This file is indexed.

/usr/share/psychtoolbox-3/PsychTests/PosterBatchAnalyzeTimestamps.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
function PosterBatchAnalyzeTimestamps
% PosterBatchAnalyzeTimestamps
%
% Iterate over all timingtest result files ('Res_flipconfig_xxxx') which
% contain valid high precision flip timestamps, either based on
% 'p'hotodiode measurements or 'd'atapixx measurements.
%
% measMethod must be 'p' or 'd' for photo-diode measurement via RTBox, or
% Datapixx measurement.
%
% The recursive search for matching result files starts at /includes the
% current working directory.
%
% The script iterates over each matching file and adds all collected raw
% and high precision timestamps to a large array of timestamps. At the end
% of iteration, the pooled dataset is analyzed for mean, max and min
% deviation between Flip onset timestamps and measured timestamps. The
% total range of deviation and the standard deviation from the mean (==
% timestamp variability) is computed as well. This is done on the raw
% timestamps and high precision timestamps. End results are printed and
% scatterplots of all individual samples are shown.
%
% This script was used to compute the values of the "Stimulus timestamp
% precision" result table of Mario Kleiner's ECVP-2010 poster "Visual
% stimulus timing precision in Psychtoolbox-3: Tests, pitfalls &
% solutions". The same data is used in the corresponding table of his PhD
% Dissertation.
%
    clear;
    
    global res;
    
    global gRawDeltas;
    global gPrecDeltas;
    
    includer = [];
    keyboard;

    measMethod = input('Measurement method p or d for photodiode or datapixx?', 's');

    if isempty(measMethod) || ~ismember(measMethod, ['p', 'd'])
        error('Invalid measurement method provided!');
    end
        
    sdir = pwd;
    
    % Recursively get filenames of all result files in 'sdir' directory tree:
    [fdir, fnames] = subdir(sdir);

    [gnrTotal, gnrSkipped, gnrCorrupt, gnrDisagree, gnrDelayed, meanDiff, stdDiff, rawmeanDiff, rawstdDiff, rawrangeDiff] = deal(0);
    sc = 0;
    count = 0;
    rangeDiff = zeros(3,0);
    rawrangeDiff = zeros(3,0);
    
    % Check each for valid and matching datafile:
    for fi = 1:length(fnames)
        fname = char(fnames{fi});

        % Only interested in Priority 1 runs with sync-flip and medium load:
        if ~isempty(strfind(fname, 'Res_flipconfig_'))
            %if ~isempty(strfind(fname, 'Res_flipconfig_prio1_syncflip')) && ~isempty(strfind(fname,'_medium_')) %&& ~isempty(strfind(fname,'noload'))

            % Load result file: Will create struct 'res' with data:
            load(fname);

            if (res.measurementType == measMethod) && ismember(res.VBLTimestampingMode, [1,4]) && isfield(res, 'onsetFlipTime') && res.onsetFlipTime(end) > 0
                count = count + 1
                if isempty(includer) || ismember(count, includer)
                    sc = sc + 1;
                    fprintf('%s\n', fname);
                    [nrTotal, nrSkipped, nrCorrupt, nrDisagree, nrDelayed, meanDiff(sc), stdDiff(sc), rangeDiff(:, sc), rawmeanDiff(sc), rawstdDiff(sc), rawrangeDiff(:, sc)] = AnalyzeThis;

                    gnrTotal = gnrTotal + nrTotal;
                    gnrSkipped = gnrSkipped + nrSkipped;
                    gnrCorrupt = gnrCorrupt + nrCorrupt;
                    gnrDisagree = gnrDisagree + nrDisagree;
                    gnrDelayed = gnrDelayed + nrDelayed;
                end
            end
        end
    end
    
    fprintf('\n\n\n');
    fprintf('Total     frames: %i\n', gnrTotal);
    fprintf('Skipped   frames: %i\n', gnrSkipped);
    fprintf('Corrupted frames: %i\n', gnrCorrupt);
    fprintf('Disagreed frames: %i\n', gnrDisagree);
    fprintf('Delayed   frames: %i\n', gnrDelayed);
    
    if ~isempty(gPrecDeltas)
        meanDiff  = mean(gPrecDeltas);
        stdDiff   = std(gPrecDeltas);
        rangeDiff(1) = range(gPrecDeltas);
        rangeDiff(2) = min(gPrecDeltas);
        rangeDiff(3) = max(gPrecDeltas);

        rawmeanDiff  = mean(gRawDeltas);
        rawstdDiff   = std(gRawDeltas);
        rawrangeDiff(1) = range(gRawDeltas);
        rawrangeDiff(2) = min(gRawDeltas);
        rawrangeDiff(3) = max(gRawDeltas);

        fprintf('Precision timestamps:\n');
        fprintf('Mean error: %f\n', meanDiff);
        fprintf('Stddev.   : %f\n', stdDiff);
        fprintf('Range     : %f\n', rangeDiff(1));
        fprintf('Min Error : %f\n', rangeDiff(2));
        fprintf('Max Error : %f\n', rangeDiff(3));
        fprintf('\n\n');
        fprintf('Raw timestamps:\n');
        fprintf('Mean error: %f\n', rawmeanDiff);
        fprintf('Stddev.   : %f\n', rawstdDiff);
        fprintf('Range     : %f\n', rawrangeDiff(1));
        fprintf('Min Error : %f\n', rawrangeDiff(2));
        fprintf('Max Error : %f\n', rawrangeDiff(3));

    
        close all;

        hold on;
        scatter(0,0,'g');
        scatter(ones(1,length(gPrecDeltas)), gPrecDeltas, 'b');
        scatter(2*ones(1,length(gRawDeltas)), gRawDeltas, 'r');
        hold off;
        drawnow;
    else
        fprintf('No measurement data available for analysis!\n');
    end
    
    return;
end

function [nrTotal, nrSkipped, nrCorrupt, nrDisagree, nrDelayed, meanDiff, stdDiff, rangeDiff, rawmeanDiff, rawstdDiff, rawrangeDiff] = AnalyzeThis
    global valids;
    global res;
    global deltas;
    global vdeltas;
    global vrawdeltas;
    global skippedones;

    global gRawDeltas;
    global gPrecDeltas;
    
    
    agrthresh = 0.0016;
    
    % Discard 1st frame by marking it as invalid:
    res.failFlag(1) = -1;
    valids = find(res.failFlag == 0);
    skippedones = find(abs(res.measuredTime - res.predictedOnset) > 0.75 * res.ifi);
    skippedones = intersect(skippedones, valids);
    nrSkipped = length(skippedones);
    nrCorrupt = length(find(res.failFlag > 0));
    deltas = res.measuredTime - res.onsetFlipTime;
    nrDisagree = length(find(abs(deltas(valids)) > agrthresh));
    nrDelayed = length(find(deltas(valids) < -0.66 * res.ifi));

    % Compute final indices of valid samples in this set:
    agreevalids = intersect(valids, find(abs(deltas) <= agrthresh));
    
    % Only take deltas of valid frames into account:
    vdeltas = 1000 * deltas(agreevalids); %#ok<FNDSB>
    
    
    meanDiff  = mean(vdeltas);
    stdDiff   = std(vdeltas);
    rangeDiff(1) = range(vdeltas);
    rangeDiff(2) = min(vdeltas);
    rangeDiff(3) = max(vdeltas);

    % Only take rawdeltas of valid frames into account:
    rawdeltas = res.measuredTime - res.rawFlipTime;
    vrawdeltas = 1000 * rawdeltas(agreevalids);

    % Only add to global sample pools if no corrupt measurements:
    if nrCorrupt == 0
        % Add to global pool of precsion deltas:
        gPrecDeltas = [gPrecDeltas , vdeltas];

        % Add to global pool of raw deltas:
        gRawDeltas = [gRawDeltas , vrawdeltas];
    end
    
    rawmeanDiff  = mean(vrawdeltas);
    rawstdDiff   = std(vrawdeltas);
    rawrangeDiff(1) = range(vrawdeltas);
    rawrangeDiff(2) = min(vrawdeltas);
    rawrangeDiff(3) = max(vrawdeltas);
    
    nrTotal = max(find(res.onsetFlipTime > 0)); %#ok<MXFND>
    
    fprintf('Comments: %s\n', res.Comments);
    if (nrCorrupt > 0) || (nrDisagree > 0) || (nrSkipped > 0)
        fprintf('Number of skipped frames: %i\n', nrSkipped);
        fprintf('Number of corrupted frames: %i\n', nrCorrupt);
        fprintf('Number of > 1.6 msecs disagreement meas vs. flip: %i\n', nrDisagree);
        fprintf('Number of flip >= 0.66 ifi later than meas. (Excessive wakeup-delay): %i\n', nrDelayed);
    end
    fprintf('Valid high-precision frames: Mean difference %f msecs, stddev %f msecs, range %f msecs.\n', meanDiff, stdDiff, rangeDiff(1));
    fprintf('Valid raw-precision  frames: Mean difference %f msecs, stddev %f msecs, range %f msecs.\n', rawmeanDiff, rawstdDiff, rawrangeDiff(1));
    fprintf('\n\n\n');
    
    return;
end