This file is indexed.

/usr/share/psychtoolbox-3/PsychTests/StandaloneTimingTest.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
function StandaloneTimingTest(use_sigsetjmp, savemask)
% StandaloneTimingTest(use_sigsetjmp, savemask)
% 
% run a timing loop in a separate process, indepenent of MATLAB.  plot the results.  
%  
% use_sigsetmask specifies whether the StandaloneTimingTest program will
% call sigsetjmp() within the timing loop.  If sigsetmask is set, then 
% StandaloneTimingTest passes savemask to sigsetjmp in the second argument.
%
% comparing results of StandaloneTimingTest with and without
% sigsetjmp shows that calling sigsetjmp with the savemask
% argument set causes OS X to suspend execution of the StandaloneTimingTest
% application for up to 13 ms.
%
% SEE ALSO: StandaloneTimingTest.c

% AUTHORS:
% Allen Ingling     awi     Allen.Ingling@nyu.edu
%
% HISTORY: 
% 8/26/03   awi     Wrote it.     
% 9/14/03   awi     Merged in features from MATLABTimingTest.m, mostly
%                   to improve plotting features.
% 9/24/03   awi     Changed the name of the standalone  application to
%                    "StandaloneTimingApp"
% 11/04/03  awi     Added axis labels.
% 12/02/03  awi     Added use_sigsetjmp and savemask flags.
% 4/6/05    awi     Replaced "GetBusFrequencymex" calls with "MachTimebase"
% 4/8/05    awi     Updated "MachTimebase" to new name "MachAbsoluteTimeClockFrequency"


% Setting "time constrait" priority settings and blocking duration:
%
% periodSecs= 1/1000;                                  
% computationSecs = periodSecs/10;
% constraintSecs= computationSecs;              
% preemptibleFlag=1;
% blockingIntervalSecs=periodSecs;
%
% Out of every millisecond guarantee the MATLAB process up to 100 microseconds
% of CPU time.  That is, MATLAB will lay claim to up to 1/10 of the total CPU time.
% Gurantee that that MATLAB's 100 microseconds of CPU time fall within a
% 100 microsecond window, from the start of computation to the end of
% computation.  Within that window, allow MATLAB to be interrupted by other
% threads.
%
% Note that we do not know in advance of the timing loop how much CPU time we will
% actually need, that depends on how much CPU time MATLAB expends 
% in processing a scripted loop pass. We can however retroactively validate our
% choice of values by examing timing results:
% 
%  blockingInterval + actualMATLABCPUUsage = loopPassDuration
% 
% therefore:
%
%   loopPassDuration - blockingInterval = actualMATLABCPUUsage
%
% we know everything on the left hand side can find actualMATLABCPUUsage.  If  we have chosen 
% parameters correctly then:
%
% actualMATLABCPUUsage <= computationSeconds
% 
% and, 
%
% actualMATLABCPUUsage/(actualMATLABCPUUsage + blockingInterval) < computationSeconds/periodSeconds)
% 
% unknown quantity actualMATLABCPUUsage is found:
%
% loopPassDuration = actualMATLABCPUUsage + blockingInterval
% actualMATLABCPUUsage = loopPassDuration - blockingInterval
% 
% substituting into the inequality we get:
%
% (loopPassDuration - blockingInterval)/loopPassDuration < computationSeconds/periodSeconds)
%
% Note that the above is sufficient when loopPassDuration < periodSeconds.
% If loopPassDuration > periodSeconds then we must also have
% actualMATLABCPUUsage <= computationSeconds.

if(nargin<2)
    error('Arguments "use_sigsetjmp" and "savemask" are required.');
end


% designate an index for the block of test parameters to be used. 
tci = 1;                      %tci stands for  test condition index.
fixedAxisY=0;
fixedAxisValueY=0.020;

% Test condition 1 shows delays at 30-second intervals.
%
%
% designate an index for this block of test parameters. 
tcb= 1;
%set flags which specify various test conditions
tc(tcb).enableTCPriority=1;
%specify the 'time constraint' parameters
tc(tcb).periodSecs= 1/1000;                                  
tc(tcb).computationSecs = tc(tcb).periodSecs/10 * 5 ;
tc(tcb).constraintSecs= tc(tcb).computationSecs;              
tc(tcb).preemptibleFlag=0;
tc(tcb).blockingIntervalSecs=tc(tcb).periodSecs - tc(tcb).computationSecs;
% specify for how many seconds we want to run out timing loop
tc(tcb).testDurationSeconds = 2*60+1;
%specify a factor by which to mulitply the memory allocation estimate, for
%saftey margin.
tc(tcb).maxDisplayExcessComputationDurations=100;
% specify values describing expected period glitches.  As part of the analysis after
% the timing test we search for regular glitches described by these
% paramters.
tc(tcb).interGlitchIntevalSecs = 30;
tc(tcb).interGlitchIntervalJitter = 0.1;        % tolerance of interGlitchIntevalSecs value.


clear tcb;      % make sure that we do not use tcb below.  (It sneaks in when we cut and past from conditions above and forget to sub in tci.)
% --------------------------------------------------------------------------------------------------------------------------------------------
% 

%convert units of seconds to ticks.  
ticksPerSecond= MachAbsoluteTimeClockFrequency; 
periodTicks = round(tc(tci).periodSecs * ticksPerSecond);
computationTicks = round(tc(tci).computationSecs * ticksPerSecond);
constraintTicks = round(tc(tci).computationSecs * ticksPerSecond);

%launch the external process with specified parameters
dataFileName=               'StandaloneTimingRawResults';
testProgramName=            'StandaloneTimingProgram';  %assumes that the executable of this name exists in the same directory as this script.
myFullName=mfilename('fullpath');
[myPath, myName, myExt, myVersionNumber] = fileparts(myFullName);
fullTestProgramName=fullfile(myPath, testProgramName);
fullDataFileName=fullfile(myPath, dataFileName);

s=' ';
invocationString=['! ' fullTestProgramName s num2str(periodTicks) s num2str(computationTicks) s ...
        num2str(constraintTicks) s num2str(tc(tci).preemptibleFlag) s num2str(tc(tci).blockingIntervalSecs) ...
        s num2str(tc(tci).testDurationSeconds) s num2str(use_sigsetjmp) s num2str(savemask)];
invocationStringRedirect = [invocationString ' > ' fullDataFileName];
fprintf('Timing program invoking with shell command:\n');
fprintf(invocationStringRedirect);
fprintf('\n');
fprintf('This will take %f seconds...\n', tc(tci).testDurationSeconds);  
eval(invocationStringRedirect);

%open the data file created by the external proces and read back the
%results back into MATLAB
f = fopen(fullDataFileName, 'r');
tVec=fscanf(f,'%f\n');
fclose(f);

% plot stuff and calculate stuff
tVec=tVec(1:end-1); 
tDiffVec=diff(tVec);
tDiffVecSampleTimes=tVec(1:end-1)-tVec(1);
plot(tDiffVecSampleTimes, tDiffVec, 'b');
xlabel('loop start time (seconds)');
ylabel('loop pass time (seconds)');
if fixedAxisY
    axis([-5, max(tDiffVecSampleTimes)+5, 0, fixedAxisValueY]);
else
    axis([-5, max(tDiffVecSampleTimes)+5, 0, 1.25 *max(max(tDiffVec), tc(tci).periodSecs)]);
end
minLoopDuration=min(tDiffVec);
maxLoopDuration=max(tDiffVec);
medianLoopDuration=median(tDiffVec);
fprintf('The shortest loop was: %f seconds\n', minLoopDuration);
fprintf('The longest loop was: %f seconds\n', maxLoopDuration);
fprintf('The median loop was: %f seconds\n', medianLoopDuration);

%plot horizontal lines across the graph marking "time constraint"
%parameters "period" and the blocking interval.
hold on;
periodSecsLineX=[0 tc(tci).testDurationSeconds];
periodSecsLineY=[tc(tci).periodSecs tc(tci).periodSecs ];
plot(periodSecsLineX, periodSecsLineY, 'g');
blockingSecsLineX=periodSecsLineX;
blockingSecsLineY=[tc(tci).blockingIntervalSecs tc(tci).blockingIntervalSecs ];
plot(blockingSecsLineX, blockingSecsLineY, 'r');

% Find the n longest glitches.  n is set with the assumption that
% the total number of glitches is predicted by their falling
% at 30-second intervals.  If that assumption is wrong then 
% we will not find all of the long glitches
numExpectedGlitches=floor(tc(tci).testDurationSeconds/tc(tci).interGlitchIntevalSecs);
[sortedtDiffVec, sortedtDiffVecIndices]=sort(tDiffVec);
sortedtDiffVecRev=fliplr(sortedtDiffVec);
sortedtDiffVecIndicesRev=fliplr(sortedtDiffVecIndices);

nLongestGlitches= sortedtDiffVecRev(1:numExpectedGlitches);
nLongestGlitchesIndices=sortedtDiffVecIndicesRev(1:numExpectedGlitches);
nLongestGlitchesTimestamps=tDiffVecSampleTimes(nLongestGlitchesIndices);
[nLongestGlitchesTimestampsSequenced, nLongestGlitchesTimestampsSequencedIndices]=sort(nLongestGlitchesTimestamps);
interGlitchIntervals=diff(nLongestGlitchesTimestampsSequenced);
% for i=1:numExpectedGlitches
%     plot(nLongestGlitchesTimestamps(i), nLongestGlitches(i), 'rx');
% end
hold off;

fprintf([int2str(numExpectedGlitches) ' glitches predicted in ' num2str(tc(tci).testDurationSeconds) ' second test interval, assuming 30-second interval between glitches\n']);
fprintf(['The ' int2str(numExpectedGlitches) ' longest loop delays occured at times and intervals:\n']);
for i=1:numExpectedGlitches
    fprintf([ '\t' num2str(nLongestGlitchesTimestampsSequenced(i)) ' s\n']);
    if  i<numExpectedGlitches
        fprintf([ '\t\tdelta=' num2str(interGlitchIntervals(i)) ' s\n']);
    end
end

%identify those glitches among the longest 4 which fall at 30-second
%intervals.  First find the intervals of 30-second duration, then find
%the samples which mark the end points of those intervals.
synchedIntervalDoubleIndices=find( (interGlitchIntervals < (tc(tci).interGlitchIntevalSecs + tc(tci).interGlitchIntervalJitter)) & (interGlitchIntervals > (tc(tci).interGlitchIntevalSecs - tc(tci).interGlitchIntervalJitter)));
if ~isempty(synchedIntervalDoubleIndices) 
    synchedIntervals=interGlitchIntervals(synchedIntervalDoubleIndices);
    intervalsStartGlitchesTimestamps=nLongestGlitchesTimestampsSequenced(1:end-1);
    intervalsEndGlitchesTimestamps=nLongestGlitchesTimestampsSequenced(2:end);
    synchedGlitchesTimestamps=unique([intervalsStartGlitchesTimestamps(synchedIntervalDoubleIndices) intervalsEndGlitchesTimestamps(synchedIntervalDoubleIndices)]);
else
    synchedGlitchesTimestamps=[];
end
 
    
% find the next longest glitch.  
nextLongestDelay=sortedtDiffVecRev(numExpectedGlitches+1); 
nextLongestDelayIndex=sortedtDiffVecIndicesRev(numExpectedGlitches+1);
nextLongestDelayTimestamp=tDiffVecSampleTimes(nextLongestDelayIndex);

fprintf(['The ' int2str(numExpectedGlitches+1) 'th longest loop delay, ']);
fprintf(['at time ' num2str(nextLongestDelayTimestamp) ' seconds, was ' num2str(nextLongestDelay) ' seconds, ']);
fprintf([num2str(nLongestGlitches(numExpectedGlitches)/nextLongestDelay) ' times smaller than the ' int2str(numExpectedGlitches) 'th longest delay\n']);

% Check to see that we always blocked for the specified period. 
underBlockIndices=find(tDiffVec < tc(tci).blockingIntervalSecs);
underBlocks=tDiffVec(underBlockIndices);
if ~isempty(underBlocks)
    fprintf('Detected loop durations shorter than blocking period.  The durations and times are:\n');
    for i=1:length(underBlocks);
        fprintf(['\t' num2str(underBlocks(i)) '\t' num2str(tDiffVecSampleTimes(underBlockIndices(i))) '\n']);
    end
end

% Check to see when we exceeded the specified "computation" CPU time
% allowance specified when assigning 'time constraint' priority. excessComputationSecsIndices=find(measuredComputationSecs > tc(tci).computationSecs);
measuredComputationSecs=tDiffVec-tc(tci).blockingIntervalSecs;
excessComputationSecsIndices=find(measuredComputationSecs > tc(tci).computationSecs);
excessComputationSecs=measuredComputationSecs(excessComputationSecsIndices);
excessComputationTotalSecs=tDiffVec(excessComputationSecsIndices);
exessComputationSecsTimes=tDiffVecSampleTimes(excessComputationSecsIndices);
numExcessComputationLoops=length(excessComputationSecs);
fprintf(['The timing loop computation time exceeded the allocated computation time on ' int2str(numExcessComputationLoops) ' loops.\n']);
if numExcessComputationLoops > 0   
	fprintf('The loop durations, computation times, and timestamps are listed below.\n');
    if numExcessComputationLoops > tc(tci).maxDisplayExcessComputationDurations 
        fprintf(['(only the first ' int2str(tc(tci).maxDisplayExcessComputationDurations) ' are dislayed)\n']);
    end
	for i = 1:min([numExcessComputationLoops, tc(tci).maxDisplayExcessComputationDurations])
        fprintf('\t%1.5f\t%1.5f\t%2.5f\n', excessComputationTotalSecs(i),  excessComputationSecs(i), exessComputationSecsTimes(i) );
	end
end

% Check for compliance with:
% (loopPassDuration - blockingInterval)/loopPassDuration < computationSeconds/periodSeconds)
% For more info see notes at top of the file about this.
% For the tests which use flip instead of BlockSecs we do not actually
% know the blocking interval. This section should be modified accordingly. 
computationRatioLimit = tc(tci).computationSecs / tc(tci).periodSecs;
computationRatios = (tDiffVec - tc(tci).blockingIntervalSecs) / medianLoopDuration;  
computationRatioViolationIndices=find(computationRatios > computationRatioLimit); 
computationRatioViolationDurations=tDiffVec(computationRatioViolationIndices);
computationRatioViolationTimestamps=tDiffVecSampleTimes(computationRatioViolationIndices);
numComputationRatioViolations=length(computationRatioViolationIndices);

% Check to see if we exceed the "computation" CPU time allowance before the
% first glitch.  One possible explanation for the glitches is that the 
% Mach Kernel revokes realtime status at 30-second intervals as penalty 
% for the main MATLAB thread exceeding "computation" allowance.  However,
% if the thread has not exceeded that allowance before the first
% synchronized glitch, that would rule out the possibility.
if ~isempty(synchedGlitchesTimestamps)
    earlyComputationViolations=exessComputationSecsTimes(exessComputationSecsTimes < min(synchedGlitchesTimestamps));
    if isempty(earlyComputationViolations)
        fprintf('The MATLAB thread did not exceed the CPU computation allowance before the first synchronized glitch.\n');
    else
        fprintf('The MATLAB thread exceeded the CPU computation allowance before the first synchronized glitch.\n');
        fprintf(['The violations occured at times: ' num2str(earlyComputationViolations) '\n']);
    end
end