/usr/share/psychtoolbox-3/PsychTests/CIEConeFundamentalsTest.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | % CIEConeFundamentalsTest
%
% This program tests the CIE cone fundamentals routines, and demonstrates their use.
%
% The goal here is to find parameters that reproduce a set of cone
% fundamentals from their underlying parts. That would then let
% one vary the parameters of the parts, to get different theoretically
% specfied cone fundamentals.
%
% This shows that the standard does an excellent job of reconstructing
% the Stockman/Sharpe 2-degree and 10 degree fundamentals if one starts
% with the tabulated LMS absorbances. The agreement is less perfect
% if one uses the nomogram and recommended lambda-max values to
% generate the absorbances. See comment on this point in
% StockmanSharpeNomogram.m.
%
% The code here is closely related (and uses) a more general set of code
% for setting parameters for photoreceptors and computing quantal
% sensitivities. See:
% DefaultPhotoreceptors, FillInPhotoreceptors, PrintPhotoreceptors,IsomerizationsInDishDemo
% IsomerizationsInEyeDemo, ComputeCIEConeFundamentals,
% ComputeRawConeFundamentals, CIEConeFundamentalsFieldSizeTEst.
%
% 8/11/11 dhb Wrote it
% 8/14/11 dhb Clean up a little.
% 12/16/12 dhb Added test for rods.
% 08/10/13 dhb Better integration with the photoreceptor struct code.
% 03/14/14 dhb Add Smith-Pokorny to 2 degree plot, for comparison.
%% Clear
clear; close all;
%% Parameters
DUMPFIGURES = 0;
S = WlsToS((390:5:780)');
%% Low end of log plot scale
lowEndLogPlot = -4;
%% Get tabulated fundamentals and normalize. These correspond
% to a 32 year old observer with a small (<= 3 mm) pupil.
%
% The call to QuantaToEnergy to accomplish an energy to quanta transform is not an error.
% Rather, that routine converts spectra, but here we are converting sensitivities, so its
% the inverse we want.
targetRaw = load('T_cones_ss2');
T_targetEnergy = SplineCmf(targetRaw.S_cones_ss2,targetRaw.T_cones_ss2,S,2);
T_targetQuantal2 = QuantaToEnergy(S,T_targetEnergy')';
targetRaw = load('T_cones_ss10');
T_targetEnergy = SplineCmf(targetRaw.S_cones_ss10,targetRaw.T_cones_ss10,S,2);
T_targetQuantal10 = QuantaToEnergy(S,T_targetEnergy')';
for i = 1:3
T_targetQuantal2(i,:) = T_targetQuantal2(i,:)/max(T_targetQuantal2(i,:));
T_targetQuantal10(i,:) = T_targetQuantal10(i,:)/max(T_targetQuantal10(i,:));
end
%% Compute 2 degree and plot
%
% Also add Smith-Pokorny
load T_cones_sp
T_predictQuantalCIE2 = ComputeCIEConeFundamentals(S,2,32,3);
T_predictQuantalCIE2Nomo = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]');
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_targetQuantal2','k','LineWidth',3);
plot(SToWls(S),T_predictQuantalCIE2','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE2Nomo','g','LineWidth',0.5);
plot(SToWls(S_cones_sp),T_cones_sp','b:','LineWidth',0.5);
title('S-S 2-deg fundamentals (blk), table constructed (red), nomo constructed (grn), Smith-Pokorny (blue dash)');
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
subplot(1,2,2); hold on
plot(SToWls(S),log10(T_targetQuantal2'),'k','LineWidth',3);
plot(SToWls(S),log10(T_predictQuantalCIE2'),'r','LineWidth',1);
plot(SToWls(S),log10(T_predictQuantalCIE2Nomo'),'g','LineWidth',0.5);
plot(SToWls(S_cones_sp),log10(T_cones_sp'),'b:','LineWidth',0.5);
ylim([lowEndLogPlot 0.5]);
ylabel('Log10 normalized quantal sensitivity');
xlabel('Wavelength');
title('S-S 2-deg fundamentals (blk), table constructed (red), nomo constructed (grn), Smith-Pokorny (blue dash)');
drawnow;
if (DUMPFIGURES)
if (exist('savefig','file'))
savefig('Construct2DegreeCIE',gcf,'pdf');
else
saveas(gcf,'Construct2DegreeCIE','pdf');
end
end
%% Compute 10 degree and plot
T_predictQuantalCIE10 = ComputeCIEConeFundamentals(S,10,32,3);
T_predictQuantalCIE10Nomo = ComputeCIEConeFundamentals(S,10,32,3,[558.9 530.3 420.7]');
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_targetQuantal10','k','LineWidth',3);
plot(SToWls(S),T_predictQuantalCIE10','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE10Nomo','g','LineWidth',0.5);
title('S-S 10-deg fundamentals (blk), table constructed (red), nomo constructed (grn)');
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
subplot(1,2,2); hold on
plot(SToWls(S),log10(T_targetQuantal10'),'k','LineWidth',3);
plot(SToWls(S),log10(T_predictQuantalCIE10'),'r','LineWidth',1);
plot(SToWls(S),log10(T_predictQuantalCIE10Nomo'),'g','LineWidth',0.5);
ylim([lowEndLogPlot 0.5]);
title('S-S 10-deg fundamentals (blk), table constructed (red), nomo constructed (grn)');
ylabel('Log10 normalized quantal sensitivity');
xlabel('Wavelength');
drawnow;
if (DUMPFIGURES)
if (exist('savefig','file'))
savefig('Construct10DegreeCIE',gcf,'pdf');
else
saveas(gcf,'Construct10DegreeCIE','pdf');
end
end
%% Explore age
T_predictQuantalCIE20yrs = ComputeCIEConeFundamentals(S,2,20,3);
T_predictQuantalCIE59yrs = ComputeCIEConeFundamentals(S,2,59,3);
T_predictQuantalCIE75yrs = ComputeCIEConeFundamentals(S,2,75,3);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_predictQuantalCIE2(1,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE20yrs(1,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE59yrs(1,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE75yrs(1,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('L cones, 32, 20, 59, 75 yo');
subplot(1,2,2); hold on
plot(SToWls(S),T_predictQuantalCIE2(3,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE20yrs(3,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE59yrs(3,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE75yrs(3,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('S cones, 32, 20, 59, 75 yo');
if (DUMPFIGURES)
if (exist('savefig','file'))
savefig('EffectOfAgeCIEFundamentals',gcf,'pdf');
else
saveas(gcf,'EffectOfAgeCIEFundamentals','pdf');
end
end
%% Explore pupil size. This effect, although it is listed in
% the CIE report, appears to be trivial.
T_predictQuantalCIE5mm = ComputeCIEConeFundamentals(S,2,32,5);
T_predictQuantalCIE7mm = ComputeCIEConeFundamentals(S,2,32,7);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_predictQuantalCIE2(1,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE5mm(1,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE7mm(1,:)','g','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('L cones, 3 mm, 5 mm, 7 mm');
subplot(1,2,2); hold on
plot(SToWls(S),T_predictQuantalCIE2(3,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE5mm(3,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE7mm(3,:)','g','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('S cones, 3 mm, 5 mm, 7 mm');
if (DUMPFIGURES)
if (exist('savefig','file'))
savefig('EffectOfPupilCIEFundamentals',gcf,'pdf');
else
saveas(gcf,'EffectOfPupilCIEFundamentals','pdf');
end
end
%% Explore varying lambdaMax
T_predictQuantalCIENominal = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]');
T_predictQuantalCIEShiftPlus = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]'+15);
T_predictQuantalCIEShiftMinus = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]'-15);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_predictQuantalCIE2(1,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIENominal(1,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftPlus(1,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftMinus(1,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('L cones, Nominal, +/- 15 nm lamba max');
subplot(1,2,2); hold on
plot(SToWls(S),T_predictQuantalCIE2(3,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIENominal(3,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftPlus(3,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftMinus(3,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('S cones, Nominal, +/- 15 nm lamba max');
if (DUMPFIGURES)
if (exist('savefig','file'))
savefig('EffectOfLambdaMaxCIEFundamentals',gcf,'pdf');
else
saveas(gcf,'EffectOfLambdaMaxCIEFundamentals','pdf');
end
end
%% Generate a rod spectral sensitivity and compare with the CIE 1951
% rod spectral sensitivities
%
% The agreement will depend on rodLambdaMax, rodAxialDensity, and the
% nomogram used. We are working on using some fitting to identify
% good values.
rodNomogram = 'StockmanSharpe';
rodLambdaMax = 490.3;
rodAxialDensity = 0.4;
targetRaw = load('T_rods');
T_targetEnergy = SplineCmf(targetRaw.S_rods,targetRaw.T_rods,S,2);
T_targetQuantalRods = QuantaToEnergy(S,T_targetEnergy')';
T_targetQuantalRods = T_targetQuantalRods/max(T_targetQuantalRods(:));
T_predictQuantalRods = ComputeCIEConeFundamentals(S,10,32,3,rodLambdaMax,rodNomogram,[],true,rodAxialDensity);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 600; position(4) = 700;
set(gcf,'Position',position);
plot(SToWls(S),T_targetQuantalRods','k','LineWidth',3);
plot(SToWls(S),T_predictQuantalRods','r','LineWidth',1);
title('Rod fundamentals (blk), constructed (red)');
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
|