/usr/share/psychtoolbox-3/PsychGLImageProcessing/PsychImaging.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 | function [rc, winRect] = PsychImaging(cmd, varargin)
% rc = PsychImaging(subcommand [,arg1][,arg2][....,argn]) - Control common
% functions of the Psychtoolbox GPU image processing pipeline.
%
% This function allows you to setup and control various aspects and common
% functions of the Psychtoolbox image processing pipeline in a simple way.
% Various standard scenarious can be conveniently set up with this routine,
% e.g., geometric transformations of your stimulus image, various types of
% display correction, ...
%
% If you want to perform less common, unusual or simply not yet supported tasks
% with the pipeline, use the low-level Screen('HookFunction', ...)
% interface instead and have a peek in the M-File code for the
% PsychImaging.m file to learn about the low-level interface.
% See "help PsychGLImageprocessing" for more info.
%
%
% Subcommands and their meaning:
%
% PsychImaging('PrepareConfiguration');
% - Prepare setup of imaging pipeline for onscreen window.
% This is the first step in the sequence of configuration steps.
%
%
% PsychImaging('AddTask', whichChannel, whichTask [,param1]...);
% - Add a specific task or processing requirement to the list of actions
% to be performed by the pipeline for the currently selected onscreen
% window. 'whichChannel' is a string with the name of the channel to
% configure:
%
% 'LeftView' applies the action to the processing channel
% for the left-eye view of a stereo configuration. 'RightView' applies the
% action to the right-eye view of a stereo configuration. 'AllViews' applies
% the action to both, left- and right eye view channels of a stereo
% configuration or to the single monoscopic channel of a mono display
% configuration. Other options are 'Compositor', 'FinalFormatting' and
% 'Finalizer' for special purpose channels. Set this to 'General' if the
% command doesn't apply to a specific view, but is a general requirement.
%
% 'whichTask' contains the name string of one of the supported
% actions:
%
% * 'UseGPGPUCompute' Enable use of GeneralPurposeGPU computing support.
% This prepares use of Psychtoolbox functions which are meant to
% interface with, or take advantage of, the general purpose computation
% capabilities of modern graphics processing units and other massively
% parallel compute acceleration hardware, e.g., DSP's, or multi-core
% processors. Interfacing with such hardware is done via common standard
% compute API's like NVidia's CUDA or the cross-platform OpenCL API.
%
% Use of this function often requires specific modern GPU hardware and
% the installation of additional driver software, e.g., NVidia's freely
% available CUDA SDK and runtime, or the free and open-source GPUmat
% toolbox. Read 'help PsychGPGPU' for further info.
%
% This function just detects and selects supported GPU compute API's for
% use with Psychtoolbox and initializes them and some Psychtoolbox
% function to take advantage if appropriate. While you could use those
% API's by themselves without calling this init function, Psychtoolbox
% builtin processing functions would not be able to take advantage of the
% API's or perform efficient and fast data exchange with them.
%
% Usage: PsychImaging('AddTask', 'General', 'UseGPGPUCompute', apitype [, flags]);
%
% 'apitype' Allows selection of the compute API to use. The value 'Auto'
% leaves the choice to Psychtoolbox. The value 'GPUmat' selects the
% high-level, free and open-source GPUmat compute toolkit for Matlab.
% Currently no other choices are supported, but this is expected to
% change in the future.
%
% 'flags' An optional string of keyword flags to determine behaviour.
% There aren't any flags defined yet.
%
%
% * 'SideBySideCompressedStereo' Ask for stereo display in a horizontally
% compressed side-by-side format. Left and Right eye images are drawn at
% full framebuffer resolution by usercode. Screen('Flip', ...) draws them
% horizontally compressed side-by-side to each other. They are scanned
% out to the display device this way and then the display device itself
% uncompresses them back to full resolution and displays them
% stereoscopically, typically via built-in alternating frame-sequential
% stereo with stereo goggles, but other methods are conceivable. This is
% one popular stereo frame packing format for stereo on HDMI display
% devices. Once you've set up a stereo display mode via PsychImaging, you
% can tweak its specific parameters by calling the function
% SetCompressedStereoSideBySideParameters().
%
% Usage: PsychImaging('AddTask', 'General', 'SideBySideCompressedStereo');
%
%
% * 'InterleavedColumnStereo' Ask for stereo display in interleaved mode.
% The output image is composed from the lefteye and righteye stereo
% buffers by interleaving their content: Even columns are filled with
% content from the left buffer, odd columns are filled with content from
% the right buffer, i.e., Col 0 = Left col 0, Col 1 = Right Col 0, Col 2
% = Left col 1, Col 3 = Right col 1, ....
%
% This mode is useful for driving some auto-stereoscopic displays. These
% use either some vertical parallax barriers or vertical lenticular
% lense sheets. These direct light from even columns to one eye, light
% from odd columns to the other eye.
%
% Usage: PsychImaging('AddTask', 'General', 'InterleavedColumnStereo', startright);
%
% If 'startright' is zero, then even columns are taken from left buffer. If
% 'startright' is one, then even columns are taken from the right buffer.
%
% You can use the RemapMouse() function to correct GetMouse() positions
% for potential geometric distortions introduced by this function.
%
%
% * 'InterleavedLineStereo' Ask for stereo display in interleaved mode.
% The output image is composed from the lefteye and righteye stereo
% buffers by interleaving their content: Even lines are filled with
% content from the left buffer, odd lines are filled with content from
% the right buffer, i.e., Row 0 = Left row 0, Row 1 = Right row 0, Row 2
% = Left row 1, Row 3 = Right row 1, ....
%
% This mode is useful for driving some types of stereo devices and
% goggles, e.g., the iGlasses 3D Video goggles in interleaved stereo
% mode.
%
% Usage: PsychImaging('AddTask', 'General', 'InterleavedLineStereo', startright);
%
% If 'startright' is zero, then even lines are taken from left buffer. If
% 'startright' is one, then even lines are taken from the right buffer.
%
% You can use the RemapMouse() function to correct GetMouse() positions
% for potential geometric distortions introduced by this function.%
%
%
% * 'DualWindowStereo' Ask for stereo display in dual-window mode (stereomode 10)
%
% Only use this function under MacOSX. If possible on your setup and OS,
% rather use a single window, spanning both stereo display outputs, and use
% stereomode 4 or 5 to display dual-display stereo. That is much more
% efficient in terms of speed, computational load and memory consumption,
% also potentially more robust with respect to visual stimulation timing.
%
% Usage: PsychImaging('AddTask', 'General', 'DualWindowStereo', rightEyeScreen [, rightEyeWindowRect]);
%
% The left-eye image will be displayed on the screen and at a location
% specified as usual via PsychImaging('Openwindow', screenid, ..., rect);
% The right eye image will be displayed on screen 'rightEyeScreen'. If
% the optional 'rightEyeWindowRect' is specified, then the right eye image
% is not displayed in a fullscreen window, but in a window with the bounding
% rectangle 'rightEyeWindowRect'.
%
%
% * 'UseVirtualFramebuffer' Ask for support of virtual framebuffer, even if
% it isn't strictly needed, given the remaining set of requirements. Most
% of the tasks require such a framebuffer - it gets enabled anyway. In a
% few cases, e.g., to simplify your code (no need for special cases), it
% may be useful to activate such a framebuffer even if it isn't strictly
% needed. This option activates a minimal buffer with 8 bits per color
% cmponent fixed point precision.
%
% Usage: PsychImaging('AddTask', 'General', 'UseVirtualFramebuffer');
%
%
% * 'UseRetinaResolution' Ask to prefer a framebuffer with the full native
% resolution of attached HiDPI "Retina" displays on OSX, instead of a scaled
% down lower resolution framebuffer with typically half the horizontal
% and vertical resolution of the Retina display. This setting will be
% ignored if the onscreen window is not displayed on a HiDPI "Retina"
% display in a scaled display mode, or if the panel fitter is in use by
% specifying the 'UsePanelFitter' task. By default, Screen() would use a
% downscaled framebuffer on a Retina display under OSX and scale that low
% resolution buffer up to full display panel resolution, just as Apples
% OSX operating system does it by default. This in order to reduce
% computational load, improve graphics performance, and avoid problems
% with backward compatibility of old code. If you want to make full use
% of the resolution of your HiDPI display, specify this task to tell
% Screen() to use the full display panel resolution on OSX, even if this may
% introduce some compatibility issues into your code and causes a decrease
% in graphics performance due to the higher graphics rendering load.
%
% If 'UseRetinaResolution' is used with a non-fullscreen window, ie.
% the 'rect' parameter in PsychImaging('OpenWindow', ...) is provided
% to specify the screen position and size of the window, note that
% the size of the window rect returned by Screen('GlobalRect') and
% Screen('Rect'), as well as of the returned rect of PsychImaging('OpenWindow')
% will differ from the size of the 'rect' passed to 'OpenWindow'. 'rect's
% passed into OpenWindow for positioning and sizing the window, as well
% as the global position rect returned by Screen('GlobalRect') for the
% current size and position of the onscreen window are expressed in global
% desktop coordinates, in somewhat arbitrary units of virtual "points".
% How such a point translates into display pixels depends on the operating
% system, possibly the desktop GUI in use (on other systems than OSX), the
% set of connected displays and their Retina or non-Retina resolutions.
% The aim is that the coordinate system is somewhat consistent and meaningful
% across all connected displays, for varying definitions of "consistent" and
% "meaningful" on different operating systems, but the mapping of points to
% physical screen pixels can be different on each connected display, at the
% discretion of the operating system. You may get especially "interesting"
% results if you try to move an onscreen window between screens, or let it
% span multiple displays of different type and resolution.
% The rect returned by PsychImaging('Openwindow') and Screen('Rect'), as
% well as sizes returned by Screen('WindowSize') define the net useable
% size of the window in display pixels. It is affected by all kind of
% PsychImaging operations, e.g., selection of stereo modes, high bit depth
% modes etc., but also by scaling on Retina displays in high res mode.
% If 'UseRetinaResolution' is used on a Retina/HiDPI display, one typical
% result will be that the size of the window in pixels reported by these
% functions will be higher than the size in points, as one virtual point will
% get represented by more than 1 pixel on a Retina display. Observing twice
% the window size in pixels than in points is quite typical, but other
% scaling factors are possible. The take home message for you is to specify
% location and size of your stimuli based on the sizes and rects returned
% by Screen('Rect'), PsychImaging('Openwindow') and Screen('Windowsize'), as
% these are in units of display pixels, and *not* based on the virtual points
% returned by Screen('GlobalRect'). The 2nd take home message is that you
% should mostly use fullscreen windows for visual stimulation to avoid such
% and other pitfalls.
%
% Usage: PsychImaging('AddTask', 'General', 'UseRetinaResolution');
%
%
% * 'UseDisplayRotation' Ask to use builtin panel fitter exclusively for
% rotating the framebuffer. This is useful if you want to turn your
% display device from landscape (= normal upright) orientation into
% portrait orientation (= rotated by 90 degrees clockwise or
% counterclockwise). In such a case you will want to rotate the
% framebuffer by 90 degrees as well, but you should *not* use the "rotate
% monitor" function of your operating system for this purpose, as this
% will very likely interfere with visual stimulus presentation timing and
% timestamping! Use this task instead. It will perform rotation in a
% similar way, but without severe interference to timing. However, there
% is one limitation to this method: Multisample anti-aliasing currently
% does not work if you use our framebuffer rotation.
%
% Usage: PsychImaging('AddTask', 'General', 'UseDisplayRotation', angle);
%
% 'angle' is the desired rotation angle. The only values which will give
% well defined and useful results are multiples of 90 degrees, useful
% values are essentially 0, +90, -90 and 180 degrees for no rotation,
% clockwise rotation, counterclockwise rotation and upside down rotation.
%
% This function is mutually exclusive with 'UsePanelFitter', but if you
% need to use both, you can omit 'UseDisplayRotation' and pass the
% 'angle' parameter to 'UsePanelFitter' instead, which also accepts an
% 'angle' parameter with the same meaning.
%
% This function is not very mature yet: If you want to use the
% panelfitter for anything beyond simple framebuffer rotation by 90
% degree increments, you will likely hit bugs or limitations which will
% require significant tinkering by you.
%
%
% * 'UsePanelFitter' Ask to use builtin panel fitter. This allows you to
% define a virtual size for your onscreen window. The window will behave
% as if it had that virtual size wrt. all size queries and drawing
% operations. However, at Screen('Flip') time, the visual content of the
% window will be resized by a fast scaling operation to the real size of
% the windows framebuffer, ie., its real onscreen size. Scaling uses
% bilinear interpolation or better for high quality results. After
% rescaling to the real size, post-processing and display of your
% stimulus image will proceed at full resolution. This function is useful
% if you want to display a stimulus designed for a specific display
% resolution on a display device of different higher or lower resolution.
% Given that size and shape of the virtual framebuffer and real display
% window may not match, the function provides you with multiple possible
% choices on how to rescale your stimulus image, e.g., to maximize
% display area, or to preserve the aspect ratio of the original image,
% trading off displayed area etc.
%
% Usage: PsychImaging('AddTask', 'General', 'UsePanelFitter', size, strategy [, srcRect, dstRect][, angle]);
%
% 'size' is a [width, height] vector defining the width x height of the
% virtual window in pixels.
%
% 'strategy' a text string selecting the scaling method. Following settings are possible:
%
% 'Full' - Scale to full window size. Aspect ratio is not preserved,
% unless the virtual window and the real onscreen windows 'rect'
% already have the same aspect ratio, in which case this will be
% a simple scaling operation.
%
% 'Aspect' - Scale to maximum size possible while preserving aspect
% ratio. This will center the stimulus and add black
% horizontal or vertical borders as neccessary.
%
% 'AspectWidth' - Scale aspect ratio preserving to cover full display
% width. Cut off top and bottom content if neccessary.
%
% 'AspectHeight' - Scale aspect ratio preserving to cover full display
% height. Cut off left and right content if neccessary.
%
% 'Centered' - Center stimulus without any scaling, add black borders
% around stimulus or cut away border regions to get a
% one-to-one mapping.
%
% 'Custom' - This works like the 'srcRect' and 'dstRect' parameters of
% Screen('DrawTexture'): Cut out a 'srcRect' region from the
% virtual framebuffer and display it in the 'dstRect' region.
% 'srcRect' and 'dstRect' are given in typical [left, top, right, bottom]
% format.
%
% 'angle' is an optional rotation angle. If provided and non-zero, the
% panelfitter will also rotate the output framebuffer by the given
% rotation angle. Note: This doesn't work very well yet with most
% framebuffer sizes and scaling strategies. What does work is if the
% specified 'size' is identical to the onscreen windows size, or is its
% transposed size (ie., if window is width x height pixels, then height x
% width pixels will work as 'size' parameter) and the rotation angle is a
% multiple of 90 degrees. This is mostly useful for display rotation from
% landscape orientation into portrait orientation. Your mileage with
% other configurations or rotation angles will vary.
%
% Example: Suppose your real window covers a 1920 x 1080 display.
%
% PsychImaging('AddTask', 'General', 'UsePanelFitter', [800 600], 'Aspect');
% -> This would give you a virtual window of 800 x 600 pixels to draw
% into and would rescale the 800 x 600 stimulus image to 1440 x 1080
% pixels and display it centered on the 1920 x 1080 pixels display.
% Aspect ratio would be correct and the image would cover the full height
% 1080 pixels of the display, but only 1440 out of 1920 pixels of its
% width, thereby leaving black borders on the left and right side of your
% stimulus.
%
% PsychImaging('AddTask', 'General', 'UsePanelFitter', [800 600], 'AspectHeight');
% -> Would do the same as above.
%
% PsychImaging('AddTask', 'General', 'UsePanelFitter', [800 600], 'AspectWidth');
% -> Would create a final image of 1920 pixels width, as you asked to
% cover the full display width, aspect ratio would be correct, but the
% top and bottom 75 pixels of your original stimulus would get cut away,
% because they wouldn't fit after scaling without distorting the image.
%
%
% * 'UseFastOffscreenWindows' Ask for support of fast Offscreen windows.
% These use a more efficient storage, backed by OpenGL framebuffer
% objects (FBO's). Drawing into them isn't faster, but *switching*
% between drawing into onscreen- and offscreen windows, or switching
% between drawing into different offscreen windows is faster. They also
% support a couple of other advanced features and performance
% improvements in conjunction with the imaging pipeline.
% If you only specify this task, then you'll get the benefit of fast
% windows, without the cost of other features of the pipeline you might
% not need.
%
% Usage: PsychImaging('AddTask', 'General', 'UseFastOffscreenWindows');
%
%
% * 'EnableCLUTMapping' Enable support for old-fashioned clut animation /
% clut mapping. The drawn framebuffer image is transformed by applying a
% color lookup table (clut). This is not done via the hardware gamma
% tables as in the good ol' days, but by application of the clut via
% image processing. Hardware gamma tables don't provide well defined
% timing on modern hardware, therefore they aren't suitable anymore.
%
% You can update the clut to be applied at the next Screen('Flip');
% via the command Screen('LoadNormalizedGammatable', windowPtr, clut, 2);
%
% 'clut' needs to be a clutSize-by-3 matrix, with 'clutSize' slots and
% one column for each of the red, green and blue color channels.
%
% Setup command:
%
% By default, a clut of 256 slots with (R,G,B) values is used, but you
% can provide the optional 'clutSize' parameter to use clut's with more
% slots. The maximum number depends on your GPU, but 2048 are typically
% supported even on very low-end cards.
%
% If you set 'highprecision' to 1, the clut will resolve values at more
% than 8 bit per color channel on modern hardware. This usually only
% makes sense if you also use a more than 8 bpc framebuffer with more
% than 256 slots as clutSize.
%
% Usage: PsychImaging('AddTask', whichView, 'EnableCLUTMapping' [, clutSize=256][, highprecision=0]);
% Example: PsychImaging('AddTask', 'AllViews', 'EnableCLUTMapping');
%
%
% * 'FloatingPoint16Bit' Ask for a 16 bit floating point precision
% framebuffer. This allows more than 8 bit precision for complex drawing,
% compositing and image processing operations. It also allows
% alpha-blending with signed color values and intermediate results that
% are outside the displayable range, e.g., negative. Precision is about 3
% digits behind the decimal point or 1024 discriminable displayable
% levels. If you need higher precision, choose 'FloatingPoint32Bit'.
%
% Usage: PsychImaging('AddTask', 'General', 'FloatingPoint16Bit');
%
%
% * 'FixedPoint16Bit' Ask for a 16 bit integer precision framebuffer.
% On graphics hardware that supports this, a 16 bit signed integer
% framebuffer will be created. Such a framebuffer can store intermediate
% color values in the normalized range [-1.0 ; +1.0] with a precision of
% 15 bits per component. Only positive values between 0.0 and 1.0 are
% displayable in the end though. If the graphics hardware does not support this,
% a 16 bit unsigned integer framebuffer is tried instead. Such a framebuffer
% allows for 16 bits of precision per color component. However, many graphics
% cards do not support alpha-blending on such a framebuffer, and
% intermediate out-of-range values (smaller than zero or bigger than one) aren't
% supported either. Such values will be clamped to the representable [0.0 ; 1.0]
% range instead. Additionally this mode is only supported on some graphics
% hardware. It is a special purpose intermediate solution - more accurate
% than 16 bit floating point, but less capable and less accurate than 32
% bit floating point. If you need higher precision, choose 'FloatingPoint32Bit'.
%
% The main sad reason this switch exists is because some graphics hardware or
% graphics drivers do not support floating point precision textures and
% framebuffers due to some ridiculous patent restrictions, but they do
% support a 16 bit signed or unsigned integer precision format. The switch
% is basically a workaround for the broken patent systems of many countries.
%
% Usage: PsychImaging('AddTask', 'General', 'FixedPoint16Bit');
%
%
% * 'FloatingPoint32Bit' Ask for a 32 bit floating point precision
% framebuffer. This allows more than 8 bit precision for complex drawing,
% compositing and image processing operations. It also allows
% alpha-blending with signed color values and intermediate results that
% are outside the displayable range, e.g., negative. Precision is about
% 6.5 digits behind the dezimal point or 8 million discriminable displayable
% levels. Be aware that only the most recent hardware (NVidia Geforce
% 8000 series, ATI Radeon HD 2000 series) is able to perform
% alpha-blending at full speed in this mode. Enabling alpha-blending on
% older hardware may cause a significant decrease in drawing performance,
% or alpha blending may not work at all at this precision! If you'd like
% to have both, the highest precision and support for alpha-blending,
% specify 'FloatingPoint32BitIfPossible' instead. PTB will then try to
% use 32 bit precision if this is possible in combination with alpha
% blending. Otherwise, it will choose 16 bit precision for drawing &
% blending, but 32 bit precision at least for the post-processing.
%
% Usage: PsychImaging('AddTask', 'General', 'FloatingPoint32Bit');
%
%
% * 'FloatingPoint32BitIfPossible' Ask PTB to choose the highest precision
% that is possible on your hardware without sacrificing functionality like,
% e.g., alpha-blending. PTB will choose the best compromise possible for
% your hardware setup.
%
% Usage: PsychImaging('AddTask', 'General', 'FloatingPoint32BitIfPossible');
%
%
% * 'NormalizedHighresColorRange' Ask PTB to use a normalized range of
% color and luminance intensity levels in the interval [0; 1], ie. values
% between zero and one for minimum and maximum intensity. Also ask for
% unclamped colors -- intermediate results are allowed to take on
% arbitrary values, e.g., also negative values. All Screen() 2D drawing
% commands should operate at maximum color/luminance precision.
%
% Usage: PsychImaging('AddTask', 'General', 'NormalizedHighresColorRange' [, applyAlsoToMakeTexture]);
%
% The command PsychImaging('AddTask', 'General', 'NormalizedHighresColorRange', 1);
% is automatically executed if you used PsychDefaultSetup(featureLevel)
% with a featureLevel of >= 2 at the top of your experiment script,
% *except* that clamping is *not* disabled by default in this case! To
% disable clamping you'd still need to add this task explicitely, as
% unclamping may have unintended side effects on old graphics hardware.
%
% The optional flag 'applyAlsoToMakeTexture' defaults to zero. If set to 1,
% then a unit color range of expected input values in the [0; 1] range is
% also applied to standard 8-Bit precision textures in Screen('MakeTexture')
% if the provided Matlab imageMatrix is of double precision type instead of
% uint8 type. This allows to specify standard textures in the same consistent
% value range 0-1 as other drawing colors, for cleaner code. Such textures
% will still be limited to 0-1 range and only resolved into 256 intensity
% levels, unless you also set the optional 'floatprecision' flag in Screen('MakeTexture')
% to a value of 1 or 2. We still apply this limitation, as high precision textures consume
% more memory and other resources and are incompatible with very old graphics
% hardware.
%
% This is just a convenience shortcut for Screen('ColorRange', win, 1, 0, applyAlsoToMakeTexture);
% with the added benefit of allowing to specify the background clear
% color in normalized 0-1 range as well. This command is implied by use
% of any of the high precision display device drivers (for attenuators,
% Bits+ box etc.). It is only needed if you want to create the same
% visual results on a 8 bit standard framebuffer without needing to
% change your code, or if you want to set the 'applyAlsoToMakeTexture' flag to a
% setting of non-zero, so unit colorrange also applies to Screen('MakeTexture').
%
%
% * 'StereoCrosstalkReduction' If a stereoMode is active or requested,
% apply a shader first in the processing chain that for each eye aims to
% reduce crosstalk from the other eye.
%
% Usage:
%
% PsychImaging('AddTask', 'LeftView', 'StereoCrosstalkReduction', method, crossTalkGain);
% PsychImaging('AddTask', 'RightView', 'StereoCrosstalkReduction', method, crossTalkGain);
%
% The 'method' parameter selects the method to use for crosstalk
% reduction.
%
% Currently only a method named 'SubtractOther' is implemented, which works as follows:
%
% To reduce crosstalk, the contrast in the image of each eye, i.e., the
% difference in color from the background level provided as background
% clear color of the window is subtracted from the image of the other eye,
% after scaling the contrast by 'crossTalkGain'. 'crossTalkGain' can be a
% scalar, or a separate gain for each RGB channel. The background color
% can be a scalar in the range 0-1, or a 3-element array to set the
% backgroundlevel for each RGB channel separately. The background
% color level should not be zero, as contrast then can't be inverted
% around the background level. In general, the background level
% should be high enough to allow unclamped inversion of the highest
% contrast features of your stimulus at your 'crossTalkGain', or
% artifacts will occur.
%
%
% * 'DisplayColorCorrection' Select a method for color correction to apply to
% stimuli before output conversion and display. You have to specify a
% color correction method 'methodname' to apply as parameter, see "help
% PsychColorCorrection" for an overview of supported color correction
% methods and their adjustable parameters. The imaging pipeline will be
% set up to support the chosen color correction method. After you've
% opened the onscreen window, you can use the different subcommands of
% PsychColorCorrection() to change parameters of the color correction
% algorithm at runtime.
%
% Usage: PsychImaging('AddTask', whichView, 'DisplayColorCorrection', methodname);
%
% Example: PsychImaging('AddTask', 'FinalFormatting', 'DisplayColorCorrection', 'SimpleGamma');
% This would apply a simple power-law gamma correction to all view
% channels of a stereo setup, or the single view of a monoscopic setup.
% Later on you could use the methods of PsychColorCorrection() to
% actually set the wanted gamma correction factors.
%
% Please note that we use the channel 'FinalFormatting' instead of
% 'AllViews' as we'd usually do. Both specs will work, but a selection
% of 'FinalFormatting' will lead to faster processing in many cases, so
% this is preferred here if you want to apply the same setting to all
% view channels - or to a single monoscopic display. Should you find
% that things don't work as expected, you might try 'AllViews' instead
% of 'FinalFormatting' - There are subtle differences in how they
% process your instructions, which may matter in some corner cases.
%
%
% * 'EnablePseudoGrayOutput' Enable the high-performance driver for the
% rendering of up to 1786 different levels of gray on a standard - but
% well calibrated - color monitor and 8 bit graphics card. This is done
% by applying an algorithn known as "Pseudo-Gray" or "Bit stealing".
% Selecting this mode implies use of 32 bit floating point
% framebuffers, unless you specify use of a 16 bit floating point
% framebuffer via 'FloatingPoint16Bit' explicitely. If you do that, you
% will not quite be able to use the full 10.8 bit output precision, but
% only approximately 10 bits. The expected range of luminance values is
% between 0 and 1. See "help CreatePseudoGrayLUT" for further
% explanation.
%
% Usage: PsychImaging('AddTask', 'General', 'EnablePseudoGrayOutput');
%
%
% * 'EnableGenericHighPrecisionLuminanceOutput'
% Setup Psychtoolbox for conversion of high precision luminance images
% into a format suitable for special high precision luminance display
% devices. This is a generic support routine that uses LUT based
% conversion.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableGenericHighPrecisionLuminanceOutput', lut);
%
%
% * 'EnableVideoSwitcherSimpleLuminanceOutput'
% Setup Psychtoolbox for conversion of high precision luminance images
% into a format suitable for driving the "VideoSwitcher" high precision
% luminance display device which was developed by Xiangrui Li et al.
%
% This implements the simple converter, which only needs the
% Blue-To-Red-Ratio of the device as input parameter and performs
% conversion via a closed-form formula without any need for lookup
% tables. This is supposed to be fast.
%
% See "help VideoSwitcher" for more info about the device and its
% options.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableVideoSwitcherSimpleLuminanceOutput' [, btrr] [, trigger]);
%
% - The optional 'btrr' parameter is the Blue-To-Red-Ratio to use. If the
% parameter is left out, the btrr value will be read from a global
% configuration file.
%
% - The optional 'trigger' parameter can be zero for "No trigger", or 1
% for "Use trigger as configured". By default, trigger is off (==0).
% Enabled, one can use the VideoSwitcher('SetTrigger', ...); function to
% configure when and how a trigger signal should be emitted. Trigger
% signals are simply specific pixel patterns in the green output channel.
% That channel is recognized by the VideoSwitcher as a trigger signal
% control channel.
%
%
% * 'EnableVideoSwitcherCalibratedLuminanceOutput'
% Setup Psychtoolbox for conversion of high precision luminance images
% into a format suitable for driving the "VideoSwitcher" high precision
% luminance display device which was developed by Xiangrui Li et al.
%
% This implements the simple converter, which only needs the
% Blue-To-Red-Ratio of the device as input parameter and performs
% conversion via a closed-form formula without any need for lookup
% tables. This is supposed to be fast.
%
% See "help VideoSwitcher" for more info about the device and its
% options.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableVideoSwitcherCalibratedLuminanceOutput' [, btrr] [, lut] [, trigger]);
%
% - The optional 'btrr' parameter is the Blue-To-Red-Ratio to use. If the
% parameter is left out, the btrr value will be read from a global
% configuration file.
%
% - The optional 'lut' paramter is a 257 elements vector of luminance
% values, which maps blue channel drive indices to luminance values. This
% lut needs to be acquired via a calibration procedure by use of a
% photometer. If 'lut' is left out, the table will be read from a global
% configuration file.
%
% - The optional 'trigger' parameter can be zero for "No trigger", or 1
% for "Use trigger as configured". By default, trigger is off (==0).
% Enabled, one can use the VideoSwitcher('SetTrigger', ...); function to
% configure when and how a trigger signal should be emitted. Trigger
% signals are simply specific pixel patterns in the green output channel.
% That channel is recognized by the VideoSwitcher as a trigger signal
% control channel.
%
%
% * 'EnableNative10BitFramebuffer' Enable support for output of stimuli
% with 10 bit precision per color channel (10 bpc / 30 bpp / "Deep color")
% on graphics hardware that supports native 10 bpc framebuffers.
%
% Many graphics cards of the professional class AMD/ATI Fire series
% (2008 models and later) and all current models of the professional class
% NVidia Quadro series (2008 models and later), as well as all current models
% of the consumer class NVidia GeForce series under Linux, do support 10 bpc
% framebuffers under some circumstances. 10 bpc display on classic CRT monitors
% which are connected via analog VGA outputs is supported. Support for digital
% display devices like LCD/OLED panels or video projectors depends on the specific
% type of display output connector used, the specific panels, and their video
% settings. Consult manufacturer documentation for details. In general, 10 bpc
% output may be supported on some graphics cards and displays via DisplayPort
% or HDMI video outputs, but to our knowledge not via DVI-D outputs.
%
% If such a combination of graphics card and display is present on your system
% on Linux or Microsoft Windows, then Psychtoolbox will request native support
% from the standard graphics drivers, ie., it won't need to use our own
% homegrown, experimental box of tricks to enable this.
%
% Apple OSX, as of version 10.11.2 "El Capitan", according to Apple - *not* tested
% by us at all, does support 10 bpc video output on some small subset of Apple
% hardware. At the end of the year 2016 this is supposed to be the MacPro 2013
% "with some suitable displays", and the iMac models late 2014 and late 2015 with
% Retina 5k displays. On OSX, the OS will actually initialize a 16 bit half-float
% framebuffer in 10 bpc mode, which provides roughly 10 bpc effective linear precision
% in the displayable color intensity range. The OS may or may not (unverified!) use
% dithering to simulate > 8 bpc output precision on displays or machines which do not
% support native 10 bpc. Be very cautious if you use Apple hardware under OSX for
% 10 bpc output!
%
% Psychtoolbox experimental 10 bpc framebuffer support:
%
% Additionally we support ATI/AMD Radeon hardware of the X1000, HD2000 - HD8000,
% series and later models under Linux via our own low-level setup mechanisms.
% These graphics cards support a native ARGB2101010 framebuffer, ie., a system
% framebuffer with 2 bits for the alpha channel, and 10 bits per color channel.
%
% As this is supported by the hardware, but not by the standard ATI
% graphics drivers, we follow a hybrid approach: We use a special kernel
% level driver to reconfigure the hardware for 10 bpc framebuffer support.
% Then we use a special imaging pipeline formatting plugin to convert
% 16 bpc or 32 bpc stimuli into the special data format required by this
% framebuffer configuration.
%
% On Linux you must have run PsychLinuxConfiguration at least once on your
% system at some point. You'll need to have one of the supported AMD Radeon
% gfx-cards (see above) for this to work. If you use Linux with the free and
% open-source AMD graphics drivers, 10 bpc framebuffer support should work
% reliably, so use of the open-source drivers on Linux is recommended for
% reliable results.
%
% Getting a 10 bpc framebuffer working is only the first half of what you need for
% high color precision output. Your graphics card must also be able to transmit the
% video signal at high precision to the display device and the display must be able
% to faithfully reproduce the high precision image. 10 bpc output has been verified
% to work for analog VGA connected CRT monitors and displays on both AMD and
% NVidia graphics cards which do support 10 bpc framebuffers, so with a analog VGA
% CRT you should be safe. The status of 10 bpc output to digital display devices differs
% a lot across devices and OS'es. Output of 10 bpc framebuffers to standard 8 bpc digital panels
% via digital dithering is known to work, but that is not the real thing, only a simulation
% of 10 bpc via dithering to 8 bpc. This may or may not be good enough for your specific
% visual stimulation paradigm. On a DVI-D connected digital display, this dithered output
% is the best you will ever get. DisplayPort: Recent NVidia and AMD graphics cards can
% output to some suitable DisplayPort displays with 10 bpc or higher precision on Linux,
% and maybe also on MS-Windows, but you have to verify this carefully for your specific display.
% HDMI: Recent Intel graphics cards can output up to 12 bpc precision to HDMI deep color
% capable displays on Linux, and maybe also on MS-Windows. All AMD graphics cards of model
% Radeon HD-5000 or later (and equivalent Fire-Series models) can output to HDMI deep color
% capable displays with 10 bpc real precision at least if you use a Linux kernel of version 3.16
% or later with the open-source AMD graphics drivers. Run PsychLinuxConfiguration to set up
% this >= 10 bpc deep color output mode, then reboot your machine once to enable it.
%
% The status with the proprietary AMD drivers on Linux or on MS-Windows is unknown.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableNative10BitFramebuffer' [, disableDithering=0]);
%
% This function will setup a 32 bpc floating point resolution framebuffer by
% default for Psychtoolbox drawing and stimulus processing. Output will happen
% into a 10 bpc framebuffer. The function will also disable the graphics cards
% gamma tables, so you'll need to use PsychImaging(...'DisplayColorCorrection'...)
% for gamma and color correction if you need this.
%
% The function will *not* disable dithering on digital displays by default,
% but leave that decision to the operating system and graphics drivers of
% your machine. A well working OS would disable dithering on a 10 bpc or
% higher color depth display, if the display reports its capability to the
% OS via its EDID info. It would enable dithering on < 10 bpc displays, so
% you'd get a "pseudo 10 bpc" display where 10 bpc color depths is
% simulated on a 6 bpc or 8 bpc display via the dithering.
%
% You can disable dithering manually on some graphics cards by providing the
% optional 'disableDithering' flag as 1. Currently mostly AMD cards allow this
% control. NVidia or Intel cards require manual setup to force dithering off.
%
%
% * 'EnableNative11BitFramebuffer' Enable support for output of stimuli
% with almost 11 bit precision per color channel (11 bpc / 32 bpp / "Deep color")
% on graphics hardware that supports native 11 bpc framebuffers. This will
% request an ~ 11 bpc framebuffer from the operating system. If it can't
% get such a framebuffer on Linux with AMD graphics hardware, it will use our
% own homegrown setup code to provide such a framebuffer anyway on Radeon X1000,
% HD-2000 and later graphics cards and equivalent Fire-Series graphics cards.
%
% Read all the explanations in the section above for 'EnableNative10BitFramebuffer'
% for capabilities, limitations and possible caveats on different systems.
%
% Please note that this "11 Bit framebuffer" is not quite 11 bpc precision, but
% only about ~ 10.6666 bpc precision. Specifically, the framebuffer can only
% store at most 32 bits of color information per pixel, so it will store 11 bit
% precision for the red channel (2048 distinct red intensity levels), 11 bit
% (2048 levels) for the green channel, but only 10 bit (1024 levels) for the blue
% channel, for a total number of 11 + 11 + 10 bits = 32 bits of color information
% per pixel, or 4 billion different possible colors. A true 11 bpc framebuffer would
% need 33 bits per pixel, and current graphics hardware can't handle that.
%
% How many bits of precision of these ~ 11 bpc actually reach your display device?
%
% - Analog VGA only provides for maximum 10 bpc output precision on all shipping
% NVidia and AMD graphics cards. Intel graphics cards only allow for 8 bpc.
%
% - DisplayPort or HDMI might allow for transfer of 11 bpc precision, in general they
% support up to 12 bpc. However additional hardware restrictions for your graphics
% card may limit precision to as low as 10 bpc. To our knowledge, only AMD graphics
% cards support ~ 11 bpc framebuffers at all. Radeon HD-7000 and earlier can only
% truly process up to 10 bpc, so 'EnableNative11BitFramebuffer' may not gain you any
% precision over 'EnableNative10BitFramebuffer' in practice on these cards. AMD cards
% of the "Sea Islands" family or later, mostly models from the year >= 2014, should be able
% to process and output up to 12 bpc over HDMI or DisplayPort, so they'd be able to output
% true ~11 bpc images. However, this hasn't been verified by us so far due to lack of
% suitable hardware.
%
% So obviously: Measure very carefully on your setup what kind of precision you really
% get and make sure not to be fooled by dithering.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableNative11BitFramebuffer' [, disableDithering=0]);
%
%
% * 'EnableNative16BitFramebuffer' Enable up to 16 bpc, 64 bpp framebuffer on some setups.
% This asks to enable a framebuffer with a color depth of up to 16 bpc for up to 65535 levels
% of intensity per red, green and blue channel or 48 bits = different 2^48 colors. Currently,
% as of September 2014, this mode of operation is only supported on Linux when using the
% open-source FOSS radeon graphics drivers on modern AMD graphics cards, and only after
% some special configuration of your X-Server and display setup has been performed by you.
% This is essentially a low-level hack that works under those specific conditions, but uses a
% relatively large amount of graphics memory and compute resources to implement. If you can
% do with less than 12 bpc, you're better off with the other high bit depth modes, as they are
% easier to set up and more efficient/faster in operation. On suitable setups, this will establish
% a 16 bpc framebuffer which packs 3 * 16 bpc = 48 bit color info into 64 bpp pixels and the
% gpu's display engine will scan out that framebuffer at 16 bpc. However, effective output
% precision is further limited to < 16 bpc by your display, video connection and specific model
% of graphics card. As of September 2014, the maximum effective output precision is limited
% to 12 bpc (4096 levels of red, green and blue) by the graphics card, and this precision is only
% attainable on AMD graphics cards of the so called "Sea Islands" (cik) family when used with the
% radeon-kms display driver. Any older or more recent cards, e.g., "Southern Islands" or
% "Volcanic Islands" will not work with this hack. The specific requirement is an AMD gpu with a
% "DCE-8 or later" display engine that uses the old/classic ati/radeon-ddx and radeon-kms display
% driver, not the new amdgpu-ddx / amdgpu-kms driver. Cards older than "Sea Islands" don't have a
% DCE-8+ engine, and cards newer than "Sea Islands" don't work with the classic radeon driver anymore,
% so effectively only "Sea Islands" (cik) DCE-8.x gpu's work with this hack.
%
% High bit depth output only works over HDMI or DisplayPort, and may be further restricted by
% your specific display device, so measure your results carefully! See the sections about 11 bpc and
% 10 bpc native framebuffers above for further details.
%
% Required manual one time setup:
%
% 1. You must create a custom made xorg.conf file for your graphics card and X-Server to setup
% the display screen for use of a linear, non-tiled framebuffer at a color depth of 24 bit.
% If you only have a single AMD graphics card installed in your Linux machine, the most easy
% way to achieve this is to copy our simple template xorg.conf file into the config folder of
% your machine:
%
% a) Open a terminal window and use sudo cp to copy our template to the /etc/X11 folder:
% sudo cp /path/to/Psychtoolbox/PsychGLImageProcessing/xorg.conf_For_AMD16bpcFramebuffer /etc/X11/xorg.conf
%
% b) Logout and login again, so the display server picks up the changed configuration.
%
% If you need a more customized xorg.conf file for special settings or for more complex display and
% gpu setups, use our template file as a reference. The important bit is to add the "ColorTiling..."
% lines to the "Device" section for your AMD graphics card.
%
% 2. Only three distinct display setups are allowed: Either a single display connected, or if multiple
% displays are conected, all displays must mirror (aka clone) each other showing the same image,
% or a dual display setup with both displays running at the same video resolution, one display
% showing the left half of your onscreen window, the other showing the right half of your onscreen
% window, ie., a typical setup for dual-display side-by-side stereo presentation. Pretty much any other
% display setup will display undefined results, e.g., corrupted images or random pixel trash.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableNative16BitFramebuffer' [, disableDithering=0][, bpc]);
%
%
% * 'EnableBrightSideHDROutput' Enable the high-performance driver for
% BrightSide Technologies High dynamic range display device for 16 bit
% per color channel output precision. See "help BrightSideHDR" for
% detailed explanation. Please note that you'll need to install the 3rd
% party driver libraries for that display as described in the help file.
% PTB doesn't come bundled with that libraries for copyright reasons.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableBrightSideHDROutput');
%
%
% * 'UseDataPixx' Tell Psychtoolbox that additional functionality for
% displaying the onscreen window on a VPixx Technologies DataPixx device
% should be enabled.
%
% This command is implied by enabling a DataPixx video mode by one of the
% commands for the DataPixx in the following sections.
%
% 'UseDataPixx' mostly prepares use of a variety of subfunctions in the
% DataPixxToolbox ("help DataPixxToolbox") and in the PsychDataPixx()
% high-level driver ("help PsychDataPixx").
%
%
% * 'EnableDataPixxL48Output' Setup Psychtoolbox for L48 mode of the VPixx
% Technologies DataPixx device. This loads the graphics hardwares gamma
% table with an identity mapping so it can't interfere with DPixx video
% processing. It also sets up automatic generation of control signals to
% support the features of DPixx that are available via the functions in
% PsychDataPixx(). You will be able to upload new CLUT's into the DPixx
% by use of the Screen('LoadNormalizedGammaTable', window, clut, 2);
% command. CLUT updates will be synchronized with Screen('Flip') commands.
% Please note that while L48 CLUT mode works even with very old
% graphics hardware, this is a pretty cumbersome way of driving the
% DPixx. On recent hardware, you will want to use M16 or C48 mode
% (see below). That allows to draw arbitrarily complex stimuli with as
% many colors as you want and PTB will take care of conversion into the
% M16 or C48 format for DataPixx.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableDataPixxL48Output');
%
%
% * 'EnableDataPixxM16Output' Enable the high-performance driver for M16
% mode of the VPixx Technologies DataPixx device. This is the fastest and
% most elegant way of driving the DPixx box with 16 bit luminance output
% precision. See "help DataPixx" for more information. Selecting this
% mode implies use of 32 bit floating point framebuffers, unless you
% specify use of a 16 bit floating point framebuffer via
% 'FloatingPoint16Bit' explicitely. If you do that, you will not be able
% to use the full 16 bit output precision, but only approximately 10 bits.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableDataPixxM16Output');
%
% If you want to make use of the color overlay plane in M16 mode, then
% call the function like this:
%
% Usage: PsychImaging('AddTask', 'General', 'EnableDataPixxM16OutputWithOverlay');
% See the explanation of color overlays in the section
% 'EnableBits++Mono++OutputWithOverlay' - behaviour of color overlays is
% identical for the CRS Bits++ and the VPixx DataPixx.
%
%
% * 'EnableDataPixxC48Output' Enable the high-performance driver for the
% C48 mode of VPixx technologies DataPixx box. This is the fastest and
% most elegant way of driving the DataPixx box with 16 bit per color
% channel output precision. See "help DataPixx" for more information.
% Selecting this mode implies use of 32 bit floating point framebuffers,
% unless you specify use of a 16 bit floating point framebuffer via
% 'FloatingPoint16Bit' explicitely. If you do that, you will not be able
% to use the full 16 bit output precision, but only approximately 10 bits.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableDataPixxC48Output', mode);
%
% See the section below about 'EnableBits++Color++Output' for the meaning
% of the mandatory "mode" parameter.
%
% You can use the RemapMouse() function to correct GetMouse() positions
% for potential geometric distortions introduced by this function for
% "mode" zero.
%
%
% * 'UseBits#' Tell Psychtoolbox that additional functionality for
% displaying the onscreen window on a Cambridge Research Systems Bits#
% device should be enabled.
%
% This command is implied by enabling a Bits+ or Bits# video mode by one
% of the commands for the Bits+/Bits# in the following sections, if the
% driver can auto-detect a connected Bits# device. If it cannot auto-detect
% a connected Bits# device and this command is omitted, Psychtoolbox will
% instead assume that an older Bits+ is in use and only allow functionality
% common to Bits# and Bits+, without automatic video mode switching.
%
% If you provide this command, you can optionally specify the name of the
% serial port to which your Bits# is connected, instead of leaving it to
% the system to find this out (either via configuration file or via a
% guess-o-matic).
%
% Usage: PsychImaging('AddTask', 'General', 'UseBits#' [, BitsSharpSerialPort]);
%
% 'BitsSharpSerialPort' is optional and can be set to the name of a serial
% port for your specific operating system and computer, to which the Bits#
% is connected. If omitted, Psychtoolbox will look for the name in the first
% line of text of a text file stored under the filesystem path and filename
% [PsychtoolboxConfigDir 'BitsSharpConfig.txt']. If that file is empty, the
% serial port is auto-detected (Good luck!).
%
% 'UseBits#' mostly prepares use of a variety of new Bits# subfunctions
% in the BitsPlusPlus() high-level driver ("help BitsPlusPlus").
%
%
% * 'EnableBits++Bits++Output' Setup Psychtoolbox for Bits++ mode of the
% Cambridge Research Systems Bits++ box. This loads the graphics
% hardwares gamma table with an identity mapping so it can't interfere
% with Bits++ T-Lock system. It also sets up automatic generation of
% Bits++ T-Lock codes: You will be able to upload new CLUT's into the
% Bits++ by use of the Screen('LoadNormalizedGammaTable', window, clut, 2);
% command. CLUT updates will be synchronized with Screen('Flip')
% commands, because PTB will generate and draw the proper T-Lock code
% into the top line of your onscreen window. Please note that while
% Bits++ CLUT mode works even with very old graphics hardware, this is a
% pretty cumbersome way of driving the Bits++. On recent hardware, you
% will want to use Mono++ or Color++ mode (see below). That allows to
% draw arbitrarily complex stimuli with as many colors as you want and
% PTB will take care of conversion into the Color++ or Mono++ format for
% Bits++.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableBits++Bits++Output');
%
%
% * 'EnableBits++Mono++Output' Enable the high-performance driver for the
% Mono++ mode of Cambridge Research Systems Bits++ box. This is the
% fastest and most elegant way of driving the Bits++ box with 14 bit
% luminance output precision. See "help BitsPlusPlus" for more
% information. Selecting this mode implies use of 32 bit floating point
% framebuffers, unless you specify use of a 16 bit floating point
% framebuffer via 'FloatingPoint16Bit' explicitely. If you do that, you
% will not be able to use the full 14 bit output precision of Bits++, but
% only approximately 10 bits.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableBits++Mono++Output');
%
% If you want to make use of the color overlay plane in Mono++ mode, then
% call the function like this:
%
% Usage: PsychImaging('AddTask', 'General', 'EnableBits++Mono++OutputWithOverlay');
%
% Then you can query the window handle of the overlay window via:
%
% overlayWin = PsychImaging('GetOverlayWindow', window);
%
% 'overlayWin' is the handle to the overlay window associated with the
% overlay of onscreen window 'window'. The overlay window is a standard
% offscreen window, so you can do anything with it that you would want to
% do with offscreen windows. The only difference is that the window is a
% pure index window: It only has one "color channel", which can be written
% with color values between 0 and 255. Values 1 to 255 get mapped to the
% corresponding color indices of the Bits++ overlay plane: A zero value is
% transparent -- Content of the onscreen window is visible. Positive
% non-zero color values map to the 255 indices available in overlay mode,
% these get mapped by the Bits++ CLUT to colors. You can define the
% mapping of indices to CLUT colors via the
% Screen('LoadNormalizedGammaTable', window, clut, 2); command.
%
% Updates of the overlay image are synchronized to Screen('Flip')
% updates. If you draw into the overlay window, the changed overlay image
% will become visible at Screen('Flip') time -- in sync with the changed
% onscreen window content. The overlay plane is not automatically cleared
% to background (or transparent) color after a flip, but its content
% persists across flips. You need to clear it out manually via a
% Screen('FillRect') command.
%
%
% * 'EnableBits++Color++Output' Enable the high-performance driver for the
% Color++ mode of Cambridge Research Systems Bits++ box. This is the
% fastest and most elegant way of driving the Bits++ box with 14 bit
% per color channel output precision. See "help BitsPlusPlus" for more
% information. Selecting this mode implies use of 32 bit floating point
% framebuffers, unless you specify use of a 16 bit floating point
% framebuffer via 'FloatingPoint16Bit' explicitely. If you do that, you
% will not be able to use the full 14 bit output precision of Bits++, but
% only approximately 10 bits.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableBits++Color++Output', mode);
%
% "mode" is a mandatory numeric parameter which must be 0, 1 or 2. In
% Color++ mode, the effective horizontal display resolution is only half
% the normal horizontal resolution. To cope with this, multiple different
% methods are implemented to squeeze your stimulus image horizontally by
% a factor of two. The following options exist:
%
% 0 = This is the "classic" mode which was used in all Psychtoolbox
% versions prior to 22nd September 2010. If you want to keep old code
% working as is, select 0. In this mode, your script will only see a
% framebuffer that is half the true horizontal resolution of your
% connected display screen. Each drawn pixel will be stretched to cover
% two pixels on the output display device horizontally. While this
% preserves the content of your stimulus image exactly, it means that the
% aspect ratio of all displayed text and stimuli will be 2:1. Text will
% be twice as wide as its height. Circles or squares will turn into
% horizontal ellipses or rectangles etc. You'll need to do extra work in
% your code if you want to preserve aspect ratio properly.
%
% You can use the RemapMouse() function to correct GetMouse() positions
% for potential geometric distortions introduced by this function for
% "mode" zero.
%
% Example: A fine vertical grid with alternating vertical white and black
% lines would display as expected, but each white or black stripe would be
% two pixels wide on the display instead of one pixel wide.
%
% 1 = Subsample: Your framebuffer will appear at the same resolution as
% your display device. Aspect ratio of drawn stimuli/text etc. will be
% correct and as expected. However, every 2nd column of pixels in your
% stimulus (ie., all odd-numbered x-coordinates 1,3,5,7,...) will be
% completely ignored, only even columns are used!
%
% Example: A fine vertical grid with alternating vertical white and black
% lines would display as a purely white image, as only the white pixels
% in the even columns would be used, whereas the black pixels in the odd
% columns would be ignored.
%
% 2 = Average: Your framebuffer will appear at the same resolution as
% your display device. Aspect ratio of drawn stimuli/text etc. will be
% correct and as expected. However, each pair of adjacent even/odd pixel
% columns will be averaged before output. Stimulus pixels 0 and 1 will
% contribute the mean color for display pixel 0. Pixels 2 and 3 will be
% averaged into display pixel 1 and so on. Visually this gives the most
% pleasing and smooth results, but if adjacent even/odd pixels don't have
% the same color value, you'll obviously get an output color that is
% neither the color of the even pixel nor the odd pixel, but the average
% of both.
%
% Example: A fine vertical grid with alternating vertical white and black
% lines would display as a 50% gray image, as the alternating white and
% black columns would be averaged into the average of white and black,
% which is 50% gray.
%
%
% * 'EnableDualPipeHDROutput' Enable EXPERIMENTAL high-performance driver
% for HDR display devices which are composites of two separate displays.
%
% EXPERIMENTAL proof-of-concept code with no real function yet!
%
% This is meant for high-precision luminance or color output. It implies
% use of 32 bpc floating point framebuffers unless otherwise specified by
% other calls to PsychImaging().
%
% The pair of specially encoded output images that are derived from
% content of the onscreen window shall be output to both, the display
% associated with the screen given to PsychImaging('OpenWindow',...); and
% on the screen with the index 'pipe1Screen', using appropriate encoding
% to drive the HDR device or similar composite device.
%
% Usage: PsychImaging('AddTask', 'General', 'EnableDualPipeHDROutput', pipe1Screen [, pipe1Rectangle]);
%
% Optionally you can pass a 'pipe1Rectangle' if the window with the
% pipe1 image shall not fill the whole 'pipe1Screen', but only a
% subregion 'pipe1Rectangle'.
%
%
% * 'AddOffsetToImage' Add a constant color- or intensity offset to the
% drawn image, prior to all following image processing and post
% processing operations:
% Outimage(x,y) = Inimage(x,y) + Offset. If the framebuffer is in a color
% display mode, the same offset will be added to all three color
% channels.
%
% Usage: PsychImaging('AddTask', whichView, 'AddOffsetToImage', Offset);
% Example: PsychImaging('AddTask', 'AllViews', 'AddOffsetToImage', 0.5);
%
%
% * 'MirrorDisplayTo2ndOutputHead' Mirror the content of the onscreen
% window to given 2nd screen, ie., to a 2nd output connector (head)
% of a dualhead graphics card. This should give the same result as if one
% switches the graphics card into "Mirror mode" or "Clone mode" via the
% display settings panel of your operating system. Use of the "Mirror
% Mode" or "Clone Mode" of your operating system and graphics card is
% preferable to use of this command, if that works for you. The OS
% builtin facilities are usually faster, more efficient and thereby
% more reliable wrt. timing and synchronization!
%
% This function only works for monoscopic displays, ie., it can not be
% used simultaneously with any stereo display mode. The reason is that it
% internally uses stereomode 10 with a few modifications to get its job
% done, so obviously neither mode 10 nor any other mode can be used
% without interference.
%
% Only use this function for mirroring onto the 2nd head of a dual-head
% graphics card under MacOS/X, or if you need to mirror onto a 2nd head
% on MS-Windows and can't use "desktop spanning" mode on Windows to
% achieve dual display output. If possible on your setup and OS, rather use
% 'MirrorDisplayToSingleSplitWindow' (see below). That mode should work
% well on dual-head graphics cards on MS-Windows or GNU/Linux, as well as
% in conjunction with a hardware display splitter attached to a single
% head on any operating system. It has the advantage of consuming less
% memory and compute ressources, so it is potentially faster or provides
% a more reliable overall timing.
%
% Usage: PsychImaging('AddTask', 'General', 'MirrorDisplayTo2ndOutputHead', mirrorScreen [, mirrorRectangle]);
%
% The content of the onscreen window shall be shown not only on the
% display associated with the screen given to PsychImaging('OpenWindow',
% ...); but also (as a copy) on the screen with the index 'mirrorScreen'.
%
% Optionally you can pass a 'mirrorRectangle' if the window with the
% mirror image shall not fill the whole 'mirrorScreen', but only a
% subregion 'mirrorRectangle'.
%
%
% * 'MirrorDisplayToSingleSplitWindow' Mirror the content of the onscreen
% window to the right half of the desktop (if desktop spanning on a
% dual-display setup is enabled) or the right-half of the virtual screen
% if a display splitter (e.g., Matrox Dualhead2Go (TM)) is attached to a
% single head of a graphics card. This should give the same result as if one
% switches the graphics card into "Mirror mode" or "Clone mode" via the
% display settings panel of your operating system. Use of the "Mirror
% Mode" or "Clone Mode" of your operating system and graphics card is
% preferable to use of this command, if that works for you. The OS
% builtin facilities are usually faster, more efficient and thereby
% more reliable wrt. timing and synchronization!
%
% Usage: PsychImaging('AddTask', 'General', 'MirrorDisplayToSingleSplitWindow');
%
% Optionally, you can add the command...
% PsychImaging('AddTask', 'General', 'DontUsePipelineIfPossible');
% ... if you don't intend to use the imaging pipeline for anything else
% than display mirroring. This will allow further optimizations.
%
%
% * 'RestrictProcessing' Restrict stimulus processing to a specific subarea
% of the screen. If your visual stimulus only covers a subarea of the
% display screen you can restrict PTB's output processing to that
% subarea. This may save some computation time to allow for higher
% display redraw rates.
%
% Usage: PsychImaging('AddTask', whichChannel, 'RestrictProcessing', ROI);
%
% ROI is a rectangle defining the area to process ROI = [left top right bottom];
% E.g., ROI = [400 400 800 800] would only create output pixels in the
% screen area with top-left corner (400,400) and bottom-right corner
% (800, 800).
%
%
% * 'FlipHorizontal' and 'FlipVertical' flip your output images
% horizontally (left- and right interchanged) or vertically (upside down).
%
% Usage: PsychImaging('AddTask', whichChannel, 'FlipHorizontal');
% Usage: PsychImaging('AddTask', whichChannel, 'FlipVertical');
%
% You can use the RemapMouse() function to correct GetMouse() positions
% for potential geometric distortions introduced by this function.
%
%
% * 'GeometryCorrection' Apply some geometric warping operation during
% rendering of the final stimulus image to correct for geometric
% distortion of your physical display device. You need to measure the
% geometric distortion of your display with a suitable calibration
% procedure, then compute an inverse warp transformation to undo this
% distortion, then provide that transformation to this function.
%
% Usage: PsychImaging('AddTask', whichChannel, 'GeometryCorrection', calibfilename [, debugoutput] [, arg1], [arg2], ...);
%
% 'calibfilename' is the filename of a calibration file which specified
% the type of undistortion to apply. Calibration files can be created by
% interactive calibration procedures. See 'help CreateDisplayWarp' for a
% list of calibration methods. One of the supported procedures is, e.g.,
% "DisplayUndistortionBezier", read "help DisplayUndistortionBezier". The
% recommended method for most cases is 'DisplayUndistortionBVL', read
% "help DisplayUndistortionBVL" for help.
%
% The optional flag 'debugoutput' if set to non-zero value will trigger
% some debug output about the calibration with some calibration methods.
%
% The optional 'arg1', 'arg2', ..., are optional parameters whose
% meaning depends on the calibration method in use.
%
% Use of geometry correction will break the 1:1 correspondence between
% framebuffer pixel locations (x,y) and the mouse cursor position, ie. a
% mouse cursor positioned at display position (x,y) will be no longer
% pointing to framebuffer pixel (x,y). If you want to know which
% pixel in your original stimulus image corresponds to a specific
% physical display pixel (or mouse cursor position), use the function
% RemapMouse() to perform the neccessary coordinate transformation.
%
%
% * 'UseVRHMD' Display this onscreen window on a "Virtual Reality" head mounted
% display (HMD), e.g., the Oculus Rift DK1 or Rift DK2. This enables display of
% stereoscopic visual stimuli on supported virtual reality headsets.
% You need to have the neccessary vendor supplied VR runtimes installed for
% this to work.
%
% Simple usage:
%
% The most simple way to setup a HMD for use is to add a call to
% hmd = PsychVRHMD('AutoSetupHMD') instead of a call to
% PsychImaging('AddTask', 'General', UseVRHMD', ...). The 'AutoSetupHMD'
% call would detect the first supported HMD device on your computer, connect to
% it, then set it up with reasonable default operating parameters. Then it would
% call this PsychImaging task to perform all required setup steps.
%
% Advanced usage:
%
% 1. Open a connection to a HMD and get a handle for the device:
% For example, if you wanted to use a Oculus Rift DK1 or DK2, you could
% do:
%
% hmd = PsychOculusVR('Open' ...);
%
% 2. Perform basic configuration of the HMD via the HMD specific driver.
%
% 3. Add a PsychImaging task for the HMD and pass in its device handle 'hmd':
% PsychImaging('AddTask', 'General', 'UseVRHMD', hmd);
%
% This sequence will perform the necessary setup of panel fitter, stereo display
% mode and image post-processing for geometry correction, color aberration
% correction and vignette correction for a fullscreen window on the HMD.
%
%
% * More actions will be supported in the future. If you can think of an
% action of common interest not yet supported by this framework, please
% file a feature request on our Wiki (Mainpage -> Feature Requests).
%
%
% After adding all wanted task specifications and other requirements,
% call...
%
% [windowPtr, windowRect] = PsychImaging('OpenWindow', screenid, [backgroundcolor], ....);
%
% - Finishes the setup phase for imaging pipeline, creates a suitable onscreen
% window and performs all remaining configuration steps. After this
% command, your onscreen window will be ready for drawing and display of
% stimuli. All specified imaging operations will get automatically applied
% to your stimulus before stimulus onset.
%
%
% After the window has been opened you can call the following commands any
% time at runtime:
%
% PsychImaging('RestrictProcessingToROI', window, whichChannel, ROI);
% - Restrict the processing area of viewChannel 'whichChannel' of onscreen
% window 'window' to the rectangular subarea defined by 'ROI'. See the
% explanation above for subtask 'RestrictProcessing'. This does exactly the
% same but allows a dynamic change of the restricted area at any point
% during your experiment script.
%
%
% PsychImaging('UnrestrictProcessing', window, whichChannel);
% - Remove a restriction of the processing area of viewChannel
% 'whichChannel' of onscreen window 'window' to a previously defined
% subarea. Can be called anytime during your scripts execution.
%
%
% [overlaywin, overlaywinRect] = PsychImaging('GetOverlayWindow', win);
% - Will return the handle to the 'overlaywin'dow associated with the
% given 'win'dow, if any. Will abort with an error message if the 'win'dow
% doesn't have an associated overylay window.
% Currently, only the CRS Bits+ box in Mono++ mode and the VPixx DataPixx
% box in M16 mode does support overlays. Other output drivers don't support
% such a feature. See "help BitsPlusPlus" for subfunction
% 'GetOverlayWindow' for more explanations of the purpose and properties of
% overlay windows. The explanations apply to the DPixx device as well if it
% is opened in videomode 'M16WithOverlay'.
%
%
%
% The following commands are only for specialists:
%
% [imagingMode, needStereomode] = PsychImaging('FinalizeConfiguration');
% - Finish the configuration phase for this window. This will compute an
% optimal configuration for all stages of the pipeline, but won't apply it
% yet. You'll have to call Screen('OpenWindow', windowPtr, ......,
% imagingMode, ...); with the returned 'imagingMode' + any other options
% you'd like to have for your window. After that, you'll have to call
% PsychImaging('PostConfiguration') to really apply and setup all your
% configuration settings. If you don't have unusual needs, you can simplify
% these steps by simply calling PsychImaging('OpenWindow', ....);
% with the same parameters that you'd pass to Screen('OpenWindow', ....);
% PsychImaging will perform all necessary steps to upon return, you'll have
% your window properly configured.
%
%
% PsychImaging('PostConfiguration', windowPtr [, clearcolor]);
% - To be called after opening the onscreen window 'windowPtr'.
% Performs all the setup work to be done after the window was created.
%
%
% Notes:
%
%
%
% History:
% 3.6.2007 Written. (MK)
%
% 19.7.2007 Added our own implementation mystrcmp() of Matlabs strcmp().
% The strcmp() of Octave is not as powerful as Matlab 7's strcmp(). We need
% a powerful implementation that works for both runtime environments, so we
% reimplemented in in a portable way.
%
% 19.7.2007 Added initial support for display geometry correction. (MK).
%
% 27.9.2007 Added support for floating point framebuffer, Bits++ and
% Brightside-HDR. Documentation cleanup. (MK).
%
% 13.1.2008 Support for 10 bpc native framebuffer of ATI Radeons. (MK).
%
% 17.4.2008 Support for a few new subcommands, and description of overlay
% planes setup with Bits++ in Mono++ mode. (MK).
%
% 18.5.2008 A few bug fixes and support for 'DisplayColorCorrection' setup
% code: Now a central solution that will work for all current and
% future output devices (hopefully). (MK).
%
% 02.7.2009 Add CLUT configuration support for ICM color correction (MK).
%
% 18.12.2009 Add support for VPixx Technologies DataPixx device for video
% processing modes L48, M16, C48 and color overlays in M16
% mode, mostly via calls into the new PsychDataPixx() driver.
% Also support a new 'General' task 'UseDataPixx'. (MK)
% 04.03.2010 Bugfixes and workarounds to 'ColorCorrection' setup code. (MK)
%
% 26.04.2010 Disable workarounds from 04.03.2010, as Screen() is fixed now. (MK)
%
% 02.09.2010 Add support for 'InterleavedColumnStereo'- for auto-stereoscopic
% displays, e.g., parallax barrier and lenticular sheets. (MK)
%
% 03.04.2011 Add support for 'EnableCLUTMapping' for old fashioned clut animation. (MK)
%
% 26.12.2011 Add support for ptb_geometry_inverseWarpMap inverse mapping
% of geometry corrected displays. See RemapMouse.m. (MK)
%
% 11.09.2012 Add support for stereo sync line handling, and for
% scanning backlight control of the ViewPixx in stereomode. (MK)
%
% 23.12.2012 Add support for 'SideBySideCompressedStereo' stereo mode. (MK)
%
% 23.12.2012 Add support for 'UsePanelFitter' Screen panelfitter setup. (MK)
%
% 15.04.2013 Add support for 'UseGPGPUCompute', currently via GPUmat. (MK)
%
% 03.07.2013 Call PsychJavaSwingCleanup via onscreen window close hook. (MK)
%
% 28.09.2013 Add support for 'UseDisplayRotation' via panelfitter. (MK)
%
% 06.03.2014 Add support for 'DualWindowStereo' and fixes to Native10BitFramebuffer mode. (MK)
%
% 26.06.2014 Add support for Native11BitFramebuffer mode, update our docs with what
% we learned about this 10/11 bpc business on HDMI so far. (MK)
% 16.09.2014 Add experimental 'StereoCrosstalkReduction' support. (MK/DCN)
% 17.09.2014 Add 'Native16BitFramebuffer' support for Linux + FOSS + AMD. (MK)
% 03.11.2014 Make panelfitter compatible with Retina displays. (MK)
% 04.11.2014 Add new task 'UseRetinaResolution' for Retina displays. (MK)
% 06.09.2015 Add basic support for "Client distortion rendering" on the Oculus VR
% Rift DK1/DK2 virtual reality headsets. (MK)
persistent configphase_active;
persistent reqs;
% This global variable signals if a GPGPU compute api is enabled, and which
% one. 0 = None, 1 = GPUmat.
global psych_gpgpuapi;
% These flags are global - needed in subfunctions as well (ugly ugly coding):
global ptb_outputformatter_icmAware;
global isASideBySideConfig;
global maxreqarg;
if isempty(configphase_active)
configphase_active = 0;
ptb_outputformatter_icmAware = 0;
maxreqarg = 10;
end
if nargin < 1 || isempty(cmd)
error('You did not provide any subcommand to execute!');
end
rc = [];
winRect = [];
if strcmpi(cmd, 'PrepareConfiguration')
% Prepare new configuration:
if configphase_active
% Huh? Configuration was already in progress. Warn user about reset of task specs:
fprintf('Tried to prepare a new configuration phase via PsychImaging(''PrepareConfiguration''), but did not finalize the previous phase yet.\n');
fprintf('You must call the PsychImaging(''OpenWindow'', ...); command at least once to open an onscreen\n');
fprintf('window according to the provided settings, before you can specify settings for additional onscreen windows.\n');
fprintf('\n');
fprintf('The most likely reason you see this error message is because your script aborted with some error\n');
fprintf('before it managed to open the onscreen window. In that case it is best practice to execute a ''clear all''\n');
fprintf('command at the Matlab/Octave prompt before you restart your script.\n');
fprintf('\n');
fprintf('I will restart configuration now and forget the previously made PsychImaging(''AddTask'', ...); settings.\n');
warning('Tried to prepare a new configuration phase, but you did not finalize the previous phase yet!');
end
% Enter configuration mode, accept 'AddTask' specifications:
configphase_active = 1;
% Reset old settings:
% MK: This clear reqs causes malfunctions on Octave 3.2.0 for some reason, so don't use it! clear reqs;
reqs = [];
ptb_outputformatter_icmAware = 0;
% Set GPGPU api type indicator to zero "none in use" default:
if isempty(psych_gpgpuapi)
psych_gpgpuapi = 0;
end
% Assign default success return code rc:
rc = 0;
return;
end
if strcmpi(cmd, 'AddTask')
if nargin < 3 || isempty(varargin{1}) || isempty(varargin{2})
error('Parameters missing: Need at least "whichChannel" and "whichTask"!');
end
if configphase_active ~= 1
error('Call PsychImaging(''PrepareConfiguration''); first to prepare the configuration phase!');
end
% Store requirement in our cell array of requirements. We need to
% extend each requirement vector to some number of max elements, so all
% rows in the cell array have the same length:
x = varargin;
if length(x) < maxreqarg
for i=length(x)+1:maxreqarg
x{i}='';
end
end
% First use of 'reqs' array?
if isempty(reqs)
% Yes: Initialize the array with content of 'x':
reqs = x;
else
% No: Just concatenate new line with requirements 'x' to existing
% array 'reqs':
reqs = [reqs ; x];
end
rc = 0;
return;
end
if strcmpi(cmd, 'FinalizeConfiguration')
if configphase_active ~= 1
error('You tried to finalize configuration, but no configuration in progress!');
end
if isempty(reqs)
error('You tried to FinalizeConfiguration, but you did not specify any requirements or tasks!');
end
configphase_active = 2;
% Compute correct imagingMode - Settings for current configuration and
% return it:
[imagingMode, needStereoMode, reqs] = FinalizeConfiguration(reqs);
rc = imagingMode;
winRect = needStereoMode;
return;
end
if strcmpi(cmd, 'PostConfiguration')
if configphase_active ~= 2
error('Tried to call PostConfiguration without calling FinalizeConfiguration before!');
end
if nargin < 2 || isempty(varargin{1}) || Screen('WindowKind', varargin{1})~=1
error('No "windowPtr" or invalid "windowPtr" or non-onscreen window handle provided!');
end
if nargin < 3
clearcolor = 0;
else
clearcolor = varargin{2};
end
rc = PostConfiguration(reqs, varargin{1}, clearcolor);
configphase_active = 0;
return;
end
if strcmpi(cmd, 'OpenWindow')
% Allow 'OpenWindow' without task specs. Simply open with empty task requirements list:
if ismember(configphase_active, [0, 2])
PsychImaging('PrepareConfiguration');
end
if configphase_active ~= 1
error('You tried to OpenWindow, but didn''t specify any imaging configuration!');
end
if nargin < 2
error('You must supply at least a "screenId" for the screen on which the window should be opened');
end
% Final config phase:
configphase_active = 2; %#ok<NASGU>
screenid = varargin{1};
if nargin < 3 || isempty(varargin{2})
clearcolor = [];
else
clearcolor = varargin{2};
end
if nargin < 4 || isempty(varargin{3})
winRect = [];
else
winRect = varargin{3};
end
% Running on a VR headset?
if ~isempty(find(mystrcmp(reqs, 'UseVRHMD')));
% Yes. Trying to display on a screen with more than one video output?
if isempty(winRect) && (Screen('ConfigureDisplay', 'NumberOutputs', screenid) > 1)
% Yes. Not good, as this will impair graphics performance and timing a lot.
% Warn about this, then try to at least position the onscreen window on the
% right output.
fprintf('PsychImaging-WARNING: You are requesting display to a VR HMD on a screen with multiple active video outputs.\n');
fprintf('PsychImaging-WARNING: This will impair visual stimulation timing and cause decreased VR performance!\n');
fprintf('PsychImaging-WARNING: I strongly recommend only activating one output on the HMD screen - the HMD output on the screen.\n');
fprintf('PsychImaging-WARNING: On Linux with X11 X-Server, you should create a separate X-Screen for the HMD.\n');
floc = find(mystrcmp(reqs, 'UseVRHMD'));
[rows cols] = ind2sub(size(reqs), floc(1));
row = rows(1);
% Extract first parameter - This should be the handle of the HMD device:
hmd = reqs{row, 3};
% Try to find the output with the Rift HMD:
for i=0:Screen('ConfigureDisplay', 'NumberOutputs', screenid)-1
scanout = Screen('ConfigureDisplay', 'Scanout', screenid, i);
if hmd.driver('IsHMDOutput', hmd, scanout)
% This output i has proper resolution to be the HMD panel.
% Position our onscreen window accordingly:
winRect = OffsetRect([0, 0, scanout.width, scanout.height], scanout.xStart, scanout.yStart);
fprintf('PsychImaging-Info: Positioning onscreen window at rect [%i, %i, %i, %i] to align with HMD output %i.\n', ...
winRect(1), winRect(2), winRect(3), winRect(4), i);
end
end
end
end
if ~isempty(find(mystrcmp(reqs, 'EnableNative10BitFramebuffer')))
% Request a pixelsize of 30 bpp to enable native 2101010
% framebuffer support:
pixelSize = 30;
elseif ~isempty(find(mystrcmp(reqs, 'EnableNative11BitFramebuffer')))
% Request a pixelsize of 33 bpp to enable native RGB11-11-10
% framebuffer support. A value of 32 bpp would be appropriate but
% that's already taken by old cruft code, so it's a no-no and we use the
% weirdo 33 bpp value, to retain backwards compatibility.
pixelSize = 33;
elseif ~isempty(find(mystrcmp(reqs, 'EnableNative16BitFramebuffer')))
% Request a pixelsize of 48 bpp to enable native up to RGB16-16-16
% framebuffer support.
pixelSize = 48;
else
% Ignore pixelSize:
pixelSize = [];
end
% Override numbuffers -- always 2:
numbuffers = 2;
if nargin < 7 || isempty(varargin{6})
stereomode = 0;
else
stereomode = varargin{6};
end
% Compute correct imagingMode - Settings for current configuration and
% return it:
[imagingMode, needStereoMode, reqs] = FinalizeConfiguration(reqs, stereomode, screenid);
% Override stereomode derived from requirements?
if needStereoMode ~= -1
if needStereoMode == -2 && stereomode == 0
% Stereo operation needed, but not set up by usercode:
error('Your requirements demand a stereo presentation mode, but you didn''t specify one!');
else
if (needStereoMode > -1) && (stereomode ~= needStereoMode)
% Need a specific mode: Override current setting by our needs:
stereomode = needStereoMode;
% Give feedback about stereomode override. If the user
% didn't provide a stereomode, we just output an info.
% Otherwise we output a warning about the conflict and our
% override...
if nargin < 7 || isempty(varargin{6})
fprintf('PsychImaging-Info: Stereomode %i required - Enabling it.\n', stereomode);
else
warning('Your provided "stereomode" conflicts with required stereomode for imaging pipeline. Overriden...');
end
end
end
end
if nargin < 8 || isempty(varargin{7})
multiSample = 0;
else
multiSample = varargin{7};
end
if nargin < 9 || isempty(varargin{8})
imagingovm = 0;
else
imagingovm = varargin{8};
end
imagingMode = mor(imagingMode, imagingovm);
if nargin < 10 || isempty(varargin{9})
specialFlags = [];
else
specialFlags = varargin{9};
end
if nargin < 11 || isempty(varargin{10})
clientRect = [];
else
clientRect = varargin{10};
end
if ~isempty(find(mystrcmp(reqs, 'UseDisplayRotation'))) %#ok<*EFIND>
% Yes. Extract parameters:
floc = find(mystrcmp(reqs, 'UseDisplayRotation'));
if length(floc) > 1
error('PsychImaging: Multiple definitions of task "UseDisplayRotation"! There can be only one.');
end
% Check for collisions with mutually exclusive "UsePanelFitter" task:
if ~isempty(find(mystrcmp(reqs, 'UsePanelFitter')))
fprintf('\n\n');
fprintf('PsychImaging: You can not use both "UseDisplayRotation" and "UsePanelFitter" at the same time. However, you can pass\n');
fprintf('PsychImaging: the rotation angle you wanted to use for "UseDisplayRotation" to "UsePanelFitter" instead, so "UsePanelFitter"\n');
fprintf('PsychImaging: will also do the job of "UseDisplayRotation" for you. This works because "UseDisplayRotation" is only\n');
fprintf('PsychImaging: a simple convenience shortcut to "UsePanelFitter".\n');
error('PsychImaging: Task "UsePanelFitter" also requested, but you can only use either "UsePanelFitter" or "UseDisplayRotation".');
end
[row cols] = ind2sub(size(reqs), floc); %#ok<NASGU>
rotAngle = reqs{row, 3};
if isempty(rotAngle) || ~isnumeric(rotAngle) || ~isscalar(rotAngle)
error('PsychImaging: For task "UseDisplayRotation", required rotation angle parameter missing or not a scalar angle in degrees.');
end
% Get full size of output framebuffer:
if isempty(winRect)
[clientRes(1), clientRes(2)] = Screen('WindowSize', screenid, 1);
else
clientRes = [RectWidth(winRect), RectHeight(winRect)];
end
% Rotation into a portrait orientation?
if (round(rotAngle / 90) == (rotAngle / 90))
if (mod(round(rotAngle / 90), 2) > 0)
% Yes. Switch width and height of clientRes:
clientRes = [clientRes(2), clientRes(1)];
end
else
fprintf('PsychImaging: Provided rotation angle for task "UseDisplayRotation" is not a multiple of 90 degrees.\n');
fprintf('PsychImaging: You are probably in for a bit of trouble for such rotation angles...\n');
end
% No-Op for rotation angle of 0 degrees, as that does nothing.
if rotAngle ~= 0
% Build a 'UsePanelFitter' task from our tasks parameters by
% overwriting our own task spec:
reqs{row, 2} = 'UsePanelFitter';
reqs{row, 3} = clientRes;
reqs{row, 4} = 'Full';
reqs{row, 5} = [];
reqs{row, 6} = [];
reqs{row, 7} = rotAngle;
end
end
% Use and high-level setup of panelfitter requested?
if ~isempty(find(mystrcmp(reqs, 'UsePanelFitter'))) %#ok<*EFIND>
% Yes. Extract parameters:
floc = find(mystrcmp(reqs, 'UsePanelFitter'));
if length(floc) > 1
error('PsychImaging: Multiple definitions of task "UsePanelFitter"! There can be only one.');
end
[row cols] = ind2sub(size(reqs), floc); %#ok<NASGU>
% Extract requested resolution of virtual framebuffer...
clientRes = reqs{row, 3};
if length(clientRes) ~= 2 || ~isnumeric(clientRes) || min(clientRes) < 1
error('PsychImaging: Mandatory "size" parameter of task "UsePanelFitter" is missing or not a two component [width, height] size vector with positive width and height as expected.');
end
clientRes = round(clientRes);
if ~isempty(clientRect)
fprintf('PsychImaging: OpenWindow: Warning: User provided "clientRect" overriden by specification in PsychImaging task "UsePanelFitter".');
end
% ... and define clientRect accordingly:
clientRect = [0, 0, clientRes(1), clientRes(2)];
% Extract scaling strategy:
fitterStrategy = reqs{row, 4};
if isempty(fitterStrategy) || ~ischar(fitterStrategy)
error('PsychImaging: Mandatory parameter "strategy" of task "UsePanelFitter" missing or not a string.');
end
% Define full size of output framebuffer:
if isempty(winRect)
dstFit = Screen('Rect', screenid, 1);
else
dstFit = SetRect(0, 0, RectWidth(winRect), RectHeight(winRect));
end
% Adapt dstFit according to window size flags:
% Apply half-height flag, if any:
if bitand(imagingMode, kPsychNeedHalfHeightWindow)
dstFit(RectBottom) = dstFit(RectBottom) / 2;
end
% Apply half-width flag, if any:
if bitand(imagingMode, kPsychNeedHalfWidthWindow) || ismember(stereomode, [4, 5])
dstFit(RectRight) = dstFit(RectRight) / 2;
end
% Apply twice-width flag, if any:
if bitand(imagingMode, kPsychNeedTwiceWidthWindow)
dstFit(RectRight) = dstFit(RectRight) * 2;
end
winCenter = [RectWidth(dstFit)/2, RectHeight(dstFit)/2];
% Extract rotation angle to use for display rotation:
rotX = [];
rotY = [];
rotAngle = reqs{row, 7};
rot90Deg = 0;
if isempty(rotAngle)
% No rotation angle == zero rotation == no rotation.
rotAngle = 0;
else
% Round to full degrees:
rotAngle = round(rotAngle);
if rotAngle ~= 0
fprintf('PsychImaging: PanelFitter will apply a display rotation of %i degrees.\n', rotAngle);
% Check if rotation angle is -90, +90, -270, +270, ... degrees,
% ie. the image is effectively tilted by 90 degrees clockwise
% or counter-clockwise:
if (round(rotAngle / 90) == (rotAngle / 90)) && (mod(round(rotAngle / 90), 2) > 0)
% Yes. This is classic panel rotation. Exchange width and
% height of clientRect, so it is "rotated" accordingly and
% the various scaling and centering strategies will
% peacefully cooperate with display rotation via panel
% fitting:
rot90Deg = 1;
clientRect = [0, 0, clientRes(2), clientRes(1)];
fprintf('PsychImaging: Applying special setup for display rotation by 90 degrees into portrait orientation.\n');
end
end
end
% Which strategy to use?
if strcmpi(fitterStrategy, 'Custom')
% Custom scaling with provided srcRect and dstRect:
srcFit = reqs{row, 5};
dstFit = reqs{row, 6};
if ~isnumeric(srcFit) || length(srcFit) ~= 4
error('PsychImaging: Mandatory parameter "srcRect" of task "UsePanelFitter" for fitting strategy "Custom" missing or not a 4 element rect.');
end
if ~isnumeric(dstFit) || length(dstFit) ~= 4
error('PsychImaging: Mandatory parameter "dstRect" of task "UsePanelFitter" for fitting strategy "Custom" missing or not a 4 element rect.');
end
elseif strcmpi(fitterStrategy, 'Centered')
% Don't rescale but blit one-to-one. Center in target
% framebuffer, crop if neccessary:
% Try to center clientRect in destination framebuffer rect:
srcFit = CenterRect(clientRect, dstFit);
% Does it fully fit in?
if any(srcFit < 0)
% No. We need to crop/clip it to fit in:
dstFit = ClipRect(srcFit, dstFit);
srcFit = CenterRect(dstFit, clientRect);
fprintf('PsychImaging: For centered fitting, i needed to crop the source framebuffer to central region [%i,%i,%i,%i]. Borders will be missing.\n', srcFit(1), srcFit(2), srcFit(3), srcFit(4));
else
% Yes: Center in destination framebuffer:
dstFit = srcFit;
srcFit = clientRect;
end
elseif strcmpi(fitterStrategy, 'Full')
% Rescale source framebuffer to full target framebuffer, not
% taking aspect ratio into account:
srcFit = clientRect;
if RectWidth(srcFit) / RectHeight(srcFit) ~= RectWidth(dstFit) / RectHeight(dstFit)
fprintf('PsychImaging: Using full resolution fitting strategy. Scaling will not preserve aspect ratio of original stimulus!\n');
else
fprintf('PsychImaging: Using full resolution fitting strategy. Aspect ratio is preserved.\n');
end
elseif strcmpi(fitterStrategy, 'AspectWidth') || strcmpi(fitterStrategy, 'AspectHeight') || strcmpi(fitterStrategy, 'Aspect')
% Rescale aspect ratio preserving:
if strcmpi(fitterStrategy, 'AspectWidth')
% Cover full width of window, maybe crop top and bottom:
sf = RectWidth(dstFit) / RectWidth(clientRect);
fprintf('PsychImaging: Using scaling to full width. Aspect ratio is preserved, top and bottom may be cut away.\n');
end
if strcmpi(fitterStrategy, 'AspectHeight')
% Cover full width of window, maybe crop top and bottom:
sf = RectHeight(dstFit) / RectHeight(clientRect);
fprintf('PsychImaging: Using scaling to full height. Aspect ratio is preserved, left and right margins may be cut away.\n');
end
if strcmpi(fitterStrategy, 'Aspect')
% Cover as much as possible, aspect ratio preserving, leaving
% borders as neccessary:
sfw = RectWidth(dstFit) / RectWidth(clientRect);
sfh = RectHeight(dstFit) / RectHeight(clientRect);
sf = min(sfw, sfh);
fprintf('PsychImaging: Using scaling to the most maximal size which still preserves aspect ratio. There may be borders.\n');
end
% Compute scaled size target rectangle:
scaleFit = ScaleRect(clientRect, sf, sf);
% Center it in destination framebuffer dstFit:
scaleFit = CenterRect(scaleFit, dstFit);
% Clip it against dstFit's size, crop away borders if neccessary:
% dstFit now contains the destination retangle in the window:
dstFit = ClipRect(scaleFit, dstFit);
% Compute originating source rectangle of original size for
% 'dstFit' by undoing the scaling:
scaleFit = SetRect(0, 0, RectWidth(dstFit)/sf, RectHeight(dstFit)/sf);
% Center properly sized source rectangle in clientRect source
% framebuffer to compute final srcRect for scaling blit:
srcFit = CenterRect(scaleFit, clientRect);
else
error('PsychImaging: Mandatory parameter "strategy" of task "UsePanelFitter" has invalid setting ''%s''.', fitterStrategy);
end
if rotAngle ~= 0
[rotX, rotY] = RectCenter(clientRect);
end
if rot90Deg
% Offset compensation for multiple of 90 degrees rotations:
degrad = 2 * pi * rotAngle / 360;
rotOffset(1) = -(winCenter(2) - rotX) * sin(degrad);
rotOffset(2) = (winCenter(1) - rotY) * sin(degrad);
dstFit = OffsetRect(dstFit, rotOffset(1), rotOffset(2));
end
% Build final fitterParams vector:
fitterParams = [srcFit dstFit rotAngle rotX rotY];
% Restore clientRect to original one:
clientRect = [0, 0, clientRes(1), clientRes(2)];
else
% No panel fitter in use. Or at least, none we would set up:
fitterParams = [];
end
% Custom color correction for display wanted on a Bits+ display in
% Mono++ or Color++ mode or a DataPixx?
if ~isempty(find(mystrcmp(reqs, 'DisplayColorCorrection')))
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++Output'))) || ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++OutputWithOverlay'))) || ~isempty(find(mystrcmp(reqs, 'EnableBits++Color++Output')))
% Yes. The BitsPlusPlus() setup routine implements its own
% setup code for display color correction which is very
% efficient for a single color correction plugin, but not
% useable with multiple plugins! Need to handle both
% cases specially.
% More than one color correction plugin requested for pipeline?
floc = find(mystrcmp(reqs, 'DisplayColorCorrection'));
if length(floc) == 1
% Single plugin. Use BitsPlusPlus internal setup code,
% just provide proper method setting for it now:
% Which channel?
x=floc;
[rows cols] = ind2sub(size(reqs), x); %#ok<NASGU>
for row=rows'
% Extract first parameter - This should be the method of correction:
colorcorrectionmethod = reqs{row, 3};
if isempty(colorcorrectionmethod) || ~ischar(colorcorrectionmethod)
sca;
error('PsychImaging: Name of color correction method for ''DisplayColorCorrection'' missing or not of string type!');
end
% Select method:
PsychColorCorrection('ChooseColorCorrection', colorcorrectionmethod);
end
else
% Multiple plugins: Select special method which won't be
% harmful, a simple clamping to valid range, labeled with a
% special name that can't clash with our own definition of
% ICM shaders:
PsychColorCorrection('ChooseColorCorrection', 'ClampedNoName');
end
end
end
% Open onscreen window with proper imagingMode and stereomode set up.
% We have a couple of special cases here for BrightSide HDR display and
% the CRS Bits++...
win = [];
if ~isempty(find(mystrcmp(reqs, 'EnableBrightSideHDROutput')))
% Special case: Need to open BrightSide HDR driver. We delegate the
% openwindow procedure to the BrightSideHDR.m file:
if ~isempty(win)
error('You specified multiple conflicting output display device drivers! This will not work.');
end
if IsWin
% On Windows, do the real thing:
myopenstring = 'OpenWindow';
else
% On other platforms no support for BrightSide HDR - use cheap
% emulation:
myopenstring = 'DummyOpenWindow';
warning('BrightSide HDR output device selected on a non MS-Windows platform! Unsupported! Will use dummy emulation mode instead!');
end
if nargin >= 12
[win, winRect] = BrightSideHDR(myopenstring, screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect, varargin{11:end});
else
[win, winRect] = BrightSideHDR(myopenstring, screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect);
end
end
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Bits++Output')))
% Special case: Need to open Bits++ Bits++ driver. We delegate the
% openwindow procedure to the BitsPlusPlus.m file:
if ~isempty(win)
error('You specified multiple conflicting output display device drivers! This will not work.');
end
if nargin >= 12
[win, winRect] = BitsPlusPlus('OpenWindowBits++', screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect, varargin{11:end});
else
[win, winRect] = BitsPlusPlus('OpenWindowBits++', screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect);
end
end
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++Output'))) || ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++OutputWithOverlay')))
% Special case: Need to open Bits++ Mono++ driver. We delegate the
% openwindow procedure to the BitsPlusPlus.m file:
if ~isempty(win)
error('You specified multiple conflicting output display device drivers! This will not work.');
end
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++OutputWithOverlay')))
bpcom = 'OpenWindowMono++WithOverlay';
else
bpcom = 'OpenWindowMono++';
end
if nargin >= 12
[win, winRect] = BitsPlusPlus(bpcom, screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect, varargin{11:end});
else
[win, winRect] = BitsPlusPlus(bpcom, screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect);
end
end
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Color++Output')))
% Special case: Need to open Bits++ Color++ driver. We delegate the
% openwindow procedure to the BitsPlusPlus.m file:
if ~isempty(win)
error('You specified multiple conflicting output display device drivers! This will not work.');
end
if nargin >= 12
[win, winRect] = BitsPlusPlus('OpenWindowColor++', screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect, varargin{11:end});
else
[win, winRect] = BitsPlusPlus('OpenWindowColor++', screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect);
end
end
if isempty(win)
% Standard openwindow path:
if nargin >= 12
[win, winRect] = Screen('OpenWindow', screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect, varargin{11:end});
else
[win, winRect] = Screen('OpenWindow', screenid, clearcolor, winRect, pixelSize, numbuffers, stereomode, multiSample, imagingMode, specialFlags, clientRect);
end
end
% No secondary slave window by default:
slavewin = [];
% Display mirroring requested?
if ~isempty(find(mystrcmp(reqs, 'MirrorDisplayTo2ndOutputHead')))
% Yes. Need to open secondary slave window:
floc = find(mystrcmp(reqs, 'MirrorDisplayTo2ndOutputHead'));
[rows cols]= ind2sub(size(reqs), floc);
% Extract first parameter - This should be the id of the slave
% screen to which the display should get mirrored:
slavescreenid = reqs{rows, 3};
if isempty(slavescreenid)
sca;
error('In PsychImaging MirrorDisplayTo2ndOutputHead: You must provide the index of the secondary screen "slavescreen"!');
end
if ~any(ismember(Screen('Screens'), slavescreenid))
sca;
error('In PsychImaging MirrorDisplayTo2ndOutputHead: You must provide the index of a valid secondary screen "slavescreen"!');
end
if stereomode == 10
fprintf('PsychImaging: WARNING! You simultaneously requested display mirroring to 2nd output head and dual display stereomode 10.\n');
fprintf('PsychImaging: WARNING! These are mutually exclusive! Will choose stereomode 10 instead of mirroring.\n');
end
if stereomode == 1
sca;
error('In PsychImaging MirrorDisplayTo2ndOutputHead: Tried to simultaneously enable frame-sequential stereomode 1! This is not supported.');
end
% Extract optional 2nd parameter - The window rectangle of the slave
% window on the slave screen to which the display should get mirrored:
slavewinrect = reqs{rows, 4};
if isempty(slavewinrect), slavewinrect = []; end
% Open slave window on slave screen: Set the special dual window
% output flag, so Screen('OpenWindow') initializes the internal blit
% chain properly:
slavewin = Screen('OpenWindow', slavescreenid, [255 0 0], slavewinrect, pixelSize, [], [], [], kPsychNeedDualWindowOutput);
end
% Dualwindow output requested? [Essentially the same as display
% mirroring, but kept separate for now for simplicity]
if ~isempty(find(mystrcmp(reqs, 'EnableDualPipeHDROutput')))
% Yes. Need to open secondary slave window:
floc = find(mystrcmp(reqs, 'EnableDualPipeHDROutput'));
[rows cols]= ind2sub(size(reqs), floc);
% Extract first parameter - This should be the id of the slave
% screen to which the pipe 1 display should get displayed:
slavescreenid = reqs{rows, 3};
if isempty(slavescreenid)
sca;
error('In PsychImaging EnableDualPipeHDROutput: You must provide the index of the secondary screen "slavescreen"!');
end
if ~any(ismember(Screen('Screens'), slavescreenid))
sca;
error('In PsychImaging EnableDualPipeHDROutput: You must provide the index of a valid secondary screen "slavescreen"!');
end
if stereomode == 1
sca;
error('In PsychImaging EnableDualPipeHDROutput: Tried to simultaneously enable frame-sequential stereomode 1! This is not supported.');
end
if stereomode == 10
sca;
error('In PsychImaging EnableDualPipeHDROutput: Tried to simultaneously enable dual display output stereomode 10! This is not supported.');
end
% Extract optional 2nd parameter - The window rectangle of the slave
% window on the slave screen to which the pipe 1 display should get outputted:
slavewinrect = reqs{rows, 4};
if isempty(slavewinrect), slavewinrect = []; end
% Open slave window on slave screen: Set the special dual window
% output flag, so Screen('OpenWindow') initializes the internal blit
% chain properly:
slavewin = Screen('OpenWindow', slavescreenid, [255 0 0], slavewinrect, pixelSize, [], [], [], kPsychNeedDualWindowOutput);
end
% DualWindow stereo output requested?
if ~isempty(find(mystrcmp(reqs, 'DualWindowStereo')))
% Yes. Need to open secondary slave window:
floc = find(mystrcmp(reqs, 'DualWindowStereo'));
[rows cols]= ind2sub(size(reqs), floc);
% Extract first parameter - This should be the id of the slave
% screen to which the right eye display should get displayed:
slavescreenid = reqs{rows, 3};
if isempty(slavescreenid)
sca;
error('In PsychImaging DualWindowStereo: You must provide the index of the secondary screen "slavescreen"!');
end
if ~any(ismember(Screen('Screens'), slavescreenid))
sca;
error('In PsychImaging DualWindowStereo: You must provide the index of a valid secondary screen "slavescreen"!');
end
% Extract optional 2nd parameter - The window rectangle of the slave
% window on the slave screen:
slavewinrect = reqs{rows, 4};
if isempty(slavewinrect), slavewinrect = []; end
% Open slave window on slave screen:
slavewin = Screen('OpenWindow', slavescreenid, [], slavewinrect, pixelSize, [], 10);
end
% Matlab? Does the Java swing cleanup function exist?
if exist('PsychJavaSwingCleanup', 'file')
% Attach a window close callback for cleanup of Java's memory
% management mess at window close time when Matlab with Java based
% GUI is in use:
Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychJavaSwingCleanup().', 'PsychJavaSwingCleanup;');
Screen('HookFunction', win, 'Enable', 'CloseOnscreenWindowPostGLShutdown');
% Some slave window opened?
if ~isempty(slavewin)
% Yes: Apply java cleanup there as well:
Screen('Hookfunction', slavewin, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychJavaSwingCleanup().', 'PsychJavaSwingCleanup;');
Screen('HookFunction', slavewin, 'Enable', 'CloseOnscreenWindowPostGLShutdown');
end
end
% Perform double-flip, so both back- and frontbuffer get initialized to
% background color:
Screen('Flip', win);
Screen('Flip', win);
% Window open. Perform imaging pipe postconfiguration:
PostConfiguration(reqs, win, clearcolor, slavewin);
% Panel fitter in use and setup by us?
if ~isempty(fitterParams)
% Yes: Apply fitter parameters now, so the scaling method takes
% effect at next flip. We only do it now, so the preceeding
% Screen('Flip') ops after imaging pipeline initialization were
% able to operate with the default "cover full framebuffer" fitter
% params, ie., they applied their implicit "clear to background
% color" ops to the full framebuffer and thereby initialized all
% stages of the pipeline down to the real window backbuffer with
% background clear color. This way, regardless which panel fitting
% strategy is chosen by user code, potential top-bottom or
% left-right borders will get initialized to the selected
% background clear color, which should be the most well defined
% choice:
Screen('PanelFitter', win, round(fitterParams));
% Now that the fitter is fully configured, perform an extra
% double-flip to apply proper scaling and borders and such:
Screen('Flip', win);
Screen('Flip', win);
end
% One extra Flip to put the full imaging pipeline into initial state:
Screen('Flip', win);
rc = win;
% Done.
configphase_active = 0;
return;
end
if strcmpi(cmd, 'RestrictProcessingToROI')
% Define a ROI in a processing chain/channel to which processing should
% be restricted by internal use of glScissor() command. This is a
% runtime function. Each invocation will search the given channel if
% such a command already exists, then delete it if so. It will prepend
% the new command with the new spec in any case, so that at any point
% in time exactly one such ROI can be active for a chain:
if nargin < 4
sca;
error('You must provide all parameters for subfunction "RestrictProcessingToROI!"');
end
% Extract window handle:
win = varargin{1};
if ~isscalar(win) || ~isnumeric(win) || Screen('WindowKind', win) ~= 1
sca;
error('Provided window parameter for subfunction "RestrictProcessingToROI!" is not the handle of a valid onscreen window!');
end
% Extract window information:
winfo = Screen('GetWindowInfo', win);
% Extract view channel:
whichView = varargin{2};
% Extract scissor rectangle:
scissorrect = varargin{3};
if size(scissorrect,1)~=1 || size(scissorrect,2)~=4
sca;
error('Command "RestrictProcessingToROI" in channel %s expects a 1-by-4 ROI rectangle to define the ROI, e.g, [left top right bottom]!', whichView);
end
ox = scissorrect(RectLeft);
[winwidth, winheight] = InterBufferSize(win);
oy = winheight - scissorrect(RectBottom);
w = RectWidth(scissorrect);
h = RectHeight(scissorrect);
if mystrcmp(whichView, 'LeftView') || mystrcmp(whichView, 'AllViews')
% Need to restrict left view processing:
DoRemoveScissorRestriction(win, 'StereoLeftCompositingBlit');
Screen('HookFunction', win, 'PrependBuiltin', 'StereoLeftCompositingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
if mystrcmp(whichView, 'RightView') || mystrcmp(whichView, 'AllViews')
% Need to restrict right view processing:
DoRemoveScissorRestriction(win, 'StereoRightCompositingBlit');
Screen('HookFunction', win, 'PrependBuiltin', 'StereoRightCompositingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
if (mystrcmp(whichView, 'AllViews') || mystrcmp(whichView, 'Compositor')) && ismember(winfo.StereoMode, [6,7,8,9])
% Needed to restrict both views processing and a
% compositing mode is active. If both views are restricted
% in their output area then it makes sense to restrict the
% compositor to the same area. We also restrict the
% compositor if that was requested.
oy = RectHeight(Screen('Rect', win, 1)) - scissorrect(RectBottom);
DoRemoveScissorRestriction(win, 'StereoCompositingBlit');
Screen('HookFunction', win, 'PrependBuiltin', 'StereoCompositingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
if mystrcmp(whichView, 'FinalFormatting')
% Need to restrict final formatting blit processing:
oy = RectHeight(Screen('Rect', win, 1)) - scissorrect(RectBottom);
DoRemoveScissorRestriction(win, 'FinalOutputFormattingBlit');
Screen('HookFunction', win, 'PrependBuiltin', 'FinalOutputFormattingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
return;
end
if strcmpi(cmd, 'UnrestrictProcessing')
% Remove a ROI in a processing chain/channel to which processing should
% be restricted by internal use of glScissor() command. This is a
% runtime function. Each invocation will search the given channel if
% such a command exists, then delete it if so.
if nargin < 3
sca;
error('You must provide all parameters for subfunction "UnrestrictProcessing!"');
end
% Extract window handle:
win = varargin{1};
if ~isscalar(win) || ~isnumeric(win) || Screen('WindowKind', win) ~= 1
sca;
error('Provided window parameter for subfunction "UnrestrictProcessing!" is not the handle of a valid onscreen window!');
end
% Extract window information:
winfo = Screen('GetWindowInfo', win);
% Extract view channel:
whichView = varargin{2};
if mystrcmp(whichView, 'LeftView') || mystrcmp(whichView, 'AllViews')
% Need to restrict left view processing:
DoRemoveScissorRestriction(win, 'StereoLeftCompositingBlit');
end
if mystrcmp(whichView, 'RightView') || mystrcmp(whichView, 'AllViews')
% Need to restrict right view processing:
DoRemoveScissorRestriction(win, 'StereoRightCompositingBlit');
end
if (mystrcmp(whichView, 'AllViews') || mystrcmp(whichView, 'Compositor')) && ismember(winfo.StereoMode, [6,7,8,9])
% Needed to restrict both views processing and a
% compositing mode is active. If both views are restricted
% in their output area then it makes sense to restrict the
% compositor to the same area. We also restrict the
% compositor if that was requested.
DoRemoveScissorRestriction(win, 'StereoCompositingBlit');
end
if mystrcmp(whichView, 'FinalFormatting')
% Need to restrict final formatting blit processing:
DoRemoveScissorRestriction(win, 'FinalOutputFormattingBlit');
end
return;
end
if strcmpi(cmd, 'GetOverlayWindow')
% Pass this call through to BitsPlusPlus.m driver -- the only one which
% currently supports such overlays.
% MK: May need to do something more clever in the future...
% rc is the 'win'dowhandle, winRect is its Screen('Rect'):
[rc, winRect] = BitsPlusPlus('GetOverlayWindow', varargin{:});
return;
end
% Catch all for unknown commands:
error('Unknown subcommand specified! Read "help PsychImaging" for usage info.');
return; %#ok<UNRCH>
% Internal helper routines:
% FinalizeConfiguration consolidates the current set of requirements and
% derives the needed stereoMode settings and imagingMode setting to pass to
% Screen('OpenWindow') for pipeline preconfiguration.
function [imagingMode, stereoMode, reqs] = FinalizeConfiguration(reqs, userstereomode, screenid)
global ptb_outputformatter_icmAware;
global psych_gpgpuapi;
global isASideBySideConfig;
global maxreqarg;
% Reset flag to "no":
isASideBySideConfig = 0;
if nargin < 2
userstereomode = [];
end
if isempty(userstereomode)
userstereomode = 0;
end
if nargin < 3 || isempty(screenid)
screenid = max(Screen('Screens'));
end
% Set imagingMode to minimum: Pipeline disabled. All latter task
% requirements will setup imagingMode to fullfill their needs. A few
% tasks/requirements don't need the full pipeline at all. E.g, Support for
% fast offscreen windows only needs that, but not the full pipeline. Some
% of the "software based mirror modes" herein only need the finalizer blit
% chains, but not the imaging pipeline. Bits++ setup for pure CLUT imaging
% (Bits++ mode) doesn't need imaging pipe either...
imagingMode = 0;
% Set stereoMode to don't care:
stereoMode = -1;
% No datapixx by default:
datapixxmode = 0;
% No Bits+ or Bits# by default:
crsbitsdevice = 0; %#ok<NASGU>
% Request for GPGPU compute support?
floc = find(mystrcmp(reqs, 'UseGPGPUCompute'));
if ~isempty(floc)
% Yes.
[row cols] = ind2sub(size(reqs), floc); %#ok<NASGU>
% Extract first mandatory parameter, the apitype to use:
apitype = reqs{row, 3};
if ~ischar(apitype) || (~strcmpi(apitype, 'Auto') && ~strcmpi(apitype, 'GPUmat'))
% Missing or invalid apitype specified:
sca;
error('PsychImaging: Use of GPU compute device via UseGPGPUCompute was requested, but mandatory apitype parameter is missing or invalid!');
end
% Extract 2nd optional parameter, the compute flags:
gpgpuflags = reqs{row, 4};
if ~isempty(gpgpuflags) && ~ischar(gpgpuflags)
% There ain't no valid flags yet, so providing anything but the empty string is invalid:
sca;
error('PsychImaging: Use of GPU compute device via UseGPGPUCompute was requested, but optional flags argument is invalid!');
end
% Ok, all parameters validated. Check if our only currently supported
% GPU compute api, 'GPUmat' is installed and functional and start it,
% if possible:
if ~exist('GPUstart', 'file')
% Unsupported:
sca;
error('PsychImaging: Use of GPU compute device via UseGPGPUCompute was requested, but the required GPUmat toolbox seems to be missing!');
end
% Available. Start it:
psychlasterror('reset');
try
% Start/Initialize GPUmat GPU computing toolkit if not already started:
if ~GPUstart(1)
GPUstart;
end
catch %#ok<CTCH>
fprintf('PsychImaging: Failed to start GPGPU compute toolkit GPUmat! See error message below:\n');
err = psychlasterror('reset');
disp(err.message);
sca;
error('PsychImaging: GPGPU init failed!');
end
% Ok, GPUmat is online. Set a global marker that it is running:
fprintf('PsychImaging: GPGPU computing support via GPUmat toolbox enabled.\n');
% Type 1 is GPUmat:
psych_gpgpuapi = 1; %#ok<NASGU>
end
% Special setup for CRS Bits# next-generation devices:
% Is a Bits+ / Bits# specific video display mode requested? Or
% explicit use of a Bits# device?
floc = [ find(mystrcmp(reqs, 'EnableBits++Bits++Output')) ];
floc = [floc ; find(mystrcmp(reqs, 'EnableBits++Mono++Output')) ; find(mystrcmp(reqs, 'EnableBits++Mono++OutputWithOverlay')) ];
floc = [floc ; find(mystrcmp(reqs, 'EnableBits++Color++Output')) ; find(mystrcmp(reqs, 'UseBits#')) ];
if ~isempty(floc)
% Explicit use of Bits# requested? Or only implicit by video mode?
floc = find(mystrcmp(reqs, 'UseBits#'));
if ~isempty(floc)
% Use of Bits# requested. Try to retrieve any special Bits# parameters to
% pass them to the OpenBits# function:
[row cols] = ind2sub(size(reqs), floc);
% Extract first parameter - This should be the serial port name, or [] empty:
bitsSharpPortname = reqs{row, 3};
else
% No specific usage of Bits# requested. Leave it to auto-detection
% if we work with a Bits# or with a Bits+:
bitsSharpPortname = [];
end
% Initialize serial port connection to Bits#, if any such device present:
if BitsPlusPlus('OpenBits#', bitsSharpPortname)
% Connection to Bits# established. Do we need to explicitely
% specify use of it? Only if it was not already done by usercode via
% keyword UseBits#
if isempty(floc)
% Bits# connected. Makeit explicit by adding the reqs task UseBits#
reqs(end+1, :) = cell(1, size(reqs, 2));
reqs{end, 2} = 'UseBits#';
end
% Mark use of Bits#:
crsbitsdevice = 2;
fprintf('PsychImaging: Will use a connected CRS Bits# device instead of a Bits+ for this session - Connection established.\n');
else
% No connection to Bits#. Was one requested? If not, we just assume we are
% operating against a good old Bits+ which does not support connections.
% Otherwise, failure to connect to Bits# would be, well, a failure:
if ~isempty(floc)
% Bummer:
sca;
error('PsychImaging: Use of a CRS Bits# device was requested, but connecting to it failed. Disconnected or misconfigured?!?');
else
% Mark use of Bits+:
crsbitsdevice = 1;
fprintf('PsychImaging: Will use a CRS Bits+ device, which i assume is connected to target display output screen.\n');
end
end
end
% End of Bits# setup, start of DataPixx/ViewPixx/ProPixx setup:
% Remap Datapixx L48 mode to equivalent Bits++ mode:
floc = find(mystrcmp(reqs, 'EnableDataPixxL48Output'));
if ~isempty(floc)
reqs{floc} = 'EnableBits++Bits++Output';
reqs(end+1, :) = cell(1, size(reqs, 2));
reqs{end, 2} = 'UseDataPixx';
datapixxmode = 1;
% Initialize connection, switch immediately to L48 mode:
PsychDataPixx('Open');
PsychDataPixx('SetVideoMode', 1);
end
% Remap Datapixx M16 mode to equivalent Mono++ mode:
floc = find(mystrcmp(reqs, 'EnableDataPixxM16Output'));
if ~isempty(floc)
reqs{floc} = 'EnableBits++Mono++Output';
reqs(end+1, :) = cell(1, size(reqs, 2));
reqs{end, 2} = 'UseDataPixx';
datapixxmode = 1;
% Initialize connection, switch immediately to M16 mode:
PsychDataPixx('Open');
PsychDataPixx('SetVideoMode', 2);
end
% Remap Datapixx M16 mode to equivalent Mono++ mode with overlay:
floc = find(mystrcmp(reqs, 'EnableDataPixxM16OutputWithOverlay'));
if ~isempty(floc)
reqs{floc} = 'EnableBits++Mono++OutputWithOverlay';
reqs(end+1, :) = cell(1, size(reqs, 2));
reqs{end, 2} = 'UseDataPixx';
datapixxmode = 1;
% Initialize connection, switch immediately to M16 mode:
PsychDataPixx('Open');
PsychDataPixx('SetVideoMode', 2);
end
% Remap Datapixx C48 mode to equivalent Color++ mode:
floc = find(mystrcmp(reqs, 'EnableDataPixxC48Output'));
if ~isempty(floc)
reqs{floc} = 'EnableBits++Color++Output';
reqs(end+1, :) = cell(1, size(reqs, 2));
reqs{end, 2} = 'UseDataPixx';
datapixxmode = 1;
% Initialize connection, switch immediately to C48 mode:
PsychDataPixx('Open');
PsychDataPixx('SetVideoMode', 3);
end
% Assign opmode to BitsPlusPlus driver: It unifies code for Bits+ and
% Datapixx:
BitsPlusPlus('SetTargetDeviceType', datapixxmode);
% Are we setting up for a Datapixx display?
if ~isempty(find(mystrcmp(reqs, 'UseDataPixx')))
% Yes. Device connection already open from video mode setup above?
% If not, open connection now.
if datapixxmode == 0
% Open connection:
PsychDataPixx('Open');
% As no other special high precision output mode is requested, set
% video mode to "normal passthrough":
PsychDataPixx('SetVideoMode', 0);
% Mark as online:
datapixxmode = 1;
end
end
% Want native Retina display resolution in a scaled HiDPI display mode?
if ~isempty(find(mystrcmp(reqs, 'UseRetinaResolution')))
imagingMode = mor(imagingMode, kPsychNeedRetinaResolution);
end
% FBO backed framebuffer needed?
if ~isempty(find(mystrcmp(reqs, 'UseVirtualFramebuffer')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
end
% 16 bit integer precision framebuffer needed? This is only supported on
% ATI hardware...
if ~isempty(find(mystrcmp(reqs, 'FixedPoint16Bit')))
imagingMode = mor(imagingMode, kPsychNeed16BPCFixed);
end
% Stereomode 6 for interleaved line stereo needed?
if ~isempty(find(mystrcmp(reqs, 'InterleavedLineStereo')))
% Yes: Must use stereomode 6.
stereoMode = 6;
% We also request an effective window height that is only half the real
% height. This affects all drawing and query commands of Screen:
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore, kPsychNeedHalfHeightWindow);
end
% Stereomode 6 for interleaved column stereo needed?
if ~isempty(find(mystrcmp(reqs, 'InterleavedColumnStereo')))
% Yes: Must use stereomode 6.
stereoMode = 6;
% We also request an effective window width that is only half the real
% width. This affects all drawing and query commands of Screen:
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore, kPsychNeedHalfWidthWindow);
end
% Stereomode 2 for side-by-side compressed stereo needed?
if ~isempty(find(mystrcmp(reqs, 'SideBySideCompressedStereo')))
% Yes: Must use stereomode 2.
stereoMode = 2;
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
end
% Stereomode 10 for dualwindow stereo needed?
if ~isempty(find(mystrcmp(reqs, 'DualWindowStereo')))
% Yes: Must use stereomode 10.
stereoMode = 10;
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedDualWindowOutput);
end
% Does usercode or internal code request a stereomode?
if userstereomode > 0 || stereoMode > 0
% Enable imaging pipeline based stereo,ie., kPsychNeedFastBackingStore:
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
% Datapixx - if any - needs special setup:
if datapixxmode
% Datapixx device active:
% Frame sequential style mode via top-down "sync-doubling" mode?
if ismember(userstereomode, 2) || ismember(stereoMode, 2)
% Switch Datapixx to sync-doubling stereo mode:
PsychDataPixx('SetVideoVerticalStereo', 1);
% Reduce height of virtual framebuffer to effective half height:
% Nope... imagingMode = mor(imagingMode, kPsychNeedHalfHeightWindow);
else
% Switch Datapixx to non stereo mode:
PsychDataPixx('SetVideoVerticalStereo', 0);
end
% Frame-Sequential stereo driven by GPU or us, instead of Datapixx?
if ismember(userstereomode, [1,11]) || ismember(stereoMode, [1,11])
% Ask Datapixx to interpret the blue-line-sync stereo sync line
% generated by either Screen() itself, or the graphics card
% stereo device driver. The device will drive its VESA Stereo
% Mini-DIN connector accordingly:
PsychDataPixx('EnableVideoStereoBlueline');
else
% Datapixx shall ignore stereo sync lines / treat the bottom
% scanline as any other scanline:
PsychDataPixx('DisableVideoStereoBlueline');
end
% Any frame-sequential stereo mode active?
if ismember(userstereomode, [1,11,2]) || ismember(stereoMode, [1,11,2])
% Ask ViewPixx to enable its scanning backlight for faster /
% ghost-free response:
PsychDataPixx('EnableVideoScanningBacklight');
% Tell Screen() to tolerate a VBLANK interval that is up to 50%
% the height of VACTIVE, ie. allow a max VTOTAL = 1.5 * VACTIVE.
% This is needed because Screen's beamposition query startup
% tests may otherwise falsely conclude broken beamposition
% query support due to the unusually large VBLANK interval used
% by ViewPixx - and possibly other VPixx devices - in frame
% sequential stereo mode. Our normal rejection threshold is 25%
% or 1.25, now we raise it to 50% or 1.5:
Screen('Preference', 'VBLEndlineOverride', [], 1.5);
else
% ViewPixx shall disable scanning backlight by default:
PsychDataPixx('DisableVideoScanningBacklight');
end
% Dual-Display stereo via left-right stereo?
if ismember(userstereomode, [4,5]) || ismember(stereoMode, [4,5])
% Switch Datapixx to stereo mode by splitting display
% horizontally onto 2 displays:
PsychDataPixx('SetVideoHorizontalSplit', 1);
else
% Switch Datapixx to non stereo mode, aka auto mode:
PsychDataPixx('SetVideoHorizontalSplit', 2);
end
end
end
% Want to reduce crosstalk in stereo presentation modes?
if ~isempty(find(mystrcmp(reqs, 'StereoCrosstalkReduction')))
% Yes: For now we only implement this experimentally and for attachment
% of crosstalk reduction shaders to the image processing chains.
% This will be suboptimal if other image processing ops are active,
% but for a first usefully working prototype it should be good enough.
%
% We only request additional access to the other image channel, as setup
% code above and below will already have activated the image processing
% chains etc.
imagingMode = mor(imagingMode, kPsychNeedOtherStreamInput);
end
% Want to use a VR Head mounted display (HMD)?
floc = find(mystrcmp(reqs, 'UseVRHMD'));
if ~isempty(floc)
% Yes: We need a peculiar configuration, which involves the panelfitter
% to allow for a custom resolution of the virtual framebuffers for left
% eye and right eye - much higher than output resolution, so we have enough
% excess information to deal with geometric undistortion warps, color aberration,
% and dynamic display warping for head motion correction. We also need a
% special stereo processing shader that does geometric distortion correction,
% color aberration correction, vignetting correction, and dynamic display warping
% in one go, as processing speed is crucial for VR experience.
[rows cols] = ind2sub(size(reqs), floc(1));
row = rows(1);
% Extract first parameter - This should be the handle of the HMD device:
hmd = reqs{row, 3};
% Verify it is already open:
if ~hmd.driver('IsOpen', hmd)
error('UseVRHMD: Invalid HMD handle specified. No such device opened.');
end
% Append our generated 'UsePanelFitter' task to setup the panelfitter for
% our needs at 'OpenWindow' time:
[clientRes, imagingFlags, stereoMode] = hmd.driver('GetClientRenderingParameters', hmd);
x{1} = 'General';
x{2} = 'UsePanelFitter';
x{3} = clientRes;
x{4} = 'Custom';
x{5} = [0, 0, clientRes(1), clientRes(2)];
x{6} = [0, 0, clientRes(1), clientRes(2)];
% Pad to maxreqarg arguments:
if length(x) < maxreqarg
for i=length(x)+1:maxreqarg
x{i}='';
end
end
reqs = [reqs ; x];
% Add imaging mode flags requested by HMD driver:
imagingMode = mor(imagingMode, imagingFlags);
end
% Display replication needed?
if ~isempty(find(mystrcmp(reqs, 'MirrorDisplayTo2ndOutputHead')))
% Yes: Must use dual window output mode. This implies
% kPsychNeedFastBackingStore, automatically set by Screen('OpenWindow')
% itself, so no need to do it here.
imagingMode = mor(imagingMode, kPsychNeedDualWindowOutput);
end
% Custom color correction for display wanted?
if ~isempty(find(mystrcmp(reqs, 'DisplayColorCorrection')))
% Yes. Need full pipeline in any case, ie fast backing store and output conversion:
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore, kPsychNeedOutputConversion);
end
% Replication of left half of window into right half needed?
% This is used for a software implementation of mirror mode displays,
% e.g., in conjunction with desktop-spanning display mode on MS-Windows or
% in conjunction with a display splitter on a single output head:
if ~isempty(find(mystrcmp(reqs, 'MirrorDisplayToSingleSplitWindow')))
% We simply request that window size is reported and handled as if the
% window would be only half the width --> right half remains empty and
% can be used as target for the cloning op of the left half.
% This works even without imaging pipe enabled, only uses finalizer
% blit chains:
imagingMode = mor(imagingMode, kPsychNeedHalfWidthWindow);
end
% 16 bpc float framebuffers needed?
if ~isempty(find(mystrcmp(reqs, 'FloatingPoint16Bit')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeed16BPCFloat);
end
% 32 bpc float framebuffers needed?
if ~isempty(find(mystrcmp(reqs, 'FloatingPoint32Bit')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeed32BPCFloat);
end
if ~isempty(find(mystrcmp(reqs, 'FloatingPoint32BitIfPossible')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychUse32BPCFloatAsap);
end
if ~isempty(find(mystrcmp(reqs, 'EnableBrightSideHDROutput')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% The BrightSide formatter is not icm aware - Incapable of internal color correction!
ptb_outputformatter_icmAware = 0;
% Tell BrightSide driver that it is called from us, so it can adapt to
% some specific boundary conditions caused by us:
BrightSideHDR('CalledFromPsychImaging', 1);
end
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++Output'))) || ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++OutputWithOverlay')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% The Mono++ formatter is icm aware - Capable of internal color
% correction, but not setup here -- special case: Set flag to zero:
ptb_outputformatter_icmAware = 0;
end
if ~isempty(find(mystrcmp(reqs, 'EnableGenericHighPrecisionLuminanceOutput'))) || ~isempty(find(mystrcmp(reqs, 'EnablePseudoGrayOutput')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% The Luminance LUT based formatter is icm aware - Capable of internal color correction:
ptb_outputformatter_icmAware = 1;
% Request 32bpc float FBO unless already a 16 bpc FBO or similar has
% been explicitely requested:
if ~bitand(imagingMode, kPsychNeed16BPCFloat) && ~bitand(imagingMode, kPsychUse32BPCFloatAsap) && ~bitand(imagingMode, kPsychNeed16BPCFixed)
imagingMode = mor(imagingMode, kPsychNeed32BPCFloat);
end
end
if ~isempty(find(mystrcmp(reqs, 'EnableVideoSwitcherSimpleLuminanceOutput'))) || ~isempty(find(mystrcmp(reqs, 'EnableVideoSwitcherCalibratedLuminanceOutput')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% The VideoSwitcher formatter is icm aware - Capable of internal color correction:
ptb_outputformatter_icmAware = 1;
% Request 32bpc float FBO unless already a 16 bpc FBO or similar has
% been explicitely requested:
if ~bitand(imagingMode, kPsychNeed16BPCFloat) && ~bitand(imagingMode, kPsychUse32BPCFloatAsap) && ~bitand(imagingMode, kPsychNeed16BPCFixed)
imagingMode = mor(imagingMode, kPsychNeed32BPCFloat);
end
end
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Color++Output')))
floc = find(mystrcmp(reqs, 'EnableBits++Color++Output'));
[rows cols] = ind2sub(size(reqs), floc(1));
row = rows(1);
% Extract first parameter - This should be the colorConversionMode:
colorConversionMode = reqs{row, 3};
BitsPlusPlus('SetColorConversionMode', colorConversionMode);
% These settings are mildly redundant, as the dedicated
% OpenWindowColor++ code in the BitsPlusPlus.m helper file will do all
% neccessary setup, especially deciding of kPsychNeedHalfWidthWindow is
% needed or not:
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% The Color++ formatter is icm aware - Capable of internal color
% correction, but not setup here -- special case: Set flag to zero:
ptb_outputformatter_icmAware = 0;
end
% Request for native 10 bit per color component ARGB2101010 framebuffer,
% or native almost 11 bit per color component RGB111110 framebuffer?
if ~isempty(find(mystrcmp(reqs, 'EnableNative10BitFramebuffer'))) || ...
~isempty(find(mystrcmp(reqs, 'EnableNative11BitFramebuffer')))
% Enable output formatter chain:
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% Request 32bpc float FBO unless already a 16 bpc FBO or similar has
% been explicitely requested: In principle, a 16 bpc FBO would be
% sufficient for a native 10 to 11 bpc framebuffer...
if ~bitand(imagingMode, kPsychNeed16BPCFloat) && ~bitand(imagingMode, kPsychUse32BPCFloatAsap) && ~bitand(imagingMode, kPsychNeed16BPCFixed)
imagingMode = mor(imagingMode, kPsychNeed32BPCFloat);
end
% The ATI 10/11bpc formatter is not yet icm aware - Incapable of internal color correction!
% Additionally native 10/11 bpc framebuffers, e.g., on Fire-Series or NVidia cards also don't
% have icm aware output formatting, so a 'false' setting here is mandatory:
ptb_outputformatter_icmAware = 0;
end
% Request for native 16 bit per color component ARGB16161616 framebuffer?
if ~isempty(find(mystrcmp(reqs, 'EnableNative16BitFramebuffer')))
% Enable output formatter chain:
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% Validate current config to make sure it makes sense for this stunt:
if ~IsLinux
error('PsychImaging: Native 16 bpc framebuffer requested, but not running on Linux. This is unsupported.');
end
% Get number of attached video outputs (aka scanout engines) and properties
% of the first output, which acts as a reference for all other outputs, if any:
numOutputs = Screen('ConfigureDisplay', 'NumberOutputs', screenid);
refOutput = Screen('ConfigureDisplay', 'Scanout', screenid, 0);
% First output must have x/y offset 0,0 ie. top-left corner of framebuffer.
if (refOutput.xStart ~= 0) || (refOutput.yStart ~= 0)
error('PsychImaging: First video output in native 16 bpc framebuffer mode not starting at (x,y)=(0,0)! This is unsupported.');
end
% Screen must have twice the width and height of the viewport of the first output:
[swidth, sheight] = Screen('WindowSize', screenid, 1);
if (2 * refOutput.width ~= swidth) || (2 * refOutput.height ~= sheight)
fprintf('PsychImaging: Screen width and height is not twice the width and height of the first video output in native 16 bpc framebuffer mode. Adapting...\n');
oldres = Screen('Resolution', screenid, 2 * refOutput.width, 2 * refOutput.height, [], [], 2);
else
oldres = [];
end
% More than one output? If so, make sure that all outputs have the same
% horizontal and vertical resolution / viewport size as the 1st reference
% output and that they either clone the first output, aka x/y start offset is (0,0),
% or just right of the first output, so we have a classic dual-display side-by-side
% configuration for ultra wide-screen viewing or dual-display stereo:
if numOutputs > 1
for outputId=1:(numOutputs-1)
% Get this outputs settings:
testOutput = Screen('ConfigureDisplay', 'Scanout', screenid, outputId);
if (testOutput.width ~= refOutput.width) || (testOutput.height ~= refOutput.height) || (testOutput.yStart ~= 0)
% Mismatch in viewport size or vertical start location:
if ~isempty(oldres)
% Restore old screen setting if we changed it:
Screen('Resolution', screenid, oldres.width, oldres.height, [], [], 2);
end
error('PsychImaging: At least one secondary video output in native 16 bpc framebuffer mode does not have the same viewport size as the first output! This is unsupported.');
end
% Secondary outputs must either clone the 1st output, or be located directly to its right edge:
if (testOutput.xStart ~= 0) && (testOutput.xStart ~= refOutput.width)
% Mismatch in horizontal start location:
if ~isempty(oldres)
% Restore old screen setting if we changed it:
Screen('Resolution', screenid, oldres.width, oldres.height, [], [], 2);
end
error('PsychImaging: At least one secondary video output in native 16 bpc framebuffer mode is not located right of the first output, or cloning the first output! This is unsupported.');
end
% At least one output establishing a dual-display side-by-side config?
if testOutput.xStart == refOutput.width
isASideBySideConfig = 1;
end
end
end
% If we made it up to here, then the display output configuration and framebuffer size etc.
% is at least compatible with 16 bpc 64 bpp scanout.
% As of September 2014, none of the commercially available gpu's has
% a graphics driver which would support 16 bpc / 64 bpp framebuffers.
% However, all recent AMD gpu's do support 16 bpc / 64 bpp framebuffers
% in their scanout hardware, ie., storing 16 bpc formatted framebuffer
% content and scanning it out. The actual display encoders do limit output
% precision to way less than 16 bpc though, ie. not the whole display pipeline is
% 16 bpc. So what we do on Linux with the FOSS AMD graphics drivers on
% X11 + radeon-kms is we reprogram the scanout engine (crtc) to treat a
% 32 bpp framebuffer of twice the width and height of the crtc's viewport
% as a 64 bpp framebuffer of exactly the width and height of the crtc's
% viewport. From the perspective of Linux and its graphics stack, what we
% have is an oversized X-Screen twice the width and height of the selected
% display resolution. From the perspective of the scanout hw we have an
% exactly matching X-Screen with 64 bpp color format for 16 bpc scanout,
% and half of all scanlines are dead/ignored. PTB needs to render into the
% jumbo-size onscreen window/framebuffer/x-screen as if it is a 64 bpp fb,
% using GLSL conversion shaders to convert its floating point framebuffers
% content into a 64 bpp encoding. Usercode however should see an onscreen
% window with the effective output size/resolution of the display, not the over-
% sized resolution of the x-screen/fb. Therefore instruct Screen() to pretend
% the onscreen window is only half the width/height of the true system back-
% buffer: half the width/height of a twice width/height system fb == cancels
% each other out for effective width/height == display width/height, and all
% is good:
if ~isASideBySideConfig
% Only half-width if no secondary video output can cover the "right half"
% of the framebuffer for side-by-side (e.g., stereoscopic) display:
imagingMode = mor(imagingMode, kPsychNeedHalfWidthWindow);
end
% Always half-height:
imagingMode = mor(imagingMode, kPsychNeedHalfHeightWindow);
% Request 32bpc float FBO unless already a 16 bpc fixed point FBO
% has been explicitely requested. 16 bpc fixed point is obviously just
% quite sufficient for 16 bpc linear output, 32 bpc float provides 23 bpc
% effective linear precision in the meaningful output intensity range, so
% leaves some numerical headroom for post processing and roundoff errors:
if ~bitand(imagingMode, kPsychUse32BPCFloatAsap) && ~bitand(imagingMode, kPsychNeed16BPCFixed)
imagingMode = mor(imagingMode, kPsychNeed32BPCFloat);
end
% The AMD 16 bpc formatter is not icm aware - Incapable of internal color correction!
ptb_outputformatter_icmAware = 0;
end
% Request for dual display pipeline custom HDR system?
if ~isempty(find(mystrcmp(reqs, 'EnableDualPipeHDROutput')))
% Enable imaging pipeline ...
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
% ... final device output formatter chain(s) ...
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
% ... and dual stream processing and output to two displays ...
imagingMode = mor(imagingMode, kPsychNeedDualWindowOutput);
% Request 32bpc float FBO unless already a 16 bpc FBO or similar has
% been explicitely requested:
if ~bitand(imagingMode, kPsychNeed16BPCFloat) && ~bitand(imagingMode, kPsychUse32BPCFloatAsap) && ~bitand(imagingMode, kPsychNeed16BPCFixed)
imagingMode = mor(imagingMode, kPsychNeed32BPCFloat);
end
% The dual-pipeline HDR output formatter is not yet icm aware -
% Incapable of internal color correction. Well, technically it is, but
% that code-path is disabled for now. It is probably computationally
% more efficient to perform one generic ICM pass on the input buffer
% and then feed into the formatters for the two pipes instead of
% letting each pipe's formatter apply the same color correction, ie.,
% do the same work twice. This needs to be found out in the future. For
% now we go for the simple solution:
ptb_outputformatter_icmAware = 0;
end
if ~isempty(find(mystrcmp(reqs, 'LeftView'))) || ~isempty(find(mystrcmp(reqs, 'RightView')))
% Specific eye channel requested: Need a stereo display mode.
if stereoMode == -1
% None set yet. Just channel the request to the caller:
stereoMode = -2;
end
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
% Also need image processing stage, because only it can provide
% separate processing for both eyes:
imagingMode = mor(imagingMode, kPsychNeedImageProcessing);
else
% Not a single eye specific command requested: Check if there's any
% other spec that would require the image processing stage:
% Any command that applies to 'AllViews' naturally needs the image
% processing:
if ~isempty(find(mystrcmp(reqs, 'AllViews')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedImageProcessing);
end
end
% Image processing stage needed?
if bitand(imagingMode, kPsychNeedImageProcessing)
% Yes. How many commands per chain?
nrslots = max(length(find(mystrcmp(reqs, 'LeftView'))), length(find(mystrcmp(reqs, 'RightView'))));
nrslots = nrslots + length(find(mystrcmp(reqs, 'AllViews')));
% More than one slot per chain? Otherwise we use the default
% single-pass chain:
if nrslots > 1
% More than two slots per chain?
if nrslots > 2
% Need full blown multistage chain:
imagingMode = mor(imagingMode, kPsychNeedMultiPass);
else
% Only two slots. More efficient dual-pass chain is sufficient:
imagingMode = mor(imagingMode, kPsychNeedDualPass);
end
end
end
% Final output formatting stage needed?
if ~isempty(find(mystrcmp(reqs, 'FinalFormatting')))
imagingMode = mor(imagingMode, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
end
% Support for fast offscreen windows (aka FBO backed offscreen windows)
% needed?
if ~isempty(find(mystrcmp(reqs, 'UseFastOffscreenWindows')))
% Need fast offscreen windows. They are included if any non-zero imagingMode
% is set, so we only request'em if imagingMode is still zero:
if imagingMode == 0
imagingMode = kPsychNeedFastOffscreenWindows;
end
end
return;
% End of FinalizeConfiguration subroutine.
% PostConfiguration is called after the onscreen window is open: Performs
% actual pipeline setup of the hook chains:
function rc = PostConfiguration(reqs, win, clearcolor, slavewin)
global ptb_outputformatter_icmAware;
global GL;
global ptb_geometry_inverseWarpMap;
global psych_gpgpuapi; %#ok<NUSED>
% Default requested colormode: Set by PsychDefaultSetup(), if at all.
global psych_default_colormode;
% At least two video outputs scanning out in dual-display side-by-side configuration?
global isASideBySideConfig;
if isempty(GL)
% Perform minimal OpenGL init, so we can call OpenGL commands and use
% GL constants. We do not activate a full 3D rendering context:
InitializeMatlabOpenGL([], [], 1);
end
% Identity CLUT in graphics hardware required?
needsIdentityCLUT = 0;
% Should dithering be disabled if 'needsIdentityCLUT'?
% By default we disable in such a case:
disableDithering = 1;
% 0.0 - 1.0 colorrange without color clamping required?
needsUnitUnclampedColorRange = 0;
applyAlsoToMakeTexture = [];
% Number of used slots in left- and right processing chain:
leftcount = 0;
rightcount = 0;
outputcount = 0;
outputcount0 = 0;
outputcount1 = 0;
% Flags for horizontal/vertical flip operations:
leftUDFlip = 0;
rightUDFlip = 0;
leftLRFlip = 0;
rightLRFlip = 0;
% Stereomode?
winfo = Screen('GetWindowInfo', win);
[winwidth, winheight] = InterBufferSize(win);
% Setup inverse warp map matrices for this window handle:
ptb_geometry_inverseWarpMap{win} = [];
ptb_geometry_inverseWarpMap{win}.gx = 1;
ptb_geometry_inverseWarpMap{win}.gy = 1;
ptb_geometry_inverseWarpMap{win}.mx = winwidth;
ptb_geometry_inverseWarpMap{win}.my = winheight;
if ismember(winfo.StereoMode, [2,3])
ptb_geometry_inverseWarpMap{win}.gy = 2;
end
% --- First action in pipe is a horizontal- or vertical flip, if any ---
% Any flip horizontal requested?
floc = find(mystrcmp(reqs, 'FlipHorizontal'));
if ~isempty(floc)
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
if mystrcmp(reqs{row, 1}, 'LeftView') || mystrcmp(reqs{row, 1}, 'AllViews')
% LeftView horizontal flip.
leftLRFlip = 1;
end
if mystrcmp(reqs{row, 1}, 'RightView') || mystrcmp(reqs{row, 1}, 'AllViews')
% LeftView horizontal flip.
rightLRFlip = 1;
end
end
end
end
% Any flip vertical requested?
floc = find(mystrcmp(reqs, 'FlipVertical'));
if ~isempty(floc)
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
if mystrcmp(reqs{row, 1}, 'LeftView') || mystrcmp(reqs{row, 1}, 'AllViews')
% LeftView vertical flip.
leftUDFlip = 1;
end
if mystrcmp(reqs{row, 1}, 'RightView') || mystrcmp(reqs{row, 1}, 'AllViews')
% LeftView vertical flip.
rightUDFlip = 1;
end
end
end
end
% Left channel flipping needed?
if leftLRFlip || leftUDFlip
% Yes.
sx = 1;
ox = 0;
sy = 1;
oy = 0;
if leftLRFlip
sx = -1;
ox = RectWidth(InterBufferRect(win));
hv = winwidth-1:-1:0;
else
hv = 0:winwidth-1;
end
if leftUDFlip
sy = -1;
oy = RectHeight(InterBufferRect(win));
vv = winheight-1:-1:0;
else
vv = 0:winheight-1;
end
% Enable left imaging chain:
Screen('HookFunction', win, 'Enable', 'StereoLeftCompositingBlit');
% Append blitter for LR/UD flip:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoLeftCompositingBlit', 'Builtin:IdentityBlit', sprintf('Offset:%i:%i:Scaling:%f:%f', ox, oy, sx, sy));
leftcount = leftcount + 1;
clear curmap;
[xg,yg] = meshgrid(hv, vv);
curmap(:,:,1) = xg;
curmap(:,:,2) = yg;
ptb_geometry_inverseWarpMap{win}.(reqs{row, 1}) = int16(curmap);
end
if winfo.StereoMode > 0
% Stereomode enabled: Need to possibly handle right channel as
% well. In mono-mode there would be only a left channel...
% Right channel flipping needed?
if rightLRFlip || rightUDFlip
% Yes.
sx = 1;
ox = 0;
sy = 1;
oy = 0;
if rightLRFlip
sx = -1;
ox = RectWidth(InterBufferRect(win));
hv = winwidth-1:-1:0;
else
hv = 0:winwidth-1;
end
if rightUDFlip
sy = -1;
oy = RectHeight(InterBufferRect(win));
vv = winheight-1:-1:0;
else
vv = 0:winheight-1;
end
% Enable right imaging chain:
Screen('HookFunction', win, 'Enable', 'StereoRightCompositingBlit');
% Append blitter for LR/UD flip:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoRightCompositingBlit', 'Builtin:IdentityBlit', sprintf('Offset:%i:%i:Scaling:%f:%f', ox, oy, sx, sy));
rightcount = rightcount + 1;
clear curmap;
[xg,yg] = meshgrid(hv, vv);
curmap(:,:,1) = xg;
curmap(:,:,2) = yg;
ptb_geometry_inverseWarpMap{win}.(reqs{row, 1}) = int16(curmap);
end
end
% --- End of the flipping stuff ---
% --- Implementation of CLUT animation via clut remapping of colors ---
floc = find(mystrcmp(reqs, 'EnableCLUTMapping'));
% Is a display mode on a CRS Bits+/Bits# or VPixx DataPixx/ViewPixx/ProPixx requested which requires use
% and setup of the devices hardware CLUT? If so we must turn 'EnableCLUTMapping' into a no-op, as it
% would clash with the hardware clut update - and is also superseded by it. Detect the namestrings of
% Bits++ CLUT palette display mode and Mono++ CLUT overlay palette mode. These Bits+ namestrings also
% cover VPixx devices due to the remapping of VPixx names into CRS reqs:
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Bits++Output'))) || ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++OutputWithOverlay')))
% Yep. We must no-op this 'EnableCLUTMapping' request:
floc = [];
end
if ~isempty(floc)
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
% Extract first parameter - This should be the number of clut slots:
nClutSlots = reqs{row, 3};
% Default to 256 slot clut, as most commonly used:
if isempty(nClutSlots)
nClutSlots = 256;
end
if ~isnumeric(nClutSlots)
sca;
error('PsychImaging: Number of clut slots parameter for ''EnableCLUTMapping'' missing or not of numeric type!');
end
% Extract high precision flag:
highprec = reqs{row, 4};
if isempty(highprec)
highprec = 0;
end
% Use our reformatter shader for mapping RGB indices to RGB
% triplets.
% Load shader:
pgshader = LoadGLSLProgramFromFiles('RGBMultiLUTLookupCombine_FormattingShader', 1);
% Init the shader:
glUseProgram(pgshader);
% Assign mapping of input image and clut to texture units:
glUniform1i(glGetUniformLocation(pgshader, 'Image'), 0);
glUniform1i(glGetUniformLocation(pgshader, 'CLUT'), 1);
% Assign number of clut slots to use:
glUniform1f(glGetUniformLocation(pgshader, 'Prescale'), nClutSlots);
glUseProgram(0);
% Use helper routine to build a proper RGBA lookup texture:
pglutid = PsychHelperCreateRemapCLUT(0, nClutSlots, highprec);
pgconfig = sprintf('TEXTURERECT2D(1)=%i', pglutid);
% Setup the callback function which is only called if the clut
% texture needs to be updated because
% Screen('LoadNormalizedGammatable', ..., 2); was called to
% provide a new clut. We attach this to the left image
% processing chain, as this chain is almost always used anyway.
% It needs to execute only once per flip, as it updates state
% global to all views (in a stereo setup):
% We need this weird evalin('base', ...); wrapper so the
% function gets called from the base-workspace, where the
% IMAGINGPIPE_GAMMATABLE variable is defined. We can only
% define it there reliably due to incompatibilities between
% Matlab and Octave in variable assignment inside Screen() :-(
rclutcmd = sprintf('evalin(''base'', ''PsychHelperCreateRemapCLUT(1, %i, IMAGINGPIPE_GAMMATABLE);'');', pglutid);
Screen('HookFunction', win, 'AppendMFunction', 'StereoLeftCompositingBlit', 'Upload new clut into shader callback', rclutcmd);
% Enable left chain unconditionally, so the above clut setup
% code gets executed:
Screen('HookFunction', win, 'Enable', 'StereoLeftCompositingBlit');
% Attach shaders and slots to proper processing chain.
% These perform the clut color conversion blit of each input
% image into a transformed output image. They're executed at
% each flip, irrespective if the clut changed or not:
if mystrcmp(reqs{row, 1}, 'LeftView') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to attach to left view:
if leftcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoLeftCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'StereoLeftCompositingBlit', 'CLUT image transformation shader', pgshader, pgconfig);
Screen('HookFunction', win, 'Enable', 'StereoLeftCompositingBlit');
leftcount = leftcount + 1;
end
if mystrcmp(reqs{row, 1}, 'RightView') || (mystrcmp(reqs{row, 1}, 'AllViews') && winfo.StereoMode > 0)
% Need to attach to right view:
if rightcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoRightCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'StereoRightCompositingBlit', 'CLUT image transformation shader', pgshader, pgconfig);
Screen('HookFunction', win, 'Enable', 'StereoRightCompositingBlit');
rightcount = rightcount + 1;
end
end
end
end
% --- End of CLUT animation via clut remapping of colors ---
% --- Addition of offsets / scales etc. to input image ---
floc = find(mystrcmp(reqs, 'AddOffsetToImage'));
if ~isempty(floc)
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
% Extract first parameter - This should be the offset:
PixelOffset = reqs{row, 3};
if isempty(PixelOffset) || ~isnumeric(PixelOffset)
sca;
error('PsychImaging: Parameter for ''AddOffsetToImage'' missing or not of numeric type!');
end
% Further (optional) parameters passed?
% 2nd parameter, if any, would be a gain value to apply before
% applying the PixelOffset:
PixelGain = reqs{row, 4};
if isempty(PixelGain)
% No such flag: Default to 1:
PixelGain = 1;
else
if ~isnumeric(PixelGain)
sca;
error('PsychImaging: Optional Gain-Parameter for ''AddOffsetToImage'' not of numeric type!');
end
end
% 3rd parameter, if any, would be an Offset value to apply before
% applying the gain:
PixelPreOffset = reqs{row, 5};
if isempty(PixelPreOffset)
% No such flag: Default to 0:
PixelPreOffset = 0;
else
if ~isnumeric(PixelPreOffset)
sca;
error('PsychImaging: Optional "Offset before Gain"- PrescaleParameter for ''AddOffsetToImage'' not of numeric type!');
end
end
% Load and build shader:
shader = LoadGLSLProgramFromFiles('ScaleAndBiasShader', 1);
% Init the shader: Assign mapping of input image and offsets, gains:
glUseProgram(shader);
glUniform1i(glGetUniformLocation(shader, 'Image'), 0);
glUniform1f(glGetUniformLocation(shader, 'postscaleoffset'), PixelOffset);
glUniform1f(glGetUniformLocation(shader, 'prescaleoffset'), PixelPreOffset);
glUniform1f(glGetUniformLocation(shader, 'scalefactor'), PixelGain);
glUseProgram(0);
% Ok, 'gld' should contain a valid OpenGL display list for
% geometry correction. Attach proper shader to proper chain:
if mystrcmp(reqs{row, 1}, 'LeftView') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to attach to left view:
if leftcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoLeftCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'StereoLeftCompositingBlit', 'ScaleAndOffsetShader', shader);
Screen('HookFunction', win, 'Enable', 'StereoLeftCompositingBlit');
leftcount = leftcount + 1;
end
if mystrcmp(reqs{row, 1}, 'RightView') || (mystrcmp(reqs{row, 1}, 'AllViews') && winfo.StereoMode > 0)
% Need to attach to right view:
if rightcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoRightCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'StereoRightCompositingBlit', 'ScaleAndOffsetShader', shader);
Screen('HookFunction', win, 'Enable', 'StereoRightCompositingBlit');
rightcount = rightcount + 1;
end
if mystrcmp(reqs{row, 1}, 'FinalFormatting')
% Need to attach to final formatting:
if outputcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit', 'ScaleAndOffsetShader', shader);
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
outputcount = outputcount + 1;
end
end
end
end
% --- End of addition of offsets / scales etc. to input image ---
% --- Geometry correction via warped blit ---
floc = find(mystrcmp(reqs, 'GeometryCorrection'));
if ~isempty(floc)
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
% Extract first parameter - This should be the name of a
% calibration file:
calibfilename = reqs{row, 3};
if isempty(calibfilename)
sca;
error('PsychImaging: Parameter for ''GeometryCorrection'' missing!');
end
% Is 'calibfilename' a function handle or a final warpstruct?
if (~isstruct(calibfilename) && ~ischar(calibfilename)) || ...
(isstruct(calibfilename) && isfield(calibfilename, 'gld') && isfield(calibfilename, 'glsl'))
% Functionhandle or final warpstruct passed: This
% assignment will either assign the warpstruct, or call the
% function referenced by the functionhandle and assign the
% returned warpstruct:
if ~isstruct(calibfilename)
[warpstruct, filterMode] = calibfilename();
else
warpstruct = calibfilename;
filterMode = ':Bilinear';
end
else
% Either calibration input parameter struct, or filename of
% calibration file: Just pass it to CreateDisplayWarp(),
% after some parameter validation:
if ischar(calibfilename) && ~exist(calibfilename, 'file')
sca;
error('PsychImaging: Passed an argument to ''GeometryCorrection'' which is not a valid name of an accessible calibration file!');
end
% Filename or calibstruct valid. Further (optional) parameters passed?
% 2nd parameter, if any, would be a 'visualize' flag that
% asks for plotting of some calibration info and additional
% output to the console:
showCalibOutput = reqs{row, 4};
if isempty(showCalibOutput)
% No such flag: Default to "silence":
showCalibOutput = 0;
end
% Additional parameters provided? Pass 'em along. Currently
% defined are up to additional 6 parameters 5 to 10. These
% default to empty if not provided by user-code.
% Use helper function to read the calibration file or
% parameter struct and build a proper warp-function:
[warpstruct, filterMode] = CreateDisplayWarp(win, calibfilename, showCalibOutput, reqs{row, 5:10});
end
% Is it a display list handle?
if ~isempty(warpstruct.gld)
% This must be a display list handle for display list
% blitting, potentially with an additional GLSL shader
% attached:
gld = warpstruct.gld;
if ~glIsList(gld)
% Game over:
sca;
error('PsychImaging: Passed a handle to ''GeometryCorrection'' which is not a valid OpenGL display list!');
end
if ~isempty(warpstruct.glsl)
glsl = warpstruct.glsl;
else
glsl = 0;
end
% Ok, 'gld' should contain a valid OpenGL display list for
% geometry correction.
% Before we setup the image warping ops for real in the pipeline, we
% do a "cold run" to compute a 2D reverse lookup table that allows to
% map warped 2D screen positions back to their originating pre-warp pixels.
% This is useful, e.g., if one wants to map 2D mouse click
% positions on the geometry corrected display back to the
% originating pixel positions in the uncorrected stimulus
% image.
%
% This works by creating a float texture whose texels
% color-code their spatial (x,y) locations in the R and G
% channels, then warping this texture with the same
% operations that the GPU will apply to the stimulus
% images, then reading back the warp-blitted texture into a
% 2-layer 2D matrix, where layer 1 (former red channel)
% encodes originating x-position of each "pixel", layer 2
% encodes y-position, Undefined positions are mapped to (0,0):
% At least 32 bpc float or 16 bit snorm textures/fbo's
% supported? Otherwise this is a no-go:
if (winfo.GLSupportsTexturesUpToBpc >= 32) || ~isempty(strfind(glGetString(GL.EXTENSIONS), '_texture_snorm'))
% Yes.
% Check if previous code already defined some inverse
% mapping:
if ~isempty(ptb_geometry_inverseWarpMap{win}) && isfield(ptb_geometry_inverseWarpMap{win}, reqs{row, 1})
% Yes: Extract it and use it as starting point for
% geometry inverse mapping:
premap = double(ptb_geometry_inverseWarpMap{win}.(reqs{row, 1}));
xg = premap(:,:,1);
yg = premap(:,:,2);
else
% No: Create a default identity mapping as starting
% point:
[xg,yg] = meshgrid(0:winwidth-1, 0:winheight-1);
end
% Need to use snorm 16 bit textures because 32 bpc
% float textures unavailable?
invmap_needs_snorm = (winfo.GLSupportsTexturesUpToBpc < 32);
% We always normalize to range 0..1, so it works for
% both floating point textures and 16 bit snorm
% textures:
inmap = zeros(winheight, winwidth, 3);
inmap(:,:,1) = xg / winwidth;
inmap(:,:,2) = yg / winheight;
if invmap_needs_snorm
% Need to use 16 bit snorm textures. We request 16
% bit floating point precision on this hw that
% doesn't support it, but does support 16 bit
% snorm. Screen() will choose 16 bit snorm as
% fallback, so we get what we want and can properly
% process mappings for up to 32k x 32k pixels aka 1
% Gigapixel:
premaptex = Screen('MakeTexture', win, inmap, [], [], 1);
postmaptex = Screen('OpenOffscreenWindow', win, 0, Screen('Rect', premaptex), 64);
else
% We have 32 bpc float texture support: Use it.
premaptex = Screen('MakeTexture', win, inmap, [], [], 2);
postmaptex = Screen('OpenOffscreenWindow', win, 0, Screen('Rect', premaptex), 128);
end
warpoperator = CreateGLOperator(win);
AddImageUndistortionToGLOperator(warpoperator, premaptex, warpstruct);
postmaptex = Screen('TransformTexture', premaptex, warpoperator, [], postmaptex);
glerr = glGetError;
if glerr
% We get this error on some NVidia binary blob graphics driver on Linux, e.g., v295.49. Swallow it, it seems to cause no consequences:
fprintf('PsychImaging: GeometryCorrection: Spurious benign gl error [%s] after computing postmap texture detected.\n', gluErrorString(glerr));
end
curmap = Screen('GetImage', postmaptex, [], [], 1, 3);
Screen('Close', [premaptex, postmaptex, warpoperator]);
curmap(:,:,1) = curmap(:,:,1) * winwidth;
curmap(:,:,2) = curmap(:,:,2) * winheight;
curmap = round(curmap(:,:,1:2));
% Assign inverse warp mapping tables for selected view. We
% assume that 16 bit signed integer is enough - Can cope
% with a framebuffer of up to 32768 * 32768 pixels.
% ptb_geometry_inverseWarpMap{} is a global variable shared
% with the RemapMouse() functions that uses these mapping
% matrices:
ptb_geometry_inverseWarpMap{win}.(reqs{row, 1}) = int16(curmap);
else
% No: Cannot create remap textures at required
% precision, inverse mapping won't work:
fprintf('PsychImaging GeometryCorrection:Warning: GPU does not support features needed for RemapMouse() command.\n');
end
% Setup imaging pipeline - Attach proper blitters to proper chains:
if mystrcmp(reqs{row, 1}, 'LeftView') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to setup left view warp:
if leftcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoLeftCompositingBlit', 'Builtin:FlipFBOs', '');
end
% Must clear target buffer, because a geometrically
% warped blit for geometry correction may not cover the
% whole buffer area, and "uninitialized pixel trash"
% may shine through otherwise:
Screen('Hookfunction', win, 'AppendMFunction', 'StereoLeftCompositingBlit', 'Clear target buffer', 'glClear(16384);');
if glsl
Screen('HookFunction', win, 'AppendShader', 'StereoLeftCompositingBlit', 'GeometricWarpShader', glsl, sprintf('Blitter:DisplayListBlit:Handle:%i%s', gld, filterMode));
else
Screen('HookFunction', win, 'AppendBuiltin', 'StereoLeftCompositingBlit', 'Builtin:IdentityBlit', sprintf('Blitter:DisplayListBlit:Handle:%i%s', gld, filterMode));
end
Screen('HookFunction', win, 'Enable', 'StereoLeftCompositingBlit');
leftcount = leftcount + 1;
end
if mystrcmp(reqs{row, 1}, 'RightView') || (mystrcmp(reqs{row, 1}, 'AllViews') && winfo.StereoMode > 0)
% Need to setup right view warp:
if rightcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoRightCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('Hookfunction', win, 'AppendMFunction', 'StereoRightCompositingBlit', 'Clear target buffer', 'glClear(16384);');
if glsl
Screen('HookFunction', win, 'AppendShader', 'StereoRightCompositingBlit', 'GeometricWarpShader', glsl, sprintf('Blitter:DisplayListBlit:Handle:%i%s', gld, filterMode));
else
Screen('HookFunction', win, 'AppendBuiltin', 'StereoRightCompositingBlit', 'Builtin:IdentityBlit', sprintf('Blitter:DisplayListBlit:Handle:%i%s', gld, filterMode));
end
Screen('HookFunction', win, 'Enable', 'StereoRightCompositingBlit');
rightcount = rightcount + 1;
end
if mystrcmp(reqs{row, 1}, 'FinalFormatting')
% Need to setup final formatting warp:
if outputcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
Screen('Hookfunction', win, 'AppendMFunction', 'FinalOutputFormattingBlit', 'Clear target buffer', 'glClear(16384);');
if glsl
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit', 'GeometricWarpShader', glsl, sprintf('Blitter:DisplayListBlit:Handle:%i%s', gld, filterMode));
else
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:IdentityBlit', sprintf('Blitter:DisplayListBlit:Handle:%i%s', gld, filterMode));
end
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
outputcount = outputcount + 1;
end
else
% Game over:
sca;
error('PsychImaging: Passed a handle for a not yet implemented display undistortion method!');
end
end
end
end
% --- End of geometry correction via warped blit ---
% --- Interleaved line stereo wanted? ---
if ~isempty(find(mystrcmp(reqs, 'InterleavedLineStereo')))
% Yes: Load and setup compositing shader.
shader = LoadGLSLProgramFromFiles('InterleavedLineStereoShader', 1);
floc = find(mystrcmp(reqs, 'InterleavedLineStereo'));
[rows cols]= ind2sub(size(reqs), floc);
% Extract first parameter - This should be the mapping of odd- and even
% lines: 0 = even lines == left image, 1 = even lines == right image.
startright = reqs{rows, 3};
if startright~=0 && startright~=1
sca;
error('PsychImaging: The "startright" parameter must be zero or one!');
end
% Init the shader: Assign mapping of left- and right image:
glUseProgram(shader);
glUniform1i(glGetUniformLocation(shader, 'Image1'), 1-startright);
glUniform1i(glGetUniformLocation(shader, 'Image2'), startright);
glUniform2f(glGetUniformLocation(shader, 'Offset'), 0, 0);
glUseProgram(0);
% Reset compositor chain: It got initialized inside Screen() with an
% unsuitable shader for our purpose:
Screen('HookFunction', win, 'Reset', 'StereoCompositingBlit');
% Append our new shader and enable chain:
Screen('HookFunction', win, 'AppendShader', 'StereoCompositingBlit', 'StereoCompositingShaderInterleavedLineStereo', shader, 'Blitter:IdentityBlit:Offset:0:0:Scaling:1.0:2.0');
Screen('HookFunction', win, 'Enable', 'StereoCompositingBlit');
% Correct mouse position via proper gain:
ptb_geometry_inverseWarpMap{win}.gy = ptb_geometry_inverseWarpMap{win}.gy * 0.5;
end
% --- End of interleaved line stereo setup code ---
% --- Interleaved column stereo wanted? ---
if ~isempty(find(mystrcmp(reqs, 'InterleavedColumnStereo')))
% Yes: Load and setup compositing shader.
shader = LoadGLSLProgramFromFiles('InterleavedColumnStereoShader', 1);
floc = find(mystrcmp(reqs, 'InterleavedColumnStereo'));
[rows cols]= ind2sub(size(reqs), floc);
% Extract first parameter - This should be the mapping of odd- and even
% columns: 0 = even cols == left image, 1 = even cols == right image.
startright = reqs{rows, 3};
if startright~=0 && startright~=1
sca;
error('PsychImaging: The "startright" parameter must be zero or one!');
end
% Init the shader: Assign mapping of left- and right image:
glUseProgram(shader);
glUniform1i(glGetUniformLocation(shader, 'Image1'), 1-startright);
glUniform1i(glGetUniformLocation(shader, 'Image2'), startright);
glUniform2f(glGetUniformLocation(shader, 'Offset'), 0, 0);
glUseProgram(0);
% Reset compositor chain: It got initialized inside Screen() with an
% unsuitable shader for our purpose:
Screen('HookFunction', win, 'Reset', 'StereoCompositingBlit');
% Append our new shader and enable chain:
Screen('HookFunction', win, 'AppendShader', 'StereoCompositingBlit', 'StereoCompositingShaderInterleavedColumnStereo', shader, 'Blitter:IdentityBlit:Offset:0:0:Scaling:2.0:1.0');
Screen('HookFunction', win, 'Enable', 'StereoCompositingBlit');
% Correct mouse position via proper gain:
ptb_geometry_inverseWarpMap{win}.gx = ptb_geometry_inverseWarpMap{win}.gx * 0.5;
end
% --- End of interleaved column stereo setup code ---
% --- SideBySideCompressedStereo wanted? ---
if ~isempty(find(mystrcmp(reqs, 'SideBySideCompressedStereo')))
% Yes: Call external setup routine with its default parameters to
% modify our default "stereomode 2" top-bottom compressed stereo
% shader, which was automatically generated by Screen('Openwindow'),
% into a left-right side-by-side compressed shader.
SetCompressedStereoSideBySideParameters(win);
% Correct mouse position via proper gain:
% Need to apply a 2x gain to horizontal cursor position to compensate
% for horizontal compression...
ptb_geometry_inverseWarpMap{win}.gx = ptb_geometry_inverseWarpMap{win}.gx * 2;
% ... need to undo the 2x gain automatically applied at the top of this
% function when a stereomode of 2 is used, as we do to implement our
% stereo method:
ptb_geometry_inverseWarpMap{win}.gy = ptb_geometry_inverseWarpMap{win}.gy / 2;
end
% --- End of SideBySideCompressedStereo setup code ---
% --- "Mouse" remapping needed for half-width Color++ or C48 mode? ---
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Color++Output')))
floc = find(mystrcmp(reqs, 'EnableBits++Color++Output'));
[rows cols] = ind2sub(size(reqs), floc(1));
row = rows(1);
% Extract first parameter - This should be the colorConversionMode:
colorConversionMode = reqs{row, 3};
% Only mode 0 needs remapping:
if colorConversionMode == 0
% Correct mouse position via proper gain:
ptb_geometry_inverseWarpMap{win}.gx = ptb_geometry_inverseWarpMap{win}.gx * 0.5;
end
end
% --- Custom color correction for display wanted? ---
%
% This *MUST* be immediately before the final output formatters for
% special display devices. If this is done in the output conversion chain
% it must be the last corrective operation before data is fed into the
% formatter plugins. If it is applied to the image processing chains for
% stereo display setups, it must be the absolutely last operation in that
% processing chains before data is fed into output conversion or into the
% stereo compositor.
%
% If we need per view correction for any stereo output mode except
% anaglyph stereo, it needs to happen at end of per view pipeline, so
% things like gamma-correction are applied to final stims, not
% intermediate results. In any other case, there will be only one physical
% output device, so correction is handled best at the end of output
% conversion.
icmshader = [];
icmstring = [];
icmconfig = [];
icmformatting_downstream = 0;
floc = find(mystrcmp(reqs, 'DisplayColorCorrection'));
if ~isempty(floc)
numColorCorrections = length(floc);
handlebrightside = 0;
handlebitspluplus = 0;
% Bits+ Mono++ or Color++ mode active?
if ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++Output'))) || ~isempty(find(mystrcmp(reqs, 'EnableBits++Mono++OutputWithOverlay'))) || ~isempty(find(mystrcmp(reqs, 'EnableBits++Color++Output')))
% Only one 'DisplayColorCorrection' plugin in the whole pipeline?
if length(floc) == 1
% Yes: Nothing to do. Full setup for that single plugin has
% been already done inside our OpenWindow routine. The single
% plugin has been merged as downstream formatter into the
% Bits++ output formatting shader via special setup code inside
% BitsPlusPlus() driver M-File.
floc = [];
handlebitspluplus=0;
else
% No: No downstream formatting for Bits++ possible whatsoever:
% Need to do our setup work -- The Bitsplus output formatter
% just contains a simple neutral clamping shader. However, we
% need to be careful where to insert our shader(s) if the target
% is the output conversion chain, as the last slot of that
% chain is already occupied by the Bits++ shader.
handlebitspluplus=1;
end
end
if ~isempty(find(mystrcmp(reqs, 'EnableBrightSideHDROutput')))
% The BrightSide plugin is already attached to the output
% formatting chain, so our own plugins need to be placed properly
% relative to that...
handlebrightside = 1;
% Device needs an identity clut in the GPU gamma tables:
needsIdentityCLUT = 1;
% Use unit color range, without clamping, but in high-precision mode:
needsUnitUnclampedColorRange = 1;
end
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
% Extract first parameter - This should be the method of correction:
colorcorrectionmethod = reqs{row, 3};
if isempty(colorcorrectionmethod) || ~ischar(colorcorrectionmethod)
sca;
error('PsychImaging: Name of color correction method for ''DisplayColorCorrection'' missing or not of string type!');
end
% Select method:
PsychColorCorrection('ChooseColorCorrection', colorcorrectionmethod);
% Load and build shader objects: icmshader is the compiled
% color correction shader:
[icmshader icmstring icmconfig icmoverrideMain] = PsychColorCorrection('GetCompiledShaders', win, 1);
% Output formatter with built-in ICM capabilities selected? And
% color correction for final formatting chain insted of
% per-viewchannel chains?
if (ptb_outputformatter_icmAware > 0) && (numColorCorrections == 1) && isempty(icmoverrideMain) && (mystrcmp(reqs{row, 1}, 'FinalFormatting') || mystrcmp(reqs{row, 1}, 'AllViews'))
% Yes. These formatters can use the icm shader internally for
% higher efficiency if wanted. We can only do that if color
% correction shall happen in 'AllViews' or 'FinalFormatting', ie.,
% if this is a monoscopic window or a stereo window where all views
% display to the same physical output device and therefore the same
% color correction can be applied to both views.
%
% Additionally there must be only 1 color correction stage be present,
% as multiple stages could can't be done downstream.
%
% Additionally there must be no need for a non-standard
% main() routine for color correction shader.
% Good. We create the icmshader here according to specs,
% but then pass it along downstream to the output formatter
% setup code which will attach it.
icmformatting_downstream = 1;
else
% Downstream color correction not possible due to use of
% either a per viewchannel correction, or due to use of
% either no output formatter at all, or not of an icm aware
% one, or because multi-pass color correction needed, or
% non-standard main routine needed:
icmformatting_downstream = 0;
% Need to build full standalone shader, including main()
% stub routine and full link and post-link:
if isempty(icmoverrideMain)
% No special override main routine provided. Use our
% standard one:
shBody = 'uniform sampler2DRect Image; vec4 icmTransformColor(vec4 incolor); void main(void){gl_FragColor = icmTransformColor(texture2DRect(Image, gl_FragCoord.xy));}';
else
% Use provided override routine from
% PsychColorCorrection():
shBody = icmoverrideMain;
end
% shMain is the main() routine which needs to get compiled into
% a valid shader object:
shMain = sprintf('\n#extension GL_ARB_texture_rectangle : enable \n\n%s', shBody);
mainShader = glCreateShader(GL.FRAGMENT_SHADER);
glShaderSource(mainShader, shMain);
glCompileShader(mainShader);
% Link together mainShader and icmshader into a GLSL program
% object:
shader = glCreateProgram;
glAttachShader(shader, icmshader);
glAttachShader(shader, mainShader);
% Link the program:
glLinkProgram(shader);
% Init the shader: Assign mapping of input image and offsets, gains:
glUseProgram(shader);
glUniform1i(glGetUniformLocation(shader, 'Image'), 0);
glUseProgram(0);
end
if ~icmformatting_downstream
% Ok, shader is our final color correction shader, properly
% setup. Attach it to proper chain:
% MK Resolved 26.4.2010: HACK FIXME BUG: 'AllViews' -> Move back to
% 'FinalFormatting' below, once Screens() pipeline is
% fixed!!
if mystrcmp(reqs{row, 1}, 'LeftView') %|| mystrcmp(reqs{row, 1}, 'AllViews')
% Need to attach to left view:
if leftcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoLeftCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'StereoLeftCompositingBlit', icmstring, shader, icmconfig);
Screen('HookFunction', win, 'Enable', 'StereoLeftCompositingBlit');
leftcount = leftcount + 1;
end
if mystrcmp(reqs{row, 1}, 'RightView')
% Need to attach to right view:
if rightcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'StereoRightCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'StereoRightCompositingBlit', icmstring, shader, icmconfig);
Screen('HookFunction', win, 'Enable', 'StereoRightCompositingBlit');
rightcount = rightcount + 1;
end
% MK Resolved 26.4.2010: HACK FIXME BUG: 'AllViews' -> Move back to
% 'FinalFormatting' below, once Screens() pipeline is
% fixed!!
if mystrcmp(reqs{row, 1}, 'FinalFormatting') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to attach to final formatting:
if ~handlebitspluplus && ~handlebrightside
% Standard case:
if outputcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit', icmstring, shader, icmconfig);
else
% Special case: A BitsPlusPlus or BrightSideHDR output formatter has
% been attached at the end of queue already. We need
% to insert our new slot + some FlipFBO commands just
% before the last occupied slot - which is the output formatter slot.
% Let's simply count the number of occupied slots and
% then insert at that location:
insertPos = 0;
while(1)
if Screen('Hookfunction', win, 'Query', 'FinalOutputFormattingBlit', insertPos)~=-1
insertPos = insertPos + 1;
else
break;
end
end
% insertPos points to first slot after the end of the
% chain, ie., where one could append new slots. We want
% to insert just at the location of the last slot, so
% the last slot gets pushed back one element:
insertPos = insertPos - 1;
% This insertPos >= 0 check makes sure we also work
% in BrightSide HDR dummy emulation mode, where no
% actual slot is attached:
if insertPos >= 0
% Need to prepend a bufferflip command in front of
% bitsplusplus or brightside:
insertSlot = sprintf('InsertAt%iBuiltin', insertPos);
Screen('HookFunction', win, insertSlot, 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
else
% No real output formatter due to emulation
% mode (BrightSide on unsupported platforms).
% Force insertPos to 0, so at least
% colorcorrection applies:
insertPos = 0;
end
% Then need to prepend our shader in front of that
% FlipFBO's:
insertSlot = sprintf('InsertAt%iShader', insertPos);
Screen('HookFunction', win, insertSlot, 'FinalOutputFormattingBlit', icmstring, shader, icmconfig);
% If we're not the first, we need to prepend a
% FlipFBO's for ourselves, unless there is already
% such a command at the current insertPos:
if outputcount > 0
% Need to test slot right before us:
insertPos = insertPos - 1;
% Test what's there at the moment:
[dummy testNameString ] = Screen('HookFunction', win, 'Query', 'FinalOutputFormattingBlit', insertPos);
if (dummy == - 1) || ~mystrcmp(testNameString, 'Builtin:FlipFBOs')
% Need a bufferflip command:
insertSlot = sprintf('InsertAt%iBuiltin', insertPos);
Screen('HookFunction', win, insertSlot, 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
end
% BrightSide setup?
if handlebrightside
% Tell BrightSide driver that it is called from us, so it can adapt to
% some specific boundary conditions caused by us:
BrightSideHDR('CalledFromPsychImaging', 0);
end
end
% One more slot occupied by us, so increment
% outputcount:
outputcount = outputcount + 1;
% And enable the chain if it ain't enabled already:
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
end
% Perform post-link setup of color correction method after
% shader attached to pipe:
PsychColorCorrection('ApplyPostGLSLLinkSetup', win, reqs{row, 1});
% Screen('HookFunction', win, 'Dump', 'FinalOutputFormattingBlit');
end
end
end
end
% Any output formatter to follow which is icmAware, ie., needs to have an
% icmshader as input, either a real one, or a dummy pass-through one?
if ptb_outputformatter_icmAware
% Yes. To be created output formatter needs an icmshader.
% Downstream attachment of (already created) icmshader?
% If so, nothing to do, icmshader and icmstring already setup:
if ~icmformatting_downstream
% No. The output formatter is icm aware and needs an icmshader, but
% none yet created because downstream correction not possible. We
% need to create a dummy icmshader which just passes through all
% values uncorrected - This way we make sure that the link
% operation of the output formatter doesn't fail:
icmshader = LoadShaderFromFile('ICMPassThroughShader.frag.txt', [], 1);
icmstring = '';
icmconfig = '';
else
% Nothing to do. Just perform some sanity check here to catch
% possible future implementation bugs:
if isempty(icmshader) || isempty(icmstring)
error('In DisplayColorCorrection setup: Downstream formatting for icmAware output formatter requested, but icmshader and/or icmstring undefined! This is an implementation bug!!!');
end
end
end
% --- End of Custom color correction for display wanted ---
% --- User code wants to use unclamped, high precision 0-1 range colors? ---
if ~isempty(find(mystrcmp(reqs, 'NormalizedHighresColorRange')))
% Use unit color range, without clamping, but in high-precision mode:
needsUnitUnclampedColorRange = 1;
% Extract first parameter - This should be the applyAlsoToMakeTexture flag:
floc = find(mystrcmp(reqs, 'NormalizedHighresColorRange'));
[rows cols] = ind2sub(size(reqs), floc(1));
row = rows(1);
applyAlsoToMakeTexture = reqs{row, 3};
if ~isempty(applyAlsoToMakeTexture)
if ~isnumeric(applyAlsoToMakeTexture) || ~ismember(applyAlsoToMakeTexture, [0, 1])
sca;
error('In NormalizedHighresColorRange: Invalid applyAlsoToMakeTexture flag specified. Must be 0 or 1.');
end
else
applyAlsoToMakeTexture = [];
end
end
% --- End of setup for unclamped, high precision 0-1 range colors ---
% --- Setup stereo crosstalk reduction ---
floc = find(mystrcmp(reqs, 'StereoCrosstalkReduction'));
if ~isempty(floc)
if winfo.StereoMode == 0
sca;
error('PsychImaging task ''StereoCrosstalkReduction'' requested, but no suitable stereomode active?! Aborted.');
end
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
crosstalkMethod = reqs{row, 3};
if isempty(crosstalkMethod) || ~strcmpi(crosstalkMethod, 'SubtractOther')
sca;
error('In StereoCrosstalkReduction: Crosstalk reduction method parameter missing or unsupported method requested.');
end
crosstalkGain = reqs{row, 4};
if isempty(crosstalkGain)
sca;
error('In StereoCrosstalkReduction: The crosstalk reduction gain must be provided.');
end
if isscalar(crosstalkGain)
% Same gain for all three color channels:
crosstalkGain = [crosstalkGain crosstalkGain crosstalkGain];
else
if numel(crosstalkGain)~=3
sca;
error('In StereoCrosstalkReduction: provided gain should be a scalar or a 3-element vector.');
end
end
% Background clear color as specified by PsychImaging('Openwindow', ...) call is reference for
% zero-contrast:
crosstalkBackGroundClr = clearcolor;
if isempty(crosstalkBackGroundClr) || ~isnumeric(crosstalkBackGroundClr)
sca;
error('In StereoCrosstalkReduction: You did not provide the mandatory background clear color for crosstalk reduction in ''OpenWindow''.');
end
if isscalar(crosstalkBackGroundClr)
% Same background luminance level for all three color channels:
crosstalkBackGroundClr = [crosstalkBackGroundClr, crosstalkBackGroundClr, crosstalkBackGroundClr];
else
if numel(crosstalkBackGroundClr) < 3
sca;
error('In StereoCrosstalkReduction: Provided background clear color should be a scalar or an at least 3-element RGB(A) vector.');
end
crosstalkBackGroundClr = crosstalkBackGroundClr(1:3);
end
if min(crosstalkBackGroundClr) <= 0 || max(crosstalkBackGroundClr) >= 1
sca;
error('In StereoCrosstalkReduction: Provided background clear color is not in the normalized range > 0 and < 1 as required.');
end
% Load and build shader from files StereoCrosstalkReductionShader.vert.txt and/or
% StereoCrosstalkReductionShader.frag.txt in the shader directory:
shader = LoadGLSLProgramFromFiles('StereoCrosstalkReductionShader', 1);
% Init the shader: Assign mapping of images:
glUseProgram(shader);
% Image1 will contain the input image for the currently processed target eye:
glUniform1i(glGetUniformLocation(shader, 'Image1'), 0);
% Image2 will contain the input image for the to-be-suppressed other eye:
glUniform1i(glGetUniformLocation(shader, 'Image2'), 1);
% Just as example. Assign scalar float parameter crosstalkReductionParameter1 to the
% shader variable 'uniform float crossTalkParam1' for use as a input constant in shader:
glUniform3fv(glGetUniformLocation(shader, 'crosstalkGain'), 1, crosstalkGain);
glUniform3fv(glGetUniformLocation(shader, 'backGroundClr'), 1, crosstalkBackGroundClr);
% Shader setup done:
glUseProgram(0);
% Setup specific to left eye output:
if mystrcmp(reqs{row, 1}, 'LeftView') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to attach to left view:
if leftcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'PrependBuiltin', 'StereoLeftCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'PrependShader', 'StereoLeftCompositingBlit', 'StereoCrosstalkReductionShader', shader);
Screen('HookFunction', win, 'Enable', 'StereoLeftCompositingBlit');
leftcount = leftcount + 1;
end
% Setup specific to right eye output:
if mystrcmp(reqs{row, 1}, 'RightView') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to attach to right view:
if rightcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'PrependBuiltin', 'StereoRightCompositingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'PrependShader', 'StereoRightCompositingBlit', 'StereoCrosstalkReductionShader', shader);
Screen('HookFunction', win, 'Enable', 'StereoRightCompositingBlit');
rightcount = rightcount + 1;
end
end
end
end
% --- End of setup for stereo crosstalk reduction ---
% --- Custom processing setup for the stereo compositor ---
% --- VR Headset support ---
floc = find(mystrcmp(reqs, 'UseVRHMD'));
if ~isempty(floc)
[row col] = ind2sub(size(reqs), floc);
% Extract first parameter - This should be the handle of the VR device:
hmd = reqs{row, 3};
% Verify it is already open:
if ~hmd.driver('IsOpen', hmd)
sca;
error('In UseVRHMD: Invalid HMD handle specified. No such device opened.');
end
% Ok, perform setup after onscreen window is open, e.g., setting up the special
% shaders for the stereo compositor:
if ~hmd.driver('PerformPostWindowOpenSetup', hmd, win, clearcolor)
sca;
error('In UseVRHMD: Failed to setup image post-processing for the VR HMD.');
end
% Ready to rock the HMD!
end
% --- End of VR Headset support code. ---
% --- FROM HERE ON ONLY OUTPUT FORMATTERS, NOTHING ELSE!!! --- %
% --- Final output formatter for generic LUT based luminance framebuffer requested? ---
% --- OR Final output formatter for Pseudo-Gray processing requested? ---
floc = find(mystrcmp(reqs, 'EnableGenericHighPrecisionLuminanceOutput'));
if isempty(floc)
floc = find(mystrcmp(reqs, 'EnablePseudoGrayOutput'));
end
if ~isempty(floc)
[row col]= ind2sub(size(reqs), floc);
if mystrcmp(reqs{row, 2}, 'EnablePseudoGrayOutput')
% PseudoGray mode: We create the lut ourselves via helper function:
lut = CreatePseudoGrayLUT;
% For proper pseudo-gray output the gfx gamma-tables must not be
% touched by us!
needsIdentityCLUT = 0;
else
% Generic "attenuator" driver mode:
% Attenuator-style devices need an identity clut:
needsIdentityCLUT = 1;
% Extract first parameter - This should be the lookup table 'lut' to use:
lut = reqs{row, 3};
end
if isempty(lut) || ~isnumeric(lut)
sca;
error('PsychImaging: Mandatory lookup table parameter lut for ''EnableGenericHighPrecisionLuminanceOutput'' missing or not of numeric type!');
end
% Load output formatting shader for GenericHighPrecisionLuminanceOutput:
% 'icmshader' is a handle to a compiled fragment shader, provided by
% upstream, that implements the display color correction function:
pgshader = LoadGLSLProgramFromFiles('GenericLuminanceToRGBA8_FormattingShader', 1, icmshader);
% Init the shader: Assign mapping texture units etc.:
glUseProgram(pgshader);
glUniform1i(glGetUniformLocation(pgshader, 'Image'), 0);
glUniform1i(glGetUniformLocation(pgshader, 'LUT'), 1);
glUniform1f(glGetUniformLocation(pgshader, 'MaxIndex'), size(lut, 2)-1);
glUseProgram(0);
% Use helper routine to build a proper RGBA Lookup texture for
% conversion of HDR luminance pixels to RGBA8 pixels:
pglutid = PsychHelperCreateGenericLuminanceToRGBA8LUT(lut);
if outputcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
pgconfig = sprintf('TEXTURERECT2D(1)=%i %s', pglutid, icmconfig);
pgidstring = sprintf('Generic high precision luminance output formatting shader: %s', icmstring);
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit', pgidstring, pgshader, pgconfig);
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
outputcount = outputcount + 1;
% Use unit color range, without clamping, but in high-precision mode:
needsUnitUnclampedColorRange = 1;
end
% --- End of output formatter for generic LUT based luminance framebuffer ---
% --- Final output formatter for VideoSwitcher attenuator device requested? ---
VideoSwitcherTriggerflag = 0;
floc = find(mystrcmp(reqs, 'EnableVideoSwitcherSimpleLuminanceOutput'));
if isempty(floc)
floc = find(mystrcmp(reqs, 'EnableVideoSwitcherCalibratedLuminanceOutput'));
end
if ~isempty(floc)
[row col]= ind2sub(size(reqs), floc);
if mystrcmp(reqs{row, 2}, 'EnableVideoSwitcherSimpleLuminanceOutput')
simpleVideoSwitcher = 1;
else
simpleVideoSwitcher = 0;
end
% Extract optional first parameter - This should be the 'btrr' ratio to use:
btrr = reqs{row, 3};
if isempty(btrr)
% btrr empty: Get it from config file:
btrr = PsychVideoSwitcher('GetDefaultConfig', win);
else
if ~isnumeric(btrr) || ~isscalar(btrr)
sca;
error('PsychImaging: Optional "btrr" parameter for VideoSwitcher output not of numeric scalar type!');
end
if btrr < 0
sca;
error('PsychImaging: Optional "btrr" parameter for VideoSwitcher output is negative -- Impossible!');
end
end
if simpleVideoSwitcher
% Extract optional 2nd parameter - This should be the 'trigger' flag:
VideoSwitcherTriggerflag = reqs{row, 4};
else
% Extract optional 3rd parameter - This should be the 'trigger' flag:
VideoSwitcherTriggerflag = reqs{row, 5};
end
if isempty(VideoSwitcherTriggerflag)
% triggerflag empty: Default to off:
VideoSwitcherTriggerflag = 0;
else
if ~isnumeric(VideoSwitcherTriggerflag) || ~isscalar(VideoSwitcherTriggerflag)
sca;
error('PsychImaging: Optional "trigger" parameter for VideoSwitcher output not of numeric scalar type!');
end
if VideoSwitcherTriggerflag > 0
VideoSwitcherTriggerflag = 1;
else
VideoSwitcherTriggerflag = 0;
end
end
if simpleVideoSwitcher
% Load output formatting shader for simple VideoSwitcher output:
% 'icmshader' is a handle to a compiled fragment shader, provided by
% upstream, that implements the display color correction function:
pgshader = LoadGLSLProgramFromFiles('VideoSwitcherSimpleLuminanceToRB8_FormattingShader', 1, icmshader);
% Init the shader: Assign mapping texture units etc.:
glUseProgram(pgshader);
glUniform1i(glGetUniformLocation(pgshader, 'Image'), 0);
glUniform1f(glGetUniformLocation(pgshader, 'btrr'), btrr);
glUniform1f(glGetUniformLocation(pgshader, 'btrrPlusOne'), btrr + 1);
glUniform1f(glGetUniformLocation(pgshader, 'btrrFractionTerm'), ((btrr + 1) / btrr));
glUseProgram(0);
pgidstring = sprintf('VideoSwitcher simple high precision luminance output formatting shader: %s', icmstring);
pgconfig = icmconfig;
else
% LUT calibrated VideoSwitcher setup:
% Extract optional 2nd parameter - This should be the 'lut':
lut = reqs{row, 4};
if isempty(lut)
% lut empty: Get it from config file:
[dummy, lut] = PsychVideoSwitcher('GetDefaultConfig', win);
else
if ~isa(lut, 'double') || ~isvector(lut) || length(lut)~=257
sca;
error('PsychImaging: Lookup table parameter lut for VideoSwitcher output invalid: Must be a vector of double values with 257 elements!');
end
end
% Load output formatting shader for lut calibrated VideoSwitcher output:
% 'icmshader' is a handle to a compiled fragment shader, provided by
% upstream, that implements the display color correction function:
pgshader = LoadGLSLProgramFromFiles('VideoSwitcherCalibratedLuminanceToRB8_FormattingShader', 1, icmshader);
% Init the shader: Assign mapping texture units etc.:
glUseProgram(pgshader);
glUniform1i(glGetUniformLocation(pgshader, 'Image'), 0);
glUniform1i(glGetUniformLocation(pgshader, 'LUT'), 1);
glUniform1f(glGetUniformLocation(pgshader, 'btrr'), btrr);
% Disable luminance hint color by default by setting it to the
% luminance key -1, which shouldn't ever match in a regular
% stimulus:
glUniform3f(glGetUniformLocation(pgshader, 'BackgroundPixel'), 0, -1, 0);
glUseProgram(0);
% Convert 'lut' into lookup table texture:
pglutid = PsychVideoSwitcher('GetLUTTexture', win, lut, btrr, pgshader);
pgidstring = sprintf('VideoSwitcher calibrated high precision luminance output formatting shader: %s', icmstring);
pgconfig = sprintf('TEXTURERECT2D(1)=%i %s', pglutid, icmconfig);
end
if outputcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit', pgidstring, pgshader, pgconfig);
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
outputcount = outputcount + 1;
% VideoSwitcher devices need an identity clut:
needsIdentityCLUT = 1;
% Use unit color range, without clamping, but in high-precision mode:
needsUnitUnclampedColorRange = 1;
end
% Setup of trigger for VideoSwitcher device needed?
if VideoSwitcherTriggerflag > 0
% Yes. Attach a proper slot to the chain: The slot calls back into the
% VideoSwitcher.m M-File, with the window handle as argument.
pgconfig = sprintf('PsychVideoSwitcher(%i);', win);
Screen('HookFunction', win, 'AppendMFunction', 'FinalOutputFormattingBlit', 'VideoSwitcher trigger control callback.', pgconfig);
end
% --- End of output formatters for VideoSwitcher attenuator device ---
% --- Final output formatter for native 10 bpc ARGB2101010 or 11 bpc RGB11-11-10framebuffer requested?
enableNative11BpcRequested = 0;
enableNative16BpcRequested = 0;
floc = find(mystrcmp(reqs, 'EnableNative10BitFramebuffer'));
if isempty(floc)
enableNative11BpcRequested = 1;
floc = find(mystrcmp(reqs, 'EnableNative11BitFramebuffer'));
end
if isempty(floc)
enableNative11BpcRequested = 0;
enableNative16BpcRequested = 1;
floc = find(mystrcmp(reqs, 'EnableNative16BitFramebuffer'));
end
if ~isempty(floc)
[row col]= ind2sub(size(reqs), floc);
% Our special shader-based 10 bpc output formatter is only needed and effective on
% Linux with AMD Radeon hardware, or with FireGL/FirePro with override mode bit set.
% Our 11 bpc and 16 bpc shader-based output formatters are only effective on Linux.
% specialFlags setting 1024 signals that our own low-level 10/11/16 bit framebuffer
% hack on AMD hardware is active, so we also need our own GLSL output formatters.
% Otherwise setup was (hopefully) done by the regular graphics drivers and we don't
% need this GLSL output formatter, as system OpenGL takes care of it:
if bitand(winfo.SpecialFlags, 1024)
% AMD/ATI gpu on Linux with our 10/11/16 bit hack. Use our reformatters:
if enableNative16BpcRequested
% Extract optional 2nd parameter - This should be the 'encodingBPC' depth:
encodingBPC = reqs{row, 4};
% Assign maximum bit depth default for given GPU, if no specific depth requested:
if isempty(encodingBPC)
if winfo.GPUMinorType >= 80
% DCE-8.0 or later display engine of "Sea Islands Family" or later: Does 12 bpc.
encodingBPC = 12;
else
% Older engine. Only does 10 bpc, so using this mode is pointless and only good
% for debugging.
encodingBPC = 10;
end
fprintf('PsychImaging: EnableNative16BitFramebuffer: True framebuffer bpc is %i. Further output specific limitations may apply, check your results!\n', encodingBPC);
end
% Load algorithmic 9 bpc - 16 bpc shader for packing 9-16 bpc content into a 64 bpp
% framebuffer:
pgshader = LoadGLSLProgramFromFiles('AMD16bpc_FormattingShader', 1);
else
% Load output formatting shader for multi-LUT based 10 bpc or 11 bpc formatting:
pgshader = LoadGLSLProgramFromFiles('RGBMultiLUTLookupCombine_FormattingShader', 1);
end
% Init the shader:
glUseProgram(pgshader);
% Assign mapping of input image:
glUniform1i(glGetUniformLocation(pgshader, 'Image'), 0);
if enableNative16BpcRequested
% Scale from 0.0 - 1.0 to 0.0 - (2^n - 1) with n being encoding bit depth: n = encodingBPC
glUniform1f(glGetUniformLocation(pgshader, 'Prescale'), bitshift(1, encodingBPC) - 1);
% Pass true half-width of framebuffer/x-screen/onscreen window to shader for proper handling
% of dual-display side-by-side "stereo style" configurations:
glUniform1f(glGetUniformLocation(pgshader, 'halfFBWidth'), Screen('WindowSize', win, 1) / 2);
else
% CLUT based mapping:
glUniform1i(glGetUniformLocation(pgshader, 'CLUT'), 1);
glUniform1f(glGetUniformLocation(pgshader, 'Prescale'), bitshift(1024, enableNative11BpcRequested));
end
glUseProgram(0);
if enableNative16BpcRequested
% Setup 16 bpc formatter further:
pgshadername = 'Native RGBA16161616 framebuffer output formatting shader';
if isASideBySideConfig
% Only scale vertically to cover whole vertical framebuffer height:
pgconfig = 'Scaling:1.0:2.0';
else
% Scale horizontally and vertically to cover whole framebuffer width x height:
pgconfig = 'Scaling:2.0:2.0';
end
elseif enableNative11BpcRequested
% Use helper routine to build a proper RGBA Lookup texture for
% conversion of HDR RGB pixels to ARGB0-11-11-10 pixels:
pglutid = PsychHelperCreateRGB111110RemapCLUT;
pgshadername = 'Native RGB111110 framebuffer output formatting shader';
pgconfig = sprintf('TEXTURERECT2D(1)=%i', pglutid);
else
% Use helper routine to build a proper RGBA Lookup texture for
% conversion of HDR RGBA pixels to ARGB2101010 pixels:
pglutid = PsychHelperCreateARGB2101010RemapCLUT;
pgshadername = 'Native ARGB2101010 framebuffer output formatting shader';
pgconfig = sprintf('TEXTURERECT2D(1)=%i', pglutid);
end
if outputcount > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit', pgshadername, pgshader, pgconfig);
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
outputcount = outputcount + 1;
% AMD framebuffer devices - Identity CLUT not needed, as internal clut is bypassed anyway,
% but we do it nonetheless, so we can decide about dithering setup and get things like
% degamma and other colorspace conversions disabled / bypassed:
needsIdentityCLUT = 1;
else
% Everything else: Windows OS or OSX, or AMD FireGL/FirePro without override, or a
% NVidia or Intel GPU.
% We request an identity gamma table to be loaded into the GPU. The
% RAMDAC's and DisplayPort devices et al. are 10 bit anyway to our
% knowledge, so it doesn't matter if we do shader-based gamma correction
% internally, or if the GPU does it. We do it shader-based for consistency
% with the AMD path above.
needsIdentityCLUT = 1;
end
% Extract optional first parameter - This should be the 'disableDithering' flag:
disableDithering = reqs{row, 3};
if isempty(disableDithering)
% Control of output dithering on digital >= 10 bit panels should be left to
% the OS + graphics driver by default. With the OS at the helm, it can configure
% the encoders for 10 bpc no-dithering if it detects a truly 10 bpc capable display,
% based on EDID information. DisplayPort and HDMI provides infos about >= 10 bpc
% capabilities in their EDID info. If the OS detects a <= 8 bpc digital panel, it
% can dither so we get pseudo-10bpc, similar to a bit stealing approach or other
% perceptual high bit depths tricks:
disableDithering = 0;
else
% User provided disableDithering flag. Valid?
if ~ismember(disableDithering, [0, 1])
sca;
error('Optional disableDithering flag with invalid value provided! Valid is 0 or 1!');
end
% Yes, use it.
end
% Use unit color range, without clamping, but in high-precision mode:
needsUnitUnclampedColorRange = 1;
end
% --- End of output formatter for native 10 bpc ARGB2101010 framebuffer ---
% --- Experimental output formatter for Dual-Pipeline HDR display ---
floc = find(mystrcmp(reqs, 'EnableDualPipeHDROutput'));
if ~isempty(floc)
[row col]= ind2sub(size(reqs), floc);
% outputcount should be zero, i.e., the unified output formatting chain
% should be disabled, as we use separate per channel chains:
if outputcount > 0
fprintf('PsychImaging: WARNING! In setup for task "EnableDualPipeHDROutput": Unified output formatting chain was active (count = %i)!\n', outputcount);
fprintf('PsychImaging: WARNING! This conflicts with need for separate output formatting chains! Overriding: Unified chain disabled!\n');
fprintf('PsychImaging: WARNING! Check your output stimulus carefully for artifacts!\n');
% Disable unified output formatting chain and hope for the best:
Screen('HookFunction', win, 'Disable', 'FinalOutputFormattingBlit');
% Screen('HookFunction', win, 'Disable', 'RightFinalizerBlitChain');
end
% Setup shader for pipe 0:
pipe0shader = LoadGLSLProgramFromFiles('DualPipeHDRPipe0_FormattingShader', 1, icmshader);
if outputcount0 > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit0', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit0', 'HDRPipe0 - Output Formatter', pipe0shader, '');
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit0');
outputcount0 = outputcount0 + 1;
% Setup shader for pipe 1:
pipe1shader = LoadGLSLProgramFromFiles('DualPipeHDRPipe1_FormattingShader', 1, icmshader);
if outputcount1 > 0
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit1', 'Builtin:FlipFBOs', '');
end
Screen('HookFunction', win, 'AppendShader', 'FinalOutputFormattingBlit1', 'HDRPipe1 - Output Formatter', pipe1shader, '');
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit1');
outputcount1 = outputcount1 + 1;
% Device need an identity clut in the GPU gamma tables:
needsIdentityCLUT = 1;
% Use unit color range, without clamping, but in high-precision mode:
needsUnitUnclampedColorRange = 1;
end
% --- End of experimental output formatter for Dual-Pipeline HDR display ---
% --- END OF ALL OUTPUT FORMATTERS ---
% --- This must be after setup of all output formatter shaders! ---
% Downstream icm color correction shader linked into an icmAware output
% formatter. We must perform post-link setup for it:
if ptb_outputformatter_icmAware && icmformatting_downstream
% Perform post-link setup of color correction method after
% shader attached to pipe. We know it is the
% 'FinalOutputFormattingBlit' chain, as only in that case, downstream
% formatting is performed at all.
PsychColorCorrection('ApplyPostGLSLLinkSetup', win, 'FinalFormatting');
end
% --- GPU based mirroring of left half of onscreen window to right half requested? ---
if ~isempty(find(mystrcmp(reqs, 'MirrorDisplayToSingleSplitWindow')))
% Simply set up the left finalizer chain with a glCopyPixels command
% that copies the left half of the system backbuffer to the right half
% of the system backbuffer. Query the real backbuffer width x height,
% but use half the width as source region and destination region
% offset, as the right half of the backbuffer shall be a copy of the
% left half:
[w, h] = Screen('WindowSize', win, 1);
w = w / 2;
% Imaging pipeline fully enabled? Specific offsets used for blitter
% commands depend on this:
if bitand(winfo.ImagingMode, kPsychNeedFastBackingStore) > 0
% Yes: Use proper offsets for active imaging pipeline:
myblitstring = sprintf('glRasterPos2f(%f, %f); glCopyPixels(0, 0, %f, %f, 6144);', w, h, w, h);
else
% No: Need different x-offset for glRasterPos2f, because the good
% ol' fixed function pipeline uses different viewport / projection
% matrix etc.:
myblitstring = sprintf('glRasterPos2f(%f, %f); glCopyPixels(0, 0, %f, %f, 6144);', w/2, h, w, h);
end
% Attach blit command sequence to finalizer chain:
Screen('Hookfunction', win, 'AppendMFunction', 'LeftFinalizerBlitChain', 'MirrorSplitWindowToSplitWindow', myblitstring);
Screen('HookFunction', win, 'Enable', 'LeftFinalizerBlitChain');
end
% --- End of GPU based mirroring of left half of onscreen window to right half requested? ---
% --- Restriction of processing area ROI requested? ---
% This should be at the end of setup, so we can reliably prepend the
% command to each chain to guarantee that restriction applies to all
% processing:
floc = find(mystrcmp(reqs, 'RestrictProcessing'));
if ~isempty(floc)
% Which channel?
for x=floc
[rows cols]= ind2sub(size(reqs), x);
for row=rows'
% Extract scissor rectangle:
scissorrect = reqs{row, 3};
if size(scissorrect,1)~=1 || size(scissorrect,2)~=4
error('Task "RestrictProcessing" in channel %s expects a 1-by-4 ROI rectangle to define the ROI, e.g, [left top right bottom]!', reqs{row,1});
end
ox = scissorrect(RectLeft);
oy = winheight - scissorrect(RectBottom);
w = RectWidth(scissorrect);
h = RectHeight(scissorrect);
if mystrcmp(reqs{row, 1}, 'LeftView') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to restrict left view processing:
Screen('HookFunction', win, 'PrependBuiltin', 'StereoLeftCompositingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
if mystrcmp(reqs{row, 1}, 'RightView') || mystrcmp(reqs{row, 1}, 'AllViews')
% Need to restrict right view processing:
Screen('HookFunction', win, 'PrependBuiltin', 'StereoRightCompositingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
if (mystrcmp(reqs{row, 1}, 'AllViews') || mystrcmp(reqs{row, 1}, 'Compositor')) && ismember(winfo.StereoMode, [6,7,8,9])
% Needed to restrict both views processing and a
% compositing mode is active. If both views are restricted
% in their output area then it makes sense to restrict the
% compositor to the same area. We also restrict the
% compositor if that was requested.
oy = RectHeight(Screen('Rect', win, 1)) - scissorrect(RectBottom);
Screen('HookFunction', win, 'PrependBuiltin', 'StereoCompositingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
if mystrcmp(reqs{row, 1}, 'FinalFormatting')
% Need to restrict final formatting blit processing:
oy = RectHeight(Screen('Rect', win, 1)) - scissorrect(RectBottom);
Screen('HookFunction', win, 'PrependBuiltin', 'FinalOutputFormattingBlit', 'Builtin:RestrictToScissorROI', sprintf('%i:%i:%i:%i', ox, oy, w, h));
end
end
end
end
% --- End of Restriction of processing area ROI ---
% --- GPU based mirroring of onscreen window to secondary display head requested? ---
if ~isempty(find(mystrcmp(reqs, 'MirrorDisplayTo2ndOutputHead')))
% Yes: We need to replicate the framebuffer of the master onscreen
% window to the slave windows framebuffer.
% What we do: We use the right finalizer blit chain to copy the
% contents of the master window's system backbuffer (which is bound
% during execution of the right finalizer blit chain) to the
% colorbuffer texture of the special finalizedFBO[1] - the shadow
% framebuffer FBO of the slave window. Once we did this, the processing
% code of kPsychNeedDualWindowOutput in Screens
% PsychPreFlipOperations() routine will take care of the rest -->
% Blitting that FBO's and its texture to the system backbuffer of the
% slave window, thereby cloning the master windows framebuffer to the
% slave windows framebuffer:
% TODO FIXME: We assume that texture handle '1' denotes the color
% attachment texture of finalizedFBO[1]. This is true if this is the
% first opened onscreen window (ie., 99% of the time). If that
% assumption doesn't hold, we will guess the wrong texture handle and
% bad things will happen!
[w, h] = Screen('WindowSize', win, 1);
myblitstring = sprintf('glBindTexture(34037, 1); glCopyTexSubImage2D(34037, 0, 0, 0, 0, 0, %i, %i); glBindTexture(34037, 0);', w, h);
Screen('Hookfunction', win, 'AppendMFunction', 'RightFinalizerBlitChain', 'MirrorMasterToSlaveWindow', myblitstring);
Screen('HookFunction', win, 'Enable', 'RightFinalizerBlitChain');
end
% --- End of GPU based mirroring of onscreen window to secondary display head requested? ---
% --- Datapixx in use? ---
if ~isempty(find(mystrcmp(reqs, 'UseDataPixx')))
% Yes: Need to call into high level DataPixx driver for final setup:
PsychDataPixx('PerformPostWindowOpenSetup', win);
end
% --- End of Datapixx in use? ---
% --- Bits# in use? ---
if ~isempty(find(mystrcmp(reqs, 'UseBits#')))
% Yes: Need to call into high level BitsPlusPlus driver for final setup:
BitsPlusPlus('PerformPostWindowOpenSetup', win);
end
% --- End of Bits# in use? ---
% Do we need identity gamma tables / CLUT's loaded into the graphics card?
if needsIdentityCLUT
% Yes. Use our generic routine which is adaptive to the quirks of
% specific gfx-cards:
LoadIdentityClut(win, [], [], disableDithering);
% Is there a slave window associated for some dual-window output mode,
% HDR mode or stereo mode?
if ~isempty(slavewin)
% Yes: Apply identity LUT setup there as well:
LoadIdentityClut(slavewin, [], [], disableDithering);
end
end
% Is a default colormode specified via psych_default_colormode variable and
% the level is at least 1? If so, switch to be created onscreen window to a
% [0;1] colorrange with clamping by default, and apply input scaling to
% Screen('MakeTexture') as well. This is like 'NormalizedHighresColorRange'
% aka needsUnitUnclampedColorRange, except it doesn't unclamp the
% framebuffer, but keeps it clamped to 0 - 1 range, unless a previous
% 'ColorRange' call changed this. Why? To accomodate OpenGL hw without
% clamp extension:
if ~needsUnitUnclampedColorRange && ~isempty(psych_default_colormode) && (psych_default_colormode >= 1)
Screen('ColorRange', win, 1, [], 1);
applyAlsoToMakeTexture = 1;
% Set Screen background clear color, in normalized 0.0 - 1.0 range:
if ~isempty(clearcolor) && (max(clearcolor) > 1) && (all(round(clearcolor) == clearcolor))
% Looks like someone's feeding old style 0-255 integer values as
% clearcolor. Output a warning to tell about the expected 0.0 - 1.0
% range of values:
fprintf('\n\nPsychImaging-Warning: You specified a ''clearcolor'' argument for the OpenWindow command that looks \nlike an old 0-255 value instead of the wanted value in the 0.0-1.0 range.\nPlease update your code for correct behaviour.\n\n');
end
% Set the background clear color via old fullscreen 'FillRect' trick,
% followed by a flip:
Screen('FillRect', win, clearcolor);
% Double-flip to be on the safe side:
Screen('Flip', win);
Screen('Flip', win);
end
% Do we need a normalized [0.0 ; 1.0] color range mapping with unclamped
% high precision colors?
if needsUnitUnclampedColorRange
% Set color range to 0.0 - 1.0: This makes more sense than the normal
% 0-255 values. Try to disable color clamping. This may fail and
% produce a PTB warning, but if it succeeds then we're better off for
% the 2D drawing commands...
Screen('ColorRange', win, 1, 0, applyAlsoToMakeTexture);
% Set Screen background clear color, in normalized 0.0 - 1.0 range:
if ~isempty(clearcolor) && (max(clearcolor) > 1) && (all(round(clearcolor) == clearcolor))
% Looks like someone's feeding old style 0-255 integer values as
% clearcolor. Output a warning to tell about the expected 0.0 - 1.0
% range of values:
fprintf('\n\nPsychImaging-Warning: You specified a ''clearcolor'' argument for the OpenWindow command that looks \nlike an old 0-255 value instead of the wanted value in the 0.0-1.0 range.\nPlease update your code for correct behaviour.\n\n');
end
% Set the background clear color via old fullscreen 'FillRect' trick,
% followed by a flip:
Screen('FillRect', win, clearcolor);
% Double-flip to be on the safe side:
Screen('Flip', win);
Screen('Flip', win);
end
% Return reqs array, for whatever reason...
rc = reqs;
return;
% End of PostConfiguration subroutine.
function rcmatch = mystrcmp(myhaystack, myneedle)
if isempty(myhaystack) || isempty(myneedle)
rcmatch = logical(0); %#ok<LOGL>
return;
end
if ~iscell(myhaystack) && ~ischar(myhaystack)
error('First argument to mystrcmp must be a cell-array or a character array (string)!');
end
if iscell(myhaystack)
% Cell array of strings: Check each element, return result matrix:
rcmatch=logical(zeros(size(myhaystack))); %#ok<LOGL>
rows = size(myhaystack, 1);
cols = size(myhaystack, 2);
for r=1:rows
for c=1:cols
if iscellstr(myhaystack(r,c))
rcmatch(r,c) = logical(strcmpi(char(myhaystack(r,c)), myneedle));
else
rcmatch(r,c) = logical(0); %#ok<LOGL>
end
end
end
else
% Single character string: Do single check and return result:
rcmatch=logical(strcmpi(myhaystack, myneedle));
end
return;
% Helper: Search chain 'hookname' in window 'win' for scissor restriction
% slots and remove all of them:
function DoRemoveScissorRestriction(win, hookname)
while 1
slot = Screen('HookFunction', win, 'Query', hookname, 'Builtin:RestrictToScissorROI');
if slot~=-1
Screen('Hookfunction', win, 'Remove', hookname, slot);
else
break;
end
end
return;
% Helper: Calculate and return bounding rectangle of intermediate
% framebuffers inside the imaging pipeline. These intermediates don't have
% the size of the client framebuffer (aka Screen('Rect', win);) and don't
% have the size of the windows backbuffer (aka Screen('Rect', win, 1);),
% but some size derived from the backbuffer size and various flags:
function rect = InterBufferRect(win)
% Get window info flags about possible size transformations:
winfo = Screen('GetWindowInfo', win);
% Get raw rectangle of true window backbuffer size as baseline:
% Left and Top entry is always zero, due to normalized rect.
rect = Screen('Rect', win, 1);
% Apply half-height flag, if any:
if bitand(winfo.SpecialFlags, kPsychNeedHalfHeightWindow)
rect(RectBottom) = rect(RectBottom) / 2;
end
% Apply half-width flag, if any:
if bitand(winfo.SpecialFlags, kPsychNeedHalfWidthWindow)
rect(RectRight) = rect(RectRight) / 2;
end
% Apply twice-width flag, if any:
if bitand(winfo.SpecialFlags, kPsychNeedTwiceWidthWindow)
rect(RectRight) = rect(RectRight) * 2;
end
return;
function [w, h] = InterBufferSize(win)
w = RectWidth(InterBufferRect(win));
h = RectHeight(InterBufferRect(win));
return;
|