This file is indexed.

/usr/share/psychtoolbox-3/PsychTests/CIEConeFundamentalsTest.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
% CIEConeFundamentalsTest
%
% This program tests the CIE cone fundamentals routines, and demonstrates their use.
%
% The goal here is to find parameters that reproduce a set of cone
% fundamentals from their underlying parts.  That would then let
% one vary the parameters of the parts, to get different theoretically
% specfied cone fundamentals.
%
% This shows that the standard does an excellent job of reconstructing
% the Stockman/Sharpe 2-degree and 10 degree fundamentals if one starts
% with the tabulated LMS absorbances.  The agreement is less perfect
% if one uses the nomogram and recommended lambda-max values to
% generate the absorbances.  See comment on this point in
% StockmanSharpeNomogram.m.
%
% The code here is closely related (and uses) a more general set of code
% for setting parameters for photoreceptors and computing quantal 
% sensitivities. See:
%    DefaultPhotoreceptors, FillInPhotoreceptors, PrintPhotoreceptors,IsomerizationsInDishDemo
%    IsomerizationsInEyeDemo, ComputeCIEConeFundamentals,
%    ComputeRawConeFundamentals, CIEConeFundamentalsFieldSizeTEst.
%
% 8/11/11  dhb  Wrote it
% 8/14/11  dhb  Clean up a little.
% 12/16/12 dhb  Added test for rods.
% 08/10/13 dhb  Better integration with the photoreceptor struct code.
% 03/14/14 dhb  Add Smith-Pokorny to 2 degree plot, for comparison.

%% Clear
clear; close all;

%% Parameters
DUMPFIGURES = 0;
S = WlsToS((390:5:780)');

%% Low end of log plot scale
lowEndLogPlot = -4;

%% Get tabulated fundamentals and normalize. These correspond
% to a 32 year old observer with a small (<= 3 mm) pupil.
%
% The call to QuantaToEnergy to accomplish an energy to quanta transform is not an error.
% Rather, that routine converts spectra, but here we are converting sensitivities, so its
% the inverse we want.
targetRaw = load('T_cones_ss2');
T_targetEnergy = SplineCmf(targetRaw.S_cones_ss2,targetRaw.T_cones_ss2,S,2);
T_targetQuantal2 = QuantaToEnergy(S,T_targetEnergy')';

targetRaw = load('T_cones_ss10');
T_targetEnergy = SplineCmf(targetRaw.S_cones_ss10,targetRaw.T_cones_ss10,S,2);
T_targetQuantal10 = QuantaToEnergy(S,T_targetEnergy')';

for i = 1:3
    T_targetQuantal2(i,:) = T_targetQuantal2(i,:)/max(T_targetQuantal2(i,:));
    T_targetQuantal10(i,:) = T_targetQuantal10(i,:)/max(T_targetQuantal10(i,:));
end

%% Compute 2 degree and plot
%
% Also add Smith-Pokorny
load T_cones_sp
T_predictQuantalCIE2 = ComputeCIEConeFundamentals(S,2,32,3);
T_predictQuantalCIE2Nomo = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]');
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_targetQuantal2','k','LineWidth',3);
plot(SToWls(S),T_predictQuantalCIE2','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE2Nomo','g','LineWidth',0.5);
plot(SToWls(S_cones_sp),T_cones_sp','b:','LineWidth',0.5);
title('S-S 2-deg fundamentals (blk), table constructed (red), nomo constructed (grn), Smith-Pokorny (blue dash)');
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
subplot(1,2,2); hold on
plot(SToWls(S),log10(T_targetQuantal2'),'k','LineWidth',3);
plot(SToWls(S),log10(T_predictQuantalCIE2'),'r','LineWidth',1);
plot(SToWls(S),log10(T_predictQuantalCIE2Nomo'),'g','LineWidth',0.5);
plot(SToWls(S_cones_sp),log10(T_cones_sp'),'b:','LineWidth',0.5);
ylim([lowEndLogPlot 0.5]);
ylabel('Log10 normalized quantal sensitivity');
xlabel('Wavelength');
title('S-S 2-deg fundamentals (blk), table constructed (red), nomo constructed (grn), Smith-Pokorny (blue dash)');
drawnow;
if (DUMPFIGURES)
    if (exist('savefig','file'))
        savefig('Construct2DegreeCIE',gcf,'pdf');
    else
        saveas(gcf,'Construct2DegreeCIE','pdf');
    end
end

%% Compute 10 degree and plot
T_predictQuantalCIE10 = ComputeCIEConeFundamentals(S,10,32,3);
T_predictQuantalCIE10Nomo = ComputeCIEConeFundamentals(S,10,32,3,[558.9 530.3 420.7]');
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_targetQuantal10','k','LineWidth',3);
plot(SToWls(S),T_predictQuantalCIE10','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE10Nomo','g','LineWidth',0.5);
title('S-S 10-deg fundamentals (blk), table constructed (red), nomo constructed (grn)');
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
subplot(1,2,2); hold on
plot(SToWls(S),log10(T_targetQuantal10'),'k','LineWidth',3);
plot(SToWls(S),log10(T_predictQuantalCIE10'),'r','LineWidth',1);
plot(SToWls(S),log10(T_predictQuantalCIE10Nomo'),'g','LineWidth',0.5);
ylim([lowEndLogPlot 0.5]);
title('S-S 10-deg fundamentals (blk), table constructed (red), nomo constructed (grn)');
ylabel('Log10 normalized quantal sensitivity');
xlabel('Wavelength');
drawnow;
if (DUMPFIGURES)
    if (exist('savefig','file'))
        savefig('Construct10DegreeCIE',gcf,'pdf');
    else
        saveas(gcf,'Construct10DegreeCIE','pdf');
    end
end

%% Explore age
T_predictQuantalCIE20yrs = ComputeCIEConeFundamentals(S,2,20,3);
T_predictQuantalCIE59yrs = ComputeCIEConeFundamentals(S,2,59,3);
T_predictQuantalCIE75yrs = ComputeCIEConeFundamentals(S,2,75,3);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_predictQuantalCIE2(1,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE20yrs(1,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE59yrs(1,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE75yrs(1,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('L cones, 32, 20, 59, 75 yo');
subplot(1,2,2); hold on
plot(SToWls(S),T_predictQuantalCIE2(3,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE20yrs(3,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE59yrs(3,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE75yrs(3,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('S cones, 32, 20, 59, 75 yo');
if (DUMPFIGURES)
    if (exist('savefig','file'))
        savefig('EffectOfAgeCIEFundamentals',gcf,'pdf');
    else
        saveas(gcf,'EffectOfAgeCIEFundamentals','pdf');
    end
end

%% Explore pupil size.  This effect, although it is listed in
% the CIE report, appears to be trivial.
T_predictQuantalCIE5mm = ComputeCIEConeFundamentals(S,2,32,5);
T_predictQuantalCIE7mm = ComputeCIEConeFundamentals(S,2,32,7);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_predictQuantalCIE2(1,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE5mm(1,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE7mm(1,:)','g','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('L cones, 3 mm, 5 mm, 7 mm');
subplot(1,2,2); hold on
plot(SToWls(S),T_predictQuantalCIE2(3,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIE5mm(3,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIE7mm(3,:)','g','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('S cones, 3 mm, 5 mm, 7 mm');
if (DUMPFIGURES)
    if (exist('savefig','file'))
        savefig('EffectOfPupilCIEFundamentals',gcf,'pdf');
    else
        saveas(gcf,'EffectOfPupilCIEFundamentals','pdf');
    end
end

%% Explore varying lambdaMax
T_predictQuantalCIENominal = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]');
T_predictQuantalCIEShiftPlus = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]'+15);
T_predictQuantalCIEShiftMinus = ComputeCIEConeFundamentals(S,2,32,3,[558.9 530.3 420.7]'-15);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(S),T_predictQuantalCIE2(1,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIENominal(1,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftPlus(1,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftMinus(1,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('L cones, Nominal, +/- 15 nm lamba max');
subplot(1,2,2); hold on
plot(SToWls(S),T_predictQuantalCIE2(3,:)','k','LineWidth',2);
plot(SToWls(S),T_predictQuantalCIENominal(3,:)','r','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftPlus(3,:)','g','LineWidth',1);
plot(SToWls(S),T_predictQuantalCIEShiftMinus(3,:)','b','LineWidth',1);
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');
title('S cones, Nominal, +/- 15 nm lamba max');
if (DUMPFIGURES)
    if (exist('savefig','file'))
        savefig('EffectOfLambdaMaxCIEFundamentals',gcf,'pdf');
    else
        saveas(gcf,'EffectOfLambdaMaxCIEFundamentals','pdf');
    end
end

%% Generate a rod spectral sensitivity and compare with the CIE 1951 
% rod spectral sensitivities
%
% The agreement will depend on rodLambdaMax, rodAxialDensity, and the
% nomogram used.  We are working on using some fitting to identify
% good values.
rodNomogram = 'StockmanSharpe';
rodLambdaMax = 490.3;
rodAxialDensity = 0.4;
targetRaw = load('T_rods');
T_targetEnergy = SplineCmf(targetRaw.S_rods,targetRaw.T_rods,S,2);
T_targetQuantalRods = QuantaToEnergy(S,T_targetEnergy')';
T_targetQuantalRods = T_targetQuantalRods/max(T_targetQuantalRods(:));
T_predictQuantalRods = ComputeCIEConeFundamentals(S,10,32,3,rodLambdaMax,rodNomogram,[],true,rodAxialDensity);
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 600; position(4) = 700;
set(gcf,'Position',position);
plot(SToWls(S),T_targetQuantalRods','k','LineWidth',3);
plot(SToWls(S),T_predictQuantalRods','r','LineWidth',1);
title('Rod fundamentals (blk), constructed (red)');
ylabel('Normalized quantal sensitivity');
xlabel('Wavelength');