/usr/share/psychtoolbox-3/PsychTests/HighPrecisionLuminanceOutputDriversImagingPipelineTest.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | function HighPrecisionLuminanceOutputDriversImagingPipelineTest(whichDriver, whichScreen, plotdiffs, forcesuccess)
% HighPrecisionLuminanceOutputDriversImagingPipelineTest(whichDriver, [whichScreen][,plotdiffs=0][, forcesuccess=0])
%
% Tests correct function of a variety of high precision luminance output
% device drivers (so called "output formatters") with imaging pipeline.
%
% This test script needs to be run once after each graphics card or
% graphics driver or Psychtoolbox upgrade, or after any other major change
% in system configuration and display settings.
%
% This test verifies that the Psychtoolbox image processing pipeline is
% capable to correctly convert a high dynamic range / high bit precision
% luminance image into a output format suitable for driving one of the
% supported high precision luminance output devices, e.g., different Pelli,
% Zhang, Watson style video attenuators, Xiangru Li et al. VideoSwitchers,
% Pseudo-Gray output formatters, etc.
%
% It does so by generating a test stimulus, converting it into a properly
% formatted image via the "known good" Matlab reference implementation of
% an output driver, then again via the use of the imaging pipeline. Then
% it reads back and compares the conversion results of both to verify that
% the imaging pipeline produces exactly the same results as the Matlab
% routines.
%
% If the results are the same, it will write some info file to the
% filesystem to confirm this test was successfully run, otherwise it will
% fail with a description of the discrepancy. In case of failure, fast
% stimulus conversion will not work via the imaging pipeline.
%
% The required parameter 'whichDriver' defines the type of output driver to
% test. It can be any of the following:
%
% * 'GenericLUT': Test the generic lookup-table based driver that can handle
% arbitrary devices, albeit not with maximum speed. 'whichDriver' must be a
% struct with the following fields:
%
% whichDriver.name = 'GenericLUT'
%
% Then either one of these for testing of a generic LUT:
%
% whichDriver.bpc = Bitdepths of LUT to test - Anything between 1 and 16.
% whichDriver.nslots = Size of LUT in slots - Anything between 2 and 65536.
%
% Alternatively you can test with an existing self-created LUT:
% whichDriver.lut = A 3 rows by nslots column uint8 matrix which encodes
% the LUT: Rows 1,2 and 3 encode Red, Green and Blue channel, each of the
% 'nslots' columns encodes a LUT slot. The driver will map luminance values
% between 0.0 and 1.0 to the corresponding LUT slots in range 1 to nslots,
% then readout the stored column vector with the output RGBA8 pixels to
% poke into the framebuffer.
%
% * 'VideoSwitcherSimple': Test the "simple" driver for the VideoSwitcher
% video attenuator. The simple driver implements a closed-form solution, a
% formula, to map luminance values between 0.0 - 1.0 to output values for
% the Red and Blue channel, just using the 'BTRR' ratio as parameter. This
% is the fast driver, as it doesn't need any lookup tables.
%
% You should provide the whichDriver.btrr BTRR ratio when testing this
% driver. If you omit it, it will be loaded from the configuration file in
% the Psychtoolbox configuration directory.
%
% * 'VideoSwitcherCalibrated': Test the LUT based driver for the VideoSwitcher
% video attenuator. This driver computes the Blue channel value by
% searching for the given luminance value in a 256 entry lookup table, then
% uses a closed-form formula to compute the Red channel drive value from
% the luminance and the looked-up blue channel value. This is slower due to table
% lookups and requires more involved calibration procedures to build a
% lookup table, but it is also potentially more accurate.
%
% You should provide the whichDriver.btrr BTRR ratio when testing this
% driver, as well as the 257 slot whichDriver.lut lookup table for blue
% channel to measured luminance mapping. See help PsychVideoSwitcher for
% more info. If you omit these parameters, a default BTRR and LUT will be
% loaded from the Psychtoolbox configuration subdirectory.
%
% Optional parameters:
%
% whichScreen = Screen id of display to test on. Will be the secondardy
% display if none provided.
%
% plotdiffs = If set to one, plot diagnostic difference images, if any
% differences are detected. By default no such images are
% plotted. No images will be plotted if no differences
% exist.
%
% forcesuccess = Set this to one if you want to force the test to succeed,
% despite detected errors, ie., if you want the GPU
% conversion to be used. Only use this if you really know
% what you are doing!
%
% Please note that this test script can only test if the correct output to
% your systems framebuffer is generated by Psychtoolbox. It can't detect if
% the electronic high precision converter device itself is working
% correctly with this data. Only visual inspection and a
% photometer/colorimeter test can really tell you if the whole system is
% working correctly!
%
% History:
% 05/24/08 mk Initial implementation.
oldverbosity = Screen('Preference', 'Verbosity', 2);
oldsynclevel = Screen('Preference', 'SkipSyncTests', 2);
% Which driver to test?
if nargin < 1 || isempty(whichDriver)
error('You must provide a valid "whichDriver" argument!');
end
% Define screen:
if nargin < 2 || isempty(whichScreen)
whichScreen=max(Screen('Screens'));
end
if nargin < 3 || isempty(plotdiffs)
plotdiffs = 0;
end
if nargin < 4 || isempty(forcesuccess)
forcesuccess = 0;
end
if isstruct(whichDriver)
% Extract 'bpc' subfield, if any:
if isfield(whichDriver, 'bpc')
driverBpc = whichDriver.bpc;
if ~isscalar(driverBpc) || driverBpc < 1 || driverBpc > 16
error('"whichDriver.bpc" argument is not a integral bitdepths value in valid range 1 - 16!');
end
else
driverBpc = [];
end
% Extract 'nslots' subfield, if any:
if isfield(whichDriver, 'nslots')
driverNSlots = whichDriver.nslots;
if ~isscalar(driverNSlots) || driverNSlots < 2 || driverNSlots > 2^16
error('"whichDriver.nslots" argument is not an integral value in valid range 2 - 65536!');
end
else
driverNSlots = [];
end
% Extract 'lut' subfield, if any:
if isfield(whichDriver, 'lut')
driverLUT = whichDriver.lut;
if ~isa(driverLUT, 'uint8') || size(driverLUT, 1) < 3 || size(driverLUT, 1) > 4 || size(driverLUT, 2) < 2 || size(driverLUT, 2) > 65536
error('"whichDriver.lut" argument is not a LUT definition matrix: Must be a matrix of class uint8 with 3 or 4 rows and between 2 and 65536 columns!');
end
if size(driverLUT, 1)~=4
% Extend with 4th row of all zero bytes:
driverLUT = [driverLUT ; uint8(zeros(1, size(driverLUT, 2)))];
end
else
driverLUT = [];
end
% Extract 'bpc' subfield, if any:
if isfield(whichDriver, 'btrr')
driverBTRR = whichDriver.btrr;
if ~isscalar(driverBTRR) || ~isnumeric(driverBTRR) || driverBTRR < 0
error('"whichDriver.btrr" argument is not a scalar Blue-To-Red-Ratio value greater than zero.');
end
else
driverBTRR = [];
end
% This comes last! Check if .name subfield provided and replace whole
% struct with that name:
if isfield(whichDriver, 'name')
whichDriver = whichDriver.name;
else
error('Argument "whichDriver" is a struct, but lacks the mandatory subfield "name"!');
end
else
driverBpc = [];
driverNSlots = [];
driverLUT = [];
driverBTRR = [];
end
if ~ischar(whichDriver)
error('"whichDriver" or "whichDriver.name" is not a driver name string!');
end
if isempty(driverNSlots) && ~isempty(driverBpc)
driverNSlots = 2^driverBpc;
end
if ~isempty(driverLUT)
driverNSlots = size(driverLUT, 2);
end
% Prepare imaging pipeline setup:
PsychImaging('PrepareConfiguration');
% Make sure we run with our default color correction mode for this test:
% 'ClampOnly' is the default, but we set it here explicitely, so no state
% from previously running scripts can bleed through. This will also setup
% the default clamping range to our wanted 0.0 - 1.0 range:
PsychImaging('AddTask', 'FinalFormatting', 'DisplayColorCorrection', 'ClampOnly');
fprintf('Testing output formatting driver of type: %s\n', whichDriver);
fprintf('Number of slots (if any): %i\n', driverNSlots);
fprintf('Number of bpc bits (if any): %i\n', driverBpc);
fprintf('BTRR (if any): %i\n', driverBTRR);
fprintf('\n\n\n');
% Select whichDriver to test:
switch (whichDriver)
case {'GenericLUT'}
% Generic LUT conversion with a LUT that has driverNSlots slots
% to map the 0.0 - 1.0 input range into 0 - driverNSlots - 1
% integral range, then lookup the value:
if isempty(driverNSlots)
error('Driver type "GenericLUT" selected, but "whichDriver.nslots" argument missing!');
end
if isempty(driverLUT)
% Build standard testing LUT with driverNSlots slots for testing:
lut = uint8(zeros(4, driverNSlots));
theRange = 0:driverNSlots-1;
theInverseRange = (driverNSlots-1) - theRange;
lut(1, 1:driverNSlots) = uint8(floor(theRange/256)); % Red channel: High Byte.
lut(2, 1:driverNSlots) = uint8(floor(mod(theRange, 256))); % Green channel: Low Byte.
lut(3, 1:driverNSlots) = uint8(floor(theInverseRange/256)); % Blue channel: Inverse range High Byte.
lut(4, 1:driverNSlots) = uint8(floor(mod(theInverseRange, 256))); % Alpha channel: Inverse range Low Byte.
plotchannel = [1,1,1,1];
else
% LUT provided: Just use it "as is":
lut = driverLUT;
plotchannel = [1,1,1,0];
end
% Enable generic LUT luminance output formatter and provide it with
% our lut:
PsychImaging('AddTask', 'General', 'EnableGenericHighPrecisionLuminanceOutput', lut);
% Build test image:
theInImage = reshape(linspace(0, 1, 2^16), 256, 256);
% Build reference image:
theIntImage = uint32( floor(theInImage * (driverNSlots-1)) );
theRefImage = zeros(256, 256, 4);
% Recompute theInImage from the theIntImage -- theInImage shall
% become a quantized version of itself - quantized to
% driverNSlots-1 levels. This way we can be sure that the GPU and
% CPU get initially fed with the same data for conversion:
theInImage = double(theIntImage) / (driverNSlots-1);
uniqueValsA = length(unique(theInImage));
uniqueValsB = length(unique(theIntImage));
if (uniqueValsA~=uniqueValsB) || (uniqueValsA~=driverNSlots)
fprintf('Ouch! Number of unique test samples in different images is not the same! Bug in test code?!?\n');
fprintf('Input to GPU (float) = %i, Input to CPU (uint32) = %i, Reference Expected (nr. slots) = %i\n', uniqueValsA, uniqueValsB, driverNSlots);
error('Mismatch in unique values count! Likely a bug in this test code!');
end
theRefImage(:,:,1:3) = ind2rgb(theIntImage, double(lut(1:3,:)'));
% Need to treat alpha channel separately, as ind2rgb can only
% handle 3 layer images...
theAlphaImage = ind2rgb(theIntImage, double(repmat(lut(4,:)', 1, 3)));
theRefImage(:,:,4) = theAlphaImage(:,:,1);
% Convert to uint8:
theRefImage = uint8(theRefImage);
case {'VideoSwitcherSimple'}
% Select simple VideoSwitcher output formatter:
PsychImaging('AddTask', 'General', 'EnableVideoSwitcherSimpleLuminanceOutput', driverBTRR);
if isempty(driverBTRR)
% Fetch default from file:
driverBTRR = PsychVideoSwitcher('GetDefaultConfig', whichScreen);
end
% Build test image:
theInImage = reshape(linspace(0, 1, 2^16), 256, 256);
% Build reference image:
theRefImage = uint8(zeros(256, 256, 4));
theRefImage(:,:,1:3) = PsychVideoSwitcher('MapLuminanceToRGB', theInImage, driverBTRR, 0);
plotchannel = [1,0,1,0];
case {'VideoSwitcherCalibrated'}
if isempty(driverBTRR) || isempty(driverLUT)
[mydriverBTRR, mydriverLUT] = PsychVideoSwitcher('GetDefaultConfig', whichScreen);
if isempty(driverBTRR)
driverBTRR = mydriverBTRR;
end
if isempty(driverLUT)
driverLUT = mydriverLUT;
end
end
% Select calibrated VideoSwitcher output formatter:
PsychImaging('AddTask', 'General', 'EnableVideoSwitcherCalibratedLuminanceOutput', driverBTRR, driverLUT);
% Build test image:
theInImage = reshape(linspace(0, 1, 2^16), 256, 256);
% Build reference image:
theRefImage = uint8(zeros(256, 256, 4));
theRefImage(:,:,1:3) = PsychVideoSwitcher('MapLuminanceToRGBCalibrated', theInImage, driverBTRR, driverLUT, 0);
plotchannel = [1,0,1,1];
otherwise
error('Unknown drivername provided. Not supported! Typo?!?');
end
% Common code for testing:
% Perform GPU conversion and readback results:
[m,n,p] = size(theRefImage);
rect = [0 0 m n];
% Show the image
window = PsychImaging('OpenWindow', whichScreen, 0);
% Double-Check for bugs in PsychImaging:
winfo = Screen('GetWindowInfo', window);
if ~bitand(winfo.ImagingMode, kPsychNeed32BPCFloat)
Screen('CloseAll');
RestoreCluts;
error('Onscreen window not configured for 32 bpc float drawing! This should not happen and is a bug in PsychImaging.m setup code for this formatter!!');
end
% Find out how big the window is:
[screenWidth, screenHeight]=Screen('WindowSize', window);
% Build HDR input texture as 32 bpc float luminance texture:
hdrtexIndex= Screen('MakeTexture', window, double(theInImage), [], [], 2);
% Draw image as generated by PTB GPU imaging pipeline:
dstRect = Screen('Rect', hdrtexIndex);
% Draw with nearest neighbour filtering - no bilinear filtering!
Screen('DrawTexture', window, hdrtexIndex, [], dstRect, [], 0);
% Finalize image before we take a screenshot:
Screen('DrawingFinished', window, 0, 1);
% Take screenshot of GPU converted image:
convImage=Screen('GetImage', window, dstRect, 'backBuffer', 0, 4);
% Show GPU converted image. Should obviously not make any visual difference if
% it is the same as the Matlab converted image.
vbl = Screen('Flip', window);
% Disable output formatters:
Screen('HookFunction', window, 'Disable', 'FinalOutputFormattingBlit');
% Build and draw texture from reference image - This is just for
% visualization, not used for comparison:
texpacked= Screen('MakeTexture', window, theRefImage);
dstRect = Screen('Rect', texpacked);
Screen('DrawTexture', window, texpacked, [], dstRect, [], 0);
% Show it:
vbl = Screen('Flip', window, vbl + 1);
% Keep it onscreen for 2 seconds, then blank screen:
Screen('Flip', window, vbl + 2);
% Done. Close everything down:
Screen('CloseAll');
RestoreCluts;
% Comparisons...
% Compute difference images between Matlab converted packedImage and GPU converted
% HDR image:
diffred = (double(theRefImage(:,:,1)) - double(convImage(:,:,1)));
diffgreen = (double(theRefImage(:,:,2)) - double(convImage(:,:,2)));
diffblue = (double(theRefImage(:,:,3)) - double(convImage(:,:,3)));
diffalpha = (double(theRefImage(:,:,4)) - double(convImage(:,:,4)));
% Compute maximum deviation of framebuffer raw data:
mdr = max(max(abs(diffred)));
mdg = max(max(abs(diffgreen)));
mdb = max(max(abs(diffblue)));
mda = max(max(abs(diffalpha)));
fprintf('\n\nMaximum raw data difference: red= %f green = %f blue = %f alpha = %f\n', mdr, mdg, mdb, mda);
% If there is a difference, show plotted difference if requested:
if (mdr>0 || mdg>0 || mdb>0 || mda>0) && plotdiffs
% Differences detected!
close all;
if plotchannel(1), figure; imagesc(diffred); title('Difference map - Channel 1 (Red):'); end
if plotchannel(2), figure; imagesc(diffgreen); title('Difference map - Channel 2 (Green):'); end
if plotchannel(3), figure; imagesc(diffblue);title('Difference map - Channel 3 (Blue):'); end
if plotchannel(4), figure; imagesc(diffalpha);title('Difference map - Channel 4 (Alpha):'); end
end
if (mdr>0 || mdg>0 || mdb>0 || mda>0) || (plotdiffs > 1)
% Now compute a more meaningful difference: The difference between the
% stimulus as the Bits++ box would see it (i.e. how much do the 16 bit
% intensity values of each color channel differ?):
c=1;
convImage = double(convImage);
packedImage = double(theRefImage);
switch (whichDriver)
case {'GenericLUT'}
% Test of generic LUT conversion:
deconvImage = zeros(size(convImage,1), size(convImage,2));
depackImage = zeros(size(packedImage,1), size(packedImage,2));
if isempty(driverLUT)
% Invert conversion: Compute 16 bpc color values from high/low byte
% pixel data:
deconvImage(:,:) = 256 * convImage(:, :, 1) + convImage(:, :, 2);
depackImage(:,:) = 256 * packedImage(:, :, 1) + packedImage(:, :, 2);
else
% Invert conversion by use of 'driverLUT':
fprintf('Inverting user provided LUT mapping - This can take very long...\n');
for row=1:size(convImage,1)
fprintf('Pass 1 of 2: Row %i of %i...\n', row, size(convImage,1));
for col=1:size(convImage,2)
candidatesa = find(lut(1, :) == convImage(row,col,1));
candidatesb = find(lut(2, :) == convImage(row,col,2));
candidatesc = find(lut(3, :) == convImage(row,col,3));
candidatesd = find(lut(4, :) == convImage(row,col,4));
candidates1 = intersect(candidatesa, candidatesb);
candidates2 = intersect(candidatesc, candidatesd);
deconvImage(row,col) = min(intersect(candidates1, candidates2) - 1);
end
end
for row=1:size(packedImage,1)
fprintf('Pass 2 of 2: Row %i of %i...\n', row, size(convImage,1));
for col=1:size(convImage,2)
candidatesa = find(lut(1, :) == packedImage(row,col,1));
candidatesb = find(lut(2, :) == packedImage(row,col,2));
candidatesc = find(lut(3, :) == packedImage(row,col,3));
candidatesd = find(lut(4, :) == packedImage(row,col,4));
candidates1 = intersect(candidatesa, candidatesb);
candidates2 = intersect(candidatesc, candidatesd);
depackImage(row,col) = min(intersect(candidates1, candidates2) - 1);
end
end
end
case {'VideoSwitcherSimple'}
% Test of simple VideoSwitcher driver:
% This is the (kind of) real value range of the device:
driverNSlots = 256 * driverBTRR;
% Remap:
deconvImage = ((convImage(:, :, 1) + convImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
depackImage = ((packedImage(:, :, 1) + packedImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
figure;
hiconvImage = convImage(:,:,3);
loconvImage = convImage(:,:,1);
higpu = hiconvImage(:);
lowgpu = loconvImage(:);
lumi = theInImage(:);
j = 1:length(higpu);
plot(lumi, higpu, '-', lumi, lowgpu, '--');
legend('High-Byte', 'Low-Byte');
title('GPU results in raw bytes: (x=Normalized Luminance (Req.) No., y = Byte value)');
case {'VideoSwitcherCalibrated'}
% Test of LUT calibrated VideoSwitcher driver:
% This is the (kind of) real value range of the device:
driverNSlots = 256 * driverBTRR;
% Remap:
deconvImage = ((convImage(:, :, 1) + convImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
depackImage = ((packedImage(:, :, 1) + packedImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
figure;
hiconvImage = convImage(:,:,3);
loconvImage = convImage(:,:,1);
higpu = hiconvImage(:);
lowgpu = loconvImage(:);
lumi = theInImage(:);
j = 1:length(higpu);
plot(lumi, higpu, '-', lumi, lowgpu, '--');
legend('High-Byte', 'Low-Byte');
title('GPU results in raw bytes: (x=Normalized Luminance (Req.) No., y = Byte value)');
% Compute average iteration count in shader etc.:
meaniterations = mean(mean(convImage(:,:,4)));
miniterations = min(min(convImage(:,:,4)));
maxiterations = max(max(convImage(:,:,4)));
fprintf('Per-Pixel search iterations in conversion shader: Min = %i, Max = %i, Mean = %f.\n', miniterations, maxiterations, meaniterations);
otherwise
error('Switch statement in deconversion part does not recognize driver name! Implementation bug!?!');
end
% Difference image:
diffImage = (deconvImage - depackImage);
% Find locations where pixels differ:
idxdiff = find(abs(diffImage) > 0);
numdiff(c) = length(idxdiff);
numtot(c) = size(diffImage,1)*size(diffImage,2);
maxdiff(c) = max(max(abs(diffImage)));
if plotdiffs > 1
idxdiff = find(diffImage~=inf);
end
[row col] = ind2sub(size(diffImage), idxdiff);
% Print out all pixels values which differ, and their difference:
if plotdiffs
figure;
dgpu = deconvImage(:);
dcpu = depackImage(:);
lumi = theInImage(:);
j = 1:length(dgpu);
plot(lumi, dgpu, '-', lumi, dcpu, '--');
legend('GPU', 'Matlab/Octave');
title('GPU vs. CPU results in device units: (x=Normalized Luminance (Req.) No., y = Luminance units)');
for j=1:length(row)
fprintf('Diff: %.2f Requested: %.10f Actual: GPU %f vs. CPU %f\n', diffImage(row(j), col(j)), theInImage(row(j), col(j)) * (driverNSlots-1), deconvImage(row(j), col(j)), depackImage(row(j), col(j)));
end
end
totalmaxdiff = max(maxdiff);
% Summarize for this color channel:
fprintf('\n\nIn remapped image: %i out of %i pixels differ. The maximum absolute difference is %f device units.\nTotal difference range: [%f - %f]\n', numdiff(c), numtot(c), maxdiff(c), min(min(diffImage)), max(max(diffImage)));
fprintf('The maximum absolute difference corresponds to %f %% of the total operating range of the device.\n', maxdiff(c) / (driverNSlots-1) * 100);
fprintf('Displayed differences and values are in "device units". They are proportional to levels of luminance (by an unknown factor)');
else
% No difference in raw values implies no difference at all:
totalmaxdiff = 0;
end
if (mdr>0 || mdg>0 || mdb>0 || mda>0) && (totalmaxdiff > 1.1) && ~forcesuccess
fprintf('\n\n');
fprintf('------------------ SIGNIFICANT DIFFERENCE IN CONVERSION DETECTED -----------------------\n');
fprintf('The difference is %f, ie., it is more than 1 device unit.\n', totalmaxdiff);
fprintf('This should not happen on properly and accurately working graphics hardware.\n');
fprintf('Either there is a bug in the graphics driver, or something is misconfigured or\n');
fprintf('your hardware is too old and not capable of performing the calculations in sufficient\n');
fprintf('precision.\nYou may want to check your configuration and upgrade your driver. If that\n');
fprintf('does not help, upgrade your graphics hardware. Alternatively you may want to use the old\n');
fprintf('Matlab-based conversion function for slow conversion of images.\n\n');
fprintf('Please report this failure with a description of your hardware setup to the Psychtoolbox\n');
fprintf('forum (http://psychtoolbox.org --> Link to the forum.)\n\n');
fprintf('You can force this test to succeed if you set the optional "forcesuccess" flag for this\n');
fprintf('script to one and rerun it.\n\n');
Screen('Preference', 'Verbosity', oldverbosity);
Screen('Preference', 'SkipSyncTests', oldsynclevel);
error('Conversion test failed. Results of Matlab code and GPU conversion differ!');
end
if (mdr>0 || mdg>0 || mdb>0 || mda>0) && (totalmaxdiff <= 1.1)
fprintf('\n\n');
fprintf('------------------ SMALL, PROBABLY INSIGNIFICANT DIFFERENCE IN CONVERSION DETECTED -----\n');
fprintf('The difference is %f, ie., it is only 1 device unit or less.\n', totalmaxdiff);
fprintf('Such a small deviation between Matlab''s/Octave''s result and the GPU result is usually \n');
fprintf('within the tolerable range of deviations. It is likely an artifact of the test procedure\n');
fprintf('itself or smallish numeric precision error on either GPU or CPU. Anyway, this minimal \n');
fprintf('difference will likely introduce an error that is much smaller than the error introduced\n');
fprintf('by drift and tolerances of your converter and display device, and errors in calibration.\n');
fprintf('You should inspect the numeric output above, and the plots and stimuli, but likely you \n');
fprintf('do not need to worry about this off-by-one difference.\n\n');
end
if (mdr==0 && mdg==0 && mdb==0 && mda==0)
fprintf('\n\n');
fprintf('------------------ PERFECT CONVERSION DETECTED -------------------------------\n');
fprintf('The difference is zero - All implementations deliver exactly the same results.\n');
end
fprintf('\n\n------------------- Conversion test success! -------------------------------------\n\n');
fprintf('Imaging pipeline conversion verified to work correctly. Validation info stored.\n');
% Done for now.
return;
|