidying is needed.
%
% 07/08/03 dhb Wrote starting from IsomerizationsInDishDemo.
% 07/11/03 dhb Grab data through subroutines. Get rid of integration time.
% 07/15/03 dhb Take eye size from function.
% 08/14/11 dhb Comment out saving of T_dogrec at end. Want to be careful when and where
% this is done, but the template may be useful someday.
% 03/20/12 dhb Update cal file for PTB 3.
% 04/09/12 dhb Add test of irradiance to troland conversion.
% 04/27/13 dhb More extensive comments.
% 7/19/13 dhb Print out photoreceptors structure using PrintPhotoreceptors.
% dhb Add monochromatic light option to the section that starts with trolands.
% 8/11/13 dhb Add test of AborbtanceToAbsorbance.
% dhb Protect against case when absorbance is provided directly.
% 05/26/14 dhb Dusted off.
% 6/10/14 npc, dhb Modifications for accessing calibration data using a @CalStruct object.
% 7/7/14 dhb Make calStruct object code conditional on the support routines existing on the path.
%% Clear
clear; close all;
%% Set photoreceptor properties.
%
% The photoreceptors structure gets filled with
% key parameters values (pupil size, eye length,
% pre-retinal absorbance, etc.)
%
% The routine DefaultPhotoreceptors is a high level
% call. It fills in the 'source' fields and some
% values according to high-level descriptor (e.g.,
% ('CIE2Deg'). See help for that routine
% for available options.
%
% The routine FillInPhotoreceptors fetches the actual
% values for various fields, depending on the source.
%
% To get a feel for this, check what is in the photoreceptors
% structure after the first call, and then after the second.
whatCalc = 'CIE2Deg';
photoreceptors = DefaultPhotoreceptors(whatCalc);
photoreceptors.eyeLengthMM.source = 'LeGrand';
photoreceptors = FillInPhotoreceptors(photoreceptors);
%% Check AbsorptancetoAbsorbance
%
% Simple check that this routine does what we expect, since
% we never use it anywhere else and this seems like as good
% a place to test it as any.
%
% We omit the normalization, because sometimes the wavelength
% sampling we use leads to a maximimum initial absorbance that
% is not unity, and letting AbsorptanceToAbsorbance normalize
% causes disagreement.
testAbsorbance = photoreceptors.absorbance;
testAbsorptance = photoreceptors.absorptance;
checkAbsorbance = AbsorptanceToAbsorbance(testAbsorptance, photoreceptors.nomogram.S, photoreceptors.axialDensity.bleachedValue,false);
diffs = testAbsorbance-checkAbsorbance;
if (max(abs(diffs(:))) > 1e-7)
error('Cannot properly invert absorbance/absorptance computations');
end
%% Define common wavelength sampling for this script.
%
% S is [start delta nsamples] for the wavelengths in nm.
% This is standard PTB convention.
S = photoreceptors.nomogram.S;
%% XYZ color matching functions
load T_xyz1931
T_xyz = SplineCmf(S_xyz1931,683*T_xyz1931,S);
T_Y = T_xyz(2,:);
%% Get light spectrum. You can choose various illustrative examples.
%
% Available options:
% 'fromTrolands'
% 'fromMonitorRadiance'
% 'fromUniformQuantalSpd'
whichInputType = 'fromTrolands';
switch (whichInputType)
% Start with troland value and a relative spectrum
case 'fromTrolands'
fprintf('Computing from troland value and relative spectrum\n');
% Give troland value and type
%
% Type may be 'Photopic', 'Scotopic', or 'JuddVos'
trolands = 1;
trolandType = 'Photopic';
switch (trolandType)
case 'Photopic'
fprintf('Using photopic trolands\n');
case 'Scotopic'
fprintf('Using scotopic trolands\n');
case 'JuddVos'
fprintf('Using Judd-Vos luminosity function in troland calculations\n');
otherwise
fprintf('Unknown troland type specified');
end
%% Pupil.
%
% We do these computations for a fixed pupil size, ignoring the
% pupilDiamter field of the photoreceptors structure. That field
% is set up to specify a source formula that estimates pupil diameter
% from luminance.
%
% Since we are starting in trolands, the pupil size shouldn't actually
% effect the calculations, except for finding the radiance that is
% equivalent to the specified troland value.
%
% We remove the pupilDiameter.source field to make sure we aren't sending
% mixed messages about how we want to handle pupil diameter.
photoreceptors.pupilDiameter.value = 2;
if (isfield(photoreceptors.pupilDiameter,'source'))
photoreceptors.pupilDiameter = rmfield(photoreceptors.pupilDiameter,'source');
end
pupilAreaMm2 = pi*(photoreceptors.pupilDiameter.value/2)^2;
% Specify relative spectrum to be used in
% conversion to a full spectrum.
%
% Choices are:
% 'Monochromatic'
% 'XenonArc'
%
% If type is 'Monochromatic', must specify
% wavelengthNm.
spectrumType = 'Monochromatic';
switch (spectrumType)
case 'Monochromatic'
monoWavelengthNm = 550;
wls = SToWls(S);
monoWavelengthIndex = find(wls == monoWavelengthNm);
if (isempty(monoWavelengthIndex))
error('No sample wavelength matches desired wavelength');
end
spd_fromTrolands = zeros(size(wls));
spd_fromTrolands(monoWavelengthIndex) = 1;
fprintf('Using monochromatic %d nm light as relative spectrum\n',monoWavelengthNm);
case 'XenonArc'
load spd_xenonArc;
spd_fromTrolands = SplineSpd(S_xenonArc,spd_xenonArc,S);
clear S_xenonArc spd_xenonArc
fprintf('Using the spectrum of a xenon arc lamp as relative spectrum\n');
otherwise
error('Unknown spectrum type specified');
end
% Convert trolands back to spectral retinal irradiance. This
% depends on the pupil size and eye length specified.
irradianceWattsPerUm2 = TrolandsToRetIrradiance(spd_fromTrolands,S,trolands, ...
trolandType,photoreceptors.species,photoreceptors.eyeLengthMM.value);
irradianceTrolandsCheck = RetIrradianceToTrolands(irradianceWattsPerUm2,S,trolandType, ...
photoreceptors.species,photoreceptors.eyeLengthMM.value);
trolandsCheck = sum(irradianceTrolandsCheck);
fprintf('Input troland value is %0.1f, checked value is %0.1f\n',trolands,trolandsCheck);
irradianceWattsPerUm2 = SplineSpd(S,irradianceWattsPerUm2,S);
% Another way to do this calculation. Pupil size should cancel out. Should get
% same answer as above. This has as a byproduct computing a stimulus radiance,
% which is useful for some of the common printout below.
luminanceCdM2FromTrolands = TrolandsToLum(trolands,pupilAreaMm2);
radianceWattsPerM2Sr = LumToRadiance(spd_fromTrolands,S,luminanceCdM2FromTrolands,trolandType);
photopicLuminanceCdM2 = T_Y*radianceWattsPerM2Sr;
irradianceWattsCheck = RadianceToRetIrradiance(radianceWattsPerM2Sr,S,pupilAreaMm2,photoreceptors.eyeLengthMM.value);
figure(1); clf; hold on
set(plot(SToWls(S),irradianceWattsPerUm2,'r'),'LineWidth',2);
set(plot(SToWls(S),irradianceWattsCheck,'k'),'LineWidth',2);
set(title('Check of trolands to irradiance calculation'),'FontSize',14);
set(xlabel('Wavelength (mm)'),'FontSize',14);
set(ylabel('Irradiance'),'FontSize',14);
% For case if monochromatic light, can check retinal irradiance against
% the direct formulae provided in W&S, 2cd edition, p. 105, eqs 2.4.4
% Note that these equations are missing a factor of
% the wavelength in the numerator for the quantal conversions, as
% pointed out by Makous in his 1997 JOSA paper.
%
% This only works for 'Photopic' and 'Scotopic' trolands.
%
% There must be an eye length implicit in this calculation. Using
% the LeGrand model eye length gives good agreement between these
% and our more general calculations done in the main section below.
%
% Makous (1997), JOSA A, 14, p. 2331 gives retinal illuminances of
% 5.44 quanta/[um2-sec] for 1 scotopic troland, and 14.65 quanta/[um2-sec]
% for 1 photopic troland, with the calulations specified for 510 nm.
% The calculations here, done in several different ways, yield
% 5.442 (scotopic, agrees) and 26.85 (photopic, does not agree). But at
% 550 nm, the code here yields 14.64 quanta/[um2-sec], which seems close
% enough to the provided 14.65 to make me think that Makous' value is
% actually for a wavelength close to 550 nm. That would be a more typical
% wavelength at which to do photopic calculations, despite what the text
% in the paper says.
%
% Note that there are also errors in Tables 3 and 4 of the Makous
% paper, and that corrected values appear in Tables 3 and 2 of
% Makous (2004), Scotopic vision, In The Visual Neurosciences,
% Werner and Chalupa (eds). What does not seem to be specified
% in either place is the wavelengths used in the calculations of
% the two tables.
if (strcmp(spectrumType,'Monochromatic'))
switch (trolandType)
case 'Photopic'
load T_xyz1931;
T_vLambda = SplineCmf(S_xyz1931,T_xyz1931(2,:),S);
clear T_xyz1931 S_xyz1931
magicFactorE = 5.261e-12;
magicFactorQ = 2.649e13;
case 'Scotopic'
load T_rods;
T_vLambda = SplineCmf(S_rods,T_rods,S);
magicFactorE = 2.114e-12;
magicFactorQ = 1.064e13;
end
end
if (strcmp(spectrumType,'Monochromatic'))
switch (trolandType)
case {'Photopic','Scotopic'}
irradianceDirectWattsPerMm2Check = magicFactorE*trolands/T_vLambda(monoWavelengthIndex);
irradianceDirectQuantaPerMm2SecCheck = 1e-9*monoWavelengthNm*magicFactorQ*trolands/T_vLambda(monoWavelengthIndex);
fprintf('Retinal irradiance in area units computed from from trolands via Wyszecki and Stiles formulae\n');
fprintf('\t%0.4g Watts/mm2\n\t%0.4g quanta/[mm2-sec]\n',sum(irradianceDirectWattsPerMm2Check),sum(irradianceDirectQuantaPerMm2SecCheck));
end
end
% Start with radiance measurements, which we just
% pull out of the Toolbox's default calibration file.
case 'fromMonitorRadiance'
% Load light radiance. We'll use a monitor white.
% The original units are watts/sr-m^2-wlinterval.
cal = LoadCalFile('PTB3TestCal');
% If we're running using BrainardLabToolbox and support CalStruct objects, use those.
% But if we don't know about those, use old style direct access of fields in cal
% structure. The test is the existance of the routine ObjectToHandleCalOrCalStruct().
if (exist('ObjectToHandleCalOrCalStruct','file'))
[calStructOBJ, inputArgIsACalStructOBJ] = ObjectToHandleCalOrCalStruct(cal); clear 'cal';
P_device = calStructOBJ.get('P_device');
S_device = calStructOBJ.get('S');
radianceWattsPerM2Sr = SplineSpd(S_device,sum(P_device,2),S);
else
P_device = cal.P_device;
S_device = cal.S_device;
end
radianceWattsPerM2Sr = SplineSpd(S_device,sum(P_device,2),S);
clear S_device P_device
% Find pupil area, needed to get retinal irradiance. We compute
% pupil area based on the luminance of stimulus according to the
% algorithm specified in the photoreceptors structure.
theXYZ = T_xyz*radianceWattsPerM2Sr; theLuminance = theXYZ(2);
if (isfield(photoreceptors.pupilDiameter,'value'))
pupilAreaMm2 = pi*(photoreceptors.pupilDiameter.value/2).^2;
else
[nil,pupilAreaMm2] = PupilDiameterFromLum(theLuminance,photoreceptors.pupilDiameter.source);
end
photopicLuminanceCdM2 = T_Y*radianceWattsPerM2Sr;
% Convert radiance of source to retinal irradiance and convert to quantal units.
irradianceWattsPerUm2 = RadianceToRetIrradiance(radianceWattsPerM2Sr,S, ...
pupilAreaMm2,photoreceptors.eyeLengthMM.value);
% This light as well as some parameter tweaking are here to match a parameterization that Brian Wandell supplied
% to match what his code to do these computations produces. Note also
% the mucking with the photoreceptors structure. Wandell estimates
% L, M, S isomerizations/cone-sec of 16.5, 12.68, 2.27. These are very close to the numbers
% we get here.
case 'fromUniformQuantalSpd',
% Load corneal cone sensitivities in energy units, convert to quantal sensitivities
% and set specified peak absorptance.
%
% Note that overwriting the isomerizationAbsorptance in the photoreceptors structure
% makes the isomerization computation work, but not the absorptions calculation, which
% will be done with what was produced by FillInPhotoreceptors called above. This is
% not a recommended compute path for the toolbox code, but is done here to match Wandell's
% parameterization.
load T_cones_ss2; T_cones = T_cones_ss2; S_cones = S_cones_ss2;
% load T_cones_ss10; T_cones = T_cones_ss10; S_cones = S_cones_ss10;
% load T_cones_smj; T_cones = T_cones_smj; S_cones = S_cones_smj;
% load T_cones_sp; T_cones = T_cones_sp; S_cones = S_cones_sp;
peakIsomerizationEfficiency = [0.27 0.23 0.07]';
T_cones = SplineCmf(S_cones,QuantaToEnergy(S_cones,T_cones')',S);
T_cones(1,:) = T_cones(1,:)/max(T_cones(1,:));
T_cones(2,:) = T_cones(2,:)/max(T_cones(2,:));
T_cones(3,:) = T_cones(3,:)/max(T_cones(3,:));
T_cones = diag(peakIsomerizationEfficiency)*T_cones;
photoreceptors.isomerizationAbsorptance = T_cones;
% Create a spectrally uniform spd (in quantal units), and convert
% to energy units.
uniformSpd = QuantaToEnergy(S,ones(S(3),1));
% Normalize to radiance corresponding to 1 cd/m2.
normConst = T_Y*uniformSpd;
radianceWattsPerM2Sr = uniformSpd/normConst;
photopicLuminanceCdM2 = T_Y*radianceWattsPerM2Sr;
% Set pupil diameter for 1 mm2 pupil area, photoreceptor diameter for 4 mm2 collecting
% area. Set eye length to 17 mm.
photoreceptors.pupilDiameter.value = 2*sqrt(1/pi);
pupilAreaMm2 = pi*(photoreceptors.pupilDiameter.value/2)^2;
photoreceptors.ISdiameter.value = [2*sqrt(4/pi) 2*sqrt(4/pi) 2*sqrt(4/pi)]';
photoreceptors.eyeLengthMM.value = 17;
irradianceWattsPerUm2 = RadianceToRetIrradiance(radianceWattsPerM2Sr,S,pupilAreaMm2,photoreceptors.eyeLengthMM.value );
end
%% Print out a whole bunch of quantities that are equivalent to the radiance, given
% other eye parameters.
radianceWattsPerCm2Sr = (10.^-4)*radianceWattsPerM2Sr;
radianceQuantaPerCm2SrSec = EnergyToQuanta(S,radianceWattsPerCm2Sr);
degPerMm = RetinalMMToDegrees(1,photoreceptors.eyeLengthMM.value);
irradianceWattsPerUm2Check = RadianceToRetIrradiance(radianceWattsPerM2Sr,S,pupilAreaMm2,photoreceptors.eyeLengthMM.value);
if (any(abs(irradianceWattsPerUm2 - irradianceWattsPerUm2Check) > 1e-10))
error('Back computation of retinal irradiance from radiance does not check');
end
irradianceScotTrolands = RetIrradianceToTrolands(irradianceWattsPerUm2, S, 'Scotopic', [], num2str(photoreceptors.eyeLengthMM.value));
irradiancePhotTrolands = RetIrradianceToTrolands(irradianceWattsPerUm2, S, 'Photopic', [], num2str(photoreceptors.eyeLengthMM.value));
irradianceQuantaPerUm2Sec = EnergyToQuanta(S,irradianceWattsPerUm2);
irradianceWattsPerCm2 = (10.^8)*irradianceWattsPerUm2;
irradianceQuantaPerCm2Sec = (10.^8)*irradianceQuantaPerUm2Sec;
irradianceQuantaPerMm2Sec = (10.^-2)*irradianceQuantaPerCm2Sec;
irradianceQuantaPerUm2Sec = (10.^-6)*irradianceQuantaPerMm2Sec;
irradianceQuantaPerDeg2Sec = (degPerMm^2)*irradianceQuantaPerMm2Sec;
% Print out photoreceptor stucture information
fprintf('\n');
PrintPhotoreceptors(photoreceptors);
fprintf('\n');
% Radiometric iformation
fprintf('Luminance %0.3f cd/m2\n',photopicLuminanceCdM2);
fprintf('Stimulus retinal irradiance %0.4g (%0.1f log10) watts/cm2\n',sum(irradianceWattsPerCm2),log10(sum(irradianceWattsPerCm2)));
fprintf('Stimulus retinal irradiance %0.4g (%0.1f log10) watts/mm2\n',1e-2*sum(irradianceWattsPerCm2),log10(sum(irradianceWattsPerCm2)));
fprintf('Stimulus retinal irradiance %0.4g (%0.1f log10) quanta/[cm2-sec]\n',sum(irradianceQuantaPerCm2Sec),log10(sum(irradianceQuantaPerCm2Sec)));
fprintf('Stimulus retinal irradiance %0.4g (%0.1f log10) quanta/[mm2-sec]\n',sum(irradianceQuantaPerMm2Sec),log10(sum(irradianceQuantaPerMm2Sec)));
fprintf('Stimulus retinal irradiance %0.4g (%0.1f log10) quanta/[um2-sec]\n',sum(irradianceQuantaPerUm2Sec),log10(sum(irradianceQuantaPerUm2Sec)));
fprintf('Stimulus retinal irradiance %0.4g (%0.1f log10) quanta/[deg2-sec]\n',sum(irradianceQuantaPerDeg2Sec),log10(sum(irradianceQuantaPerDeg2Sec)));
fprintf('\n');
%% Get retinal irradiance in quanta/[sec-um^2-wlinterval]
irradianceQuanta = EnergyToQuanta(S,irradianceWattsPerUm2);
figure(2); clf; set(gcf,'Position',[100 400 700 300]);
subplot(1,2,1); hold on
set(plot(SToWls(S),irradianceQuanta,'r'),'LineWidth',2);
set(title('Light Spectrum'),'FontSize',14);
set(xlabel('Wavelength (nm)'),'FontSize',12);
set(ylabel('Quanta/sec-um^2-wlinterval'),'FontSize',12);
%% Do the work in toolbox function
[isoPerConeSec,absPerConeSec,photoreceptors] = ...
RetIrradianceToIsoRecSec(irradianceWattsPerUm2,S,photoreceptors);
% Make a plot showing the effective photoreceptor sensitivities in quantal
% units, expressed as probability of isomerization.
subplot(1,2,2); hold on
set(plot(SToWls(S),photoreceptors.isomerizationAbsorptance(1,:),'r'),'LineWidth',2);
set(plot(SToWls(S),photoreceptors.isomerizationAbsorptance(2,:),'g'),'LineWidth',2);
set(plot(SToWls(S),photoreceptors.isomerizationAbsorptance(3,:),'b'),'LineWidth',2);
set(title('Isomerization Absorptance'),'FontSize',14);
set(xlabel('Wavelength (nm)'),'FontSize',12);
set(ylabel('Probability'),'FontSize',12);
axis([300 800 0 1]);
% Print out a table summarizing the calculation.
fprintf('***********************************************\n');
fprintf('Isomerization calculations for living human retina\n');
fprintf('\n');
fprintf('Photoreceptor Type |\t L\t M\t S\n');
fprintf('______________________________________________________________________________________\n');
fprintf('\n');
if (isfield(photoreceptors.nomogram,'lambdaMax'))
fprintf('Lambda max |\t%8.1f\t%8.1f\t%8.1f\t nm\n',photoreceptors.nomogram.lambdaMax);
end
if (isfield(photoreceptors,'OSlength') && ~isempty(photoreceptors.OSlength.value))
fprintf('Outer Segment Length |\t%8.1f\t%8.1f\t%8.1f\t um\n',photoreceptors.OSlength.value);
end
if (isfield(photoreceptors,'OSdiameter') && ~isempty(photoreceptors.OSdiameter.value))
fprintf('Outer Segment Diameter |\t%8.1f\t%8.1f\t%8.1f\t um\n',photoreceptors.OSdiameter.value);
end
fprintf('Inner Segment Diameter |\t%8.1f\t%8.1f\t%8.1f\t um\n',photoreceptors.ISdiameter.value);
fprintf('\n');
if (isfield(photoreceptors,'specificDensity') && ~isempty(photoreceptors.specificDensity.value))
fprintf('Axial Specific Density |\t%8.3f\t%8.3f\t%8.3f\t /um\n',photoreceptors.specificDensity.value);
end
fprintf('Axial Optical Density |\t%8.3f\t%8.3f\t%8.3f\n',photoreceptors.axialDensity.value);
fprintf('Bleached Axial Optical Density |\t%8.3f\t%8.3f\t%8.3f\n',photoreceptors.axialDensity.bleachedValue);
fprintf('Peak isomerization prob. |\t%8.3f\t%8.3f\t%8.3f\n',max(photoreceptors.isomerizationAbsorptance,[],2));
fprintf('______________________________________________________________________________________\n');
fprintf('\n');
fprintf('Absorption Rate |\t%4.2e\t%4.2e\t%4.2e\t quanta/photoreceptor-sec\n',...
absPerConeSec);
fprintf('Isomerization Efficiency |\t%8.3f\t%8.3f\t%8.3f\n',...
photoreceptors.quantalEfficiency.value);
fprintf('Isomerization Rate |\t%4.2e\t%4.2e\t%4.2e\t iso/photoreceptor-sec\n',...
isoPerConeSec);
fprintf('In log10 units |\t%8.2f\t%8.2f\t%8.2f\t log10(iso)/photoreceptor-sec\n',...
log10(isoPerConeSec));
fprintf('______________________________________________________________________________________\n');
% Allow dumping out of photoreceptor sensitivities into a file for use elsewhere. We want energy sensitivities
% for this purpose
% switch (whatCalc)
% % Dog receptors (L, S, rod) in energy units, normalized to max of 1.
% case 'LivingDog'
% T_dogrec = EnergyToQuanta(S,photoreceptors.isomerizationAbsorptance')';
% for i = 1:3
% T_dogrec(i,:) = T_dogrec(i,:)/max(T_dogrec(i,:));
% end
% S_dogrec = S;
% save T_dogrec T_dogrec S_dogrec
% otherwise
% end
|