This file is indexed.

/usr/include/pybind11/cast.h is in pybind11-dev 2.0.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
/*
    pybind11/cast.h: Partial template specializations to cast between
    C++ and Python types

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "pytypes.h"
#include "typeid.h"
#include "descr.h"
#include <array>
#include <limits>

NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)

/// Additional type information which does not fit into the PyTypeObject
struct type_info {
    PyTypeObject *type;
    size_t type_size;
    void (*init_holder)(PyObject *, const void *);
    std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
    std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
    std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
    buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
    void *get_buffer_data = nullptr;
    /** A simple type never occurs as a (direct or indirect) parent
     * of a class that makes use of multiple inheritance */
    bool simple_type = true;
};

PYBIND11_NOINLINE inline internals &get_internals() {
    static internals *internals_ptr = nullptr;
    if (internals_ptr)
        return *internals_ptr;
    handle builtins(PyEval_GetBuiltins());
    const char *id = PYBIND11_INTERNALS_ID;
    if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
        internals_ptr = capsule(builtins[id]);
    } else {
        internals_ptr = new internals();
        #if defined(WITH_THREAD)
            PyEval_InitThreads();
            PyThreadState *tstate = PyThreadState_Get();
            internals_ptr->tstate = PyThread_create_key();
            PyThread_set_key_value(internals_ptr->tstate, tstate);
            internals_ptr->istate = tstate->interp;
        #endif
        builtins[id] = capsule(internals_ptr);
        internals_ptr->registered_exception_translators.push_front(
            [](std::exception_ptr p) -> void {
                try {
                    if (p) std::rethrow_exception(p);
                } catch (error_already_set &e)           { e.restore();                                    return;
                } catch (const builtin_exception &e)     { e.set_error();                                  return;
                } catch (const std::bad_alloc &e)        { PyErr_SetString(PyExc_MemoryError,   e.what()); return;
                } catch (const std::domain_error &e)     { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::length_error &e)     { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::out_of_range &e)     { PyErr_SetString(PyExc_IndexError,    e.what()); return;
                } catch (const std::range_error &e)      { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::exception &e)        { PyErr_SetString(PyExc_RuntimeError,  e.what()); return;
                } catch (...) {
                    PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
                    return;
                }
            }
        );
    }
    return *internals_ptr;
}

PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
    auto const &type_dict = get_internals().registered_types_py;
    do {
        auto it = type_dict.find(type);
        if (it != type_dict.end())
            return (detail::type_info *) it->second;
        type = type->tp_base;
        if (!type)
            return nullptr;
    } while (true);
}

PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp,
                                                          bool throw_if_missing = false) {
    auto &types = get_internals().registered_types_cpp;

    auto it = types.find(std::type_index(tp));
    if (it != types.end())
        return (detail::type_info *) it->second;
    if (throw_if_missing) {
        std::string tname = tp.name();
        detail::clean_type_id(tname);
        pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
    }
    return nullptr;
}

PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
    detail::type_info *type_info = get_type_info(tp, throw_if_missing);
    return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
}

PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
    handle type = detail::get_type_handle(tp, false);
    if (!type)
        return false;
    return isinstance(obj, type);
}

PYBIND11_NOINLINE inline std::string error_string() {
    if (!PyErr_Occurred()) {
        PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
        return "Unknown internal error occurred";
    }

    error_scope scope; // Preserve error state

    std::string errorString;
    if (scope.type) {
        errorString += handle(scope.type).attr("__name__").cast<std::string>();
        errorString += ": ";
    }
    if (scope.value)
        errorString += (std::string) str(scope.value);

    PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);

#if PY_MAJOR_VERSION >= 3
    if (scope.trace != nullptr)
        PyException_SetTraceback(scope.value, scope.trace);
#endif

#if !defined(PYPY_VERSION)
    if (scope.trace) {
        PyTracebackObject *trace = (PyTracebackObject *) scope.trace;

        /* Get the deepest trace possible */
        while (trace->tb_next)
            trace = trace->tb_next;

        PyFrameObject *frame = trace->tb_frame;
        errorString += "\n\nAt:\n";
        while (frame) {
            int lineno = PyFrame_GetLineNumber(frame);
            errorString +=
                "  " + handle(frame->f_code->co_filename).cast<std::string>() +
                "(" + std::to_string(lineno) + "): " +
                handle(frame->f_code->co_name).cast<std::string>() + "\n";
            frame = frame->f_back;
        }
        trace = trace->tb_next;
    }
#endif

    return errorString;
}

PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
    auto &instances = get_internals().registered_instances;
    auto range = instances.equal_range(ptr);
    for (auto it = range.first; it != range.second; ++it) {
        auto instance_type = detail::get_type_info(Py_TYPE(it->second));
        if (instance_type && instance_type == type)
            return handle((PyObject *) it->second);
    }
    return handle();
}

inline PyThreadState *get_thread_state_unchecked() {
#if defined(PYPY_VERSION)
    return PyThreadState_GET();
#elif PY_VERSION_HEX < 0x03000000
    return _PyThreadState_Current;
#elif PY_VERSION_HEX < 0x03050000
    return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
#elif PY_VERSION_HEX < 0x03050200
    return (PyThreadState*) _PyThreadState_Current.value;
#else
    return _PyThreadState_UncheckedGet();
#endif
}

// Forward declaration
inline void keep_alive_impl(handle nurse, handle patient);

class type_caster_generic {
public:
    PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
     : typeinfo(get_type_info(type_info)) { }

    PYBIND11_NOINLINE bool load(handle src, bool convert) {
        if (!src)
            return false;
        return load(src, convert, Py_TYPE(src.ptr()));
    }

    bool load(handle src, bool convert, PyTypeObject *tobj) {
        if (!src || !typeinfo)
            return false;
        if (src.is_none()) {
            value = nullptr;
            return true;
        }

        if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
            /* Check if we can safely perform a reinterpret-style cast */
            if (PyType_IsSubtype(tobj, typeinfo->type)) {
                value = reinterpret_cast<instance<void> *>(src.ptr())->value;
                return true;
            }
        } else { /* Case 2: multiple inheritance */
            /* Check if we can safely perform a reinterpret-style cast */
            if (tobj == typeinfo->type) {
                value = reinterpret_cast<instance<void> *>(src.ptr())->value;
                return true;
            }

            /* If this is a python class, also check the parents recursively */
            auto const &type_dict = get_internals().registered_types_py;
            bool new_style_class = PyType_Check((PyObject *) tobj);
            if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
                auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
                for (handle parent : parents) {
                    bool result = load(src, convert, (PyTypeObject *) parent.ptr());
                    if (result)
                        return true;
                }
            }

            /* Try implicit casts */
            for (auto &cast : typeinfo->implicit_casts) {
                type_caster_generic sub_caster(*cast.first);
                if (sub_caster.load(src, convert)) {
                    value = cast.second(sub_caster.value);
                    return true;
                }
            }
        }

        /* Perform an implicit conversion */
        if (convert) {
            for (auto &converter : typeinfo->implicit_conversions) {
                temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
                if (load(temp, false))
                    return true;
            }
            for (auto &converter : *typeinfo->direct_conversions) {
                if (converter(src.ptr(), value))
                    return true;
            }
        }
        return false;
    }

    PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
                                         const std::type_info *type_info,
                                         const std::type_info *type_info_backup,
                                         void *(*copy_constructor)(const void *),
                                         void *(*move_constructor)(const void *),
                                         const void *existing_holder = nullptr) {
        void *src = const_cast<void *>(_src);
        if (src == nullptr)
            return none().inc_ref();

        auto &internals = get_internals();

        auto it = internals.registered_types_cpp.find(std::type_index(*type_info));
        if (it == internals.registered_types_cpp.end()) {
            type_info = type_info_backup;
            it = internals.registered_types_cpp.find(std::type_index(*type_info));
        }

        if (it == internals.registered_types_cpp.end()) {
            std::string tname = type_info->name();
            detail::clean_type_id(tname);
            std::string msg = "Unregistered type : " + tname;
            PyErr_SetString(PyExc_TypeError, msg.c_str());
            return handle();
        }

        auto tinfo = (const detail::type_info *) it->second;

        auto it_instances = internals.registered_instances.equal_range(src);
        for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
            auto instance_type = detail::get_type_info(Py_TYPE(it_i->second));
            if (instance_type && instance_type == tinfo)
                return handle((PyObject *) it_i->second).inc_ref();
        }

        auto inst = reinterpret_steal<object>(PyType_GenericAlloc(tinfo->type, 0));

        auto wrapper = (instance<void> *) inst.ptr();

        wrapper->value = nullptr;
        wrapper->owned = false;

        switch (policy) {
            case return_value_policy::automatic:
            case return_value_policy::take_ownership:
                wrapper->value = src;
                wrapper->owned = true;
                break;

            case return_value_policy::automatic_reference:
            case return_value_policy::reference:
                wrapper->value = src;
                wrapper->owned = false;
                break;

            case return_value_policy::copy:
                if (copy_constructor)
                    wrapper->value = copy_constructor(src);
                else
                    throw cast_error("return_value_policy = copy, but the "
                                     "object is non-copyable!");
                wrapper->owned = true;
                break;

            case return_value_policy::move:
                if (move_constructor)
                    wrapper->value = move_constructor(src);
                else if (copy_constructor)
                    wrapper->value = copy_constructor(src);
                else
                    throw cast_error("return_value_policy = move, but the "
                                     "object is neither movable nor copyable!");
                wrapper->owned = true;
                break;

            case return_value_policy::reference_internal:
                wrapper->value = src;
                wrapper->owned = false;
                detail::keep_alive_impl(inst, parent);
                break;

            default:
                throw cast_error("unhandled return_value_policy: should not happen!");
        }

        tinfo->init_holder(inst.ptr(), existing_holder);

        internals.registered_instances.emplace(wrapper->value, inst.ptr());

        return inst.release();
    }

protected:
    const type_info *typeinfo = nullptr;
    void *value = nullptr;
    object temp;
};

/* Determine suitable casting operator */
template <typename T>
using cast_op_type = typename std::conditional<std::is_pointer<typename std::remove_reference<T>::type>::value,
    typename std::add_pointer<intrinsic_t<T>>::type,
    typename std::add_lvalue_reference<intrinsic_t<T>>::type>::type;

// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};

// Specialization for types that appear to be copy constructible but also look like stl containers
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
// so, copy constructability depends on whether the value_type is copy constructible.
template <typename Container> struct is_copy_constructible<Container, enable_if_t<
        std::is_copy_constructible<Container>::value &&
        std::is_same<typename Container::value_type &, typename Container::reference>::value
    >> : std::is_copy_constructible<typename Container::value_type> {};

/// Generic type caster for objects stored on the heap
template <typename type> class type_caster_base : public type_caster_generic {
    using itype = intrinsic_t<type>;
public:
    static PYBIND11_DESCR name() { return type_descr(_<type>()); }

    type_caster_base() : type_caster_base(typeid(type)) { }
    explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }

    static handle cast(const itype &src, return_value_policy policy, handle parent) {
        if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
            policy = return_value_policy::copy;
        return cast(&src, policy, parent);
    }

    static handle cast(itype &&src, return_value_policy, handle parent) {
        return cast(&src, return_value_policy::move, parent);
    }

    static handle cast(const itype *src, return_value_policy policy, handle parent) {
        return type_caster_generic::cast(
            src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type),
            make_copy_constructor(src), make_move_constructor(src));
    }

    template <typename T> using cast_op_type = pybind11::detail::cast_op_type<T>;

    operator itype*() { return (type *) value; }
    operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }

protected:
    typedef void *(*Constructor)(const void *stream);
#if !defined(_MSC_VER)
    /* Only enabled when the types are {copy,move}-constructible *and* when the type
       does not have a private operator new implementaton. */
    template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) {
        return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; }
    template <typename T = type> static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) {
        return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *) arg))); }; }
#else
    /* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations.
       Use a workaround that only tests for constructibility for now. */
    template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>>
    static Constructor make_copy_constructor(const T *value) {
        return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; }
    template <typename T = type, typename = enable_if_t<std::is_move_constructible<T>::value>>
    static Constructor make_move_constructor(const T *value) {
        return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; }
#endif

    static Constructor make_copy_constructor(...) { return nullptr; }
    static Constructor make_move_constructor(...) { return nullptr; }
};

template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;

// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
    return caster.operator typename make_caster<T>::template cast_op_type<T>();
}
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &&caster) {
    return cast_op<T>(caster);
}

template <typename type> class type_caster<std::reference_wrapper<type>> : public type_caster_base<type> {
public:
    static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
        return type_caster_base<type>::cast(&src.get(), policy, parent);
    }
    template <typename T> using cast_op_type = std::reference_wrapper<type>;
    operator std::reference_wrapper<type>() { return std::ref(*((type *) this->value)); }
};

#define PYBIND11_TYPE_CASTER(type, py_name) \
    protected: \
        type value; \
    public: \
        static PYBIND11_DESCR name() { return type_descr(py_name); } \
        static handle cast(const type *src, return_value_policy policy, handle parent) { \
            return cast(*src, policy, parent); \
        } \
        operator type*() { return &value; } \
        operator type&() { return value; } \
        template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>


template <typename T>
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value>> {
    typedef typename std::conditional<sizeof(T) <= sizeof(long), long, long long>::type _py_type_0;
    typedef typename std::conditional<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>::type _py_type_1;
    typedef typename std::conditional<std::is_floating_point<T>::value, double, _py_type_1>::type py_type;
public:

    bool load(handle src, bool) {
        py_type py_value;

        if (!src) {
            return false;
        } if (std::is_floating_point<T>::value) {
            py_value = (py_type) PyFloat_AsDouble(src.ptr());
        } else if (sizeof(T) <= sizeof(long)) {
            if (PyFloat_Check(src.ptr()))
                return false;
            if (std::is_signed<T>::value)
                py_value = (py_type) PyLong_AsLong(src.ptr());
            else
                py_value = (py_type) PyLong_AsUnsignedLong(src.ptr());
        } else {
            if (PyFloat_Check(src.ptr()))
                return false;
            if (std::is_signed<T>::value)
                py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
            else
                py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr());
        }

        if ((py_value == (py_type) -1 && PyErr_Occurred()) ||
            (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
               (py_value < (py_type) std::numeric_limits<T>::min() ||
                py_value > (py_type) std::numeric_limits<T>::max()))) {
#if PY_VERSION_HEX < 0x03000000
            bool type_error = PyErr_ExceptionMatches(PyExc_SystemError);
#else
            bool type_error = PyErr_ExceptionMatches(PyExc_TypeError);
#endif
            PyErr_Clear();
            if (type_error && PyNumber_Check(src.ptr())) {
                auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value
                                                      ? PyNumber_Float(src.ptr())
                                                      : PyNumber_Long(src.ptr()));
                PyErr_Clear();
                return load(tmp, false);
            }
            return false;
        }

        value = (T) py_value;
        return true;
    }

    static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
        if (std::is_floating_point<T>::value) {
            return PyFloat_FromDouble((double) src);
        } else if (sizeof(T) <= sizeof(long)) {
            if (std::is_signed<T>::value)
                return PyLong_FromLong((long) src);
            else
                return PyLong_FromUnsignedLong((unsigned long) src);
        } else {
            if (std::is_signed<T>::value)
                return PyLong_FromLongLong((long long) src);
            else
                return PyLong_FromUnsignedLongLong((unsigned long long) src);
        }
    }

    PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
};

template<typename T> struct void_caster {
public:
    bool load(handle, bool) { return false; }
    static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
        return none().inc_ref();
    }
    PYBIND11_TYPE_CASTER(T, _("None"));
};

template <> class type_caster<void_type> : public void_caster<void_type> {};

template <> class type_caster<void> : public type_caster<void_type> {
public:
    using type_caster<void_type>::cast;

    bool load(handle h, bool) {
        if (!h) {
            return false;
        } else if (h.is_none()) {
            value = nullptr;
            return true;
        }

        /* Check if this is a capsule */
        if (isinstance<capsule>(h)) {
            value = reinterpret_borrow<capsule>(h);
            return true;
        }

        /* Check if this is a C++ type */
        if (get_type_info((PyTypeObject *) h.get_type().ptr())) {
            value = ((instance<void> *) h.ptr())->value;
            return true;
        }

        /* Fail */
        return false;
    }

    static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
        if (ptr)
            return capsule(ptr).release();
        else
            return none().inc_ref();
    }

    template <typename T> using cast_op_type = void*&;
    operator void *&() { return value; }
    static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
private:
    void *value = nullptr;
};

template <> class type_caster<std::nullptr_t> : public type_caster<void_type> { };

template <> class type_caster<bool> {
public:
    bool load(handle src, bool) {
        if (!src) return false;
        else if (src.ptr() == Py_True) { value = true; return true; }
        else if (src.ptr() == Py_False) { value = false; return true; }
        else return false;
    }
    static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
        return handle(src ? Py_True : Py_False).inc_ref();
    }
    PYBIND11_TYPE_CASTER(bool, _("bool"));
};

template <> class type_caster<std::string> {
public:
    bool load(handle src, bool) {
        object temp;
        handle load_src = src;
        if (!src) {
            return false;
        } else if (PyUnicode_Check(load_src.ptr())) {
            temp = reinterpret_steal<object>(PyUnicode_AsUTF8String(load_src.ptr()));
            if (!temp) { PyErr_Clear(); return false; }  // UnicodeEncodeError
            load_src = temp;
        }
        char *buffer;
        ssize_t length;
        int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(load_src.ptr(), &buffer, &length);
        if (err == -1) { PyErr_Clear(); return false; }  // TypeError
        value = std::string(buffer, (size_t) length);
        success = true;
        return true;
    }

    static handle cast(const std::string &src, return_value_policy /* policy */, handle /* parent */) {
        return PyUnicode_FromStringAndSize(src.c_str(), (ssize_t) src.length());
    }

    PYBIND11_TYPE_CASTER(std::string, _(PYBIND11_STRING_NAME));
protected:
    bool success = false;
};

template <typename type, typename deleter> class type_caster<std::unique_ptr<type, deleter>> {
public:
    static handle cast(std::unique_ptr<type, deleter> &&src, return_value_policy policy, handle parent) {
        handle result = type_caster_base<type>::cast(src.get(), policy, parent);
        if (result)
            src.release();
        return result;
    }
    static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
};

template <> class type_caster<std::wstring> {
public:
    bool load(handle src, bool) {
        object temp;
        handle load_src = src;
        if (!src) {
            return false;
        } else if (!PyUnicode_Check(load_src.ptr())) {
            temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
            if (!temp) { PyErr_Clear(); return false; }
            load_src = temp;
        }
        wchar_t *buffer = nullptr;
        ssize_t length = -1;
#if PY_MAJOR_VERSION >= 3
        buffer = PyUnicode_AsWideCharString(load_src.ptr(), &length);
#else
        temp = reinterpret_steal<object>(PyUnicode_AsEncodedString(
            load_src.ptr(), sizeof(wchar_t) == sizeof(short)
            ? "utf16" : "utf32", nullptr));

        if (temp) {
            int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), (char **) &buffer, &length);
            if (err == -1) { buffer = nullptr; }  // TypeError
            length = length / (ssize_t) sizeof(wchar_t) - 1; ++buffer; // Skip BOM
        }
#endif
        if (!buffer) { PyErr_Clear(); return false; }
        value = std::wstring(buffer, (size_t) length);
        success = true;
        return true;
    }

    static handle cast(const std::wstring &src, return_value_policy /* policy */, handle /* parent */) {
        return PyUnicode_FromWideChar(src.c_str(), (ssize_t) src.length());
    }

    PYBIND11_TYPE_CASTER(std::wstring, _(PYBIND11_STRING_NAME));
protected:
    bool success = false;
};

template <> class type_caster<char> : public type_caster<std::string> {
public:
    bool load(handle src, bool convert) {
        if (src.is_none()) return true;
        return type_caster<std::string>::load(src, convert);
    }

    static handle cast(const char *src, return_value_policy /* policy */, handle /* parent */) {
        if (src == nullptr) return none().inc_ref();
        return PyUnicode_FromString(src);
    }

    static handle cast(char src, return_value_policy /* policy */, handle /* parent */) {
        char str[2] = { src, '\0' };
        return PyUnicode_DecodeLatin1(str, 1, nullptr);
    }

    operator char*() { return success ? (char *) value.c_str() : nullptr; }
    operator char&() { return value[0]; }

    static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
};

template <> class type_caster<wchar_t> : public type_caster<std::wstring> {
public:
    bool load(handle src, bool convert) {
        if (src.is_none()) return true;
        return type_caster<std::wstring>::load(src, convert);
    }

    static handle cast(const wchar_t *src, return_value_policy /* policy */, handle /* parent */) {
        if (src == nullptr) return none().inc_ref();
        return PyUnicode_FromWideChar(src, (ssize_t) wcslen(src));
    }

    static handle cast(wchar_t src, return_value_policy /* policy */, handle /* parent */) {
        wchar_t wstr[2] = { src, L'\0' };
        return PyUnicode_FromWideChar(wstr, 1);
    }

    operator wchar_t*() { return success ? (wchar_t *) value.c_str() : nullptr; }
    operator wchar_t&() { return value[0]; }

    static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
};

template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> {
    typedef std::pair<T1, T2> type;
public:
    bool load(handle src, bool convert) {
        if (!isinstance<sequence>(src))
            return false;
        const auto seq = reinterpret_borrow<sequence>(src);
        if (seq.size() != 2)
            return false;
        return first.load(seq[0], convert) && second.load(seq[1], convert);
    }

    static handle cast(const type &src, return_value_policy policy, handle parent) {
        auto o1 = reinterpret_steal<object>(make_caster<T1>::cast(src.first, policy, parent));
        auto o2 = reinterpret_steal<object>(make_caster<T2>::cast(src.second, policy, parent));
        if (!o1 || !o2)
            return handle();
        tuple result(2);
        PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr());
        PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr());
        return result.release();
    }

    static PYBIND11_DESCR name() {
        return type_descr(
            _("Tuple[") + make_caster<T1>::name() + _(", ") + make_caster<T2>::name() + _("]")
        );
    }

    template <typename T> using cast_op_type = type;

    operator type() {
        return type(cast_op<T1>(first), cast_op<T2>(second));
    }
protected:
    make_caster<T1> first;
    make_caster<T2> second;
};

template <typename... Tuple> class type_caster<std::tuple<Tuple...>> {
    using type = std::tuple<Tuple...>;
    using indices = make_index_sequence<sizeof...(Tuple)>;
    static constexpr auto size = sizeof...(Tuple);

public:
    bool load(handle src, bool convert) {
        if (!isinstance<sequence>(src))
            return false;
        const auto seq = reinterpret_borrow<sequence>(src);
        if (seq.size() != size)
            return false;
        return load_impl(seq, convert, indices{});
    }

    static handle cast(const type &src, return_value_policy policy, handle parent) {
        return cast_impl(src, policy, parent, indices{});
    }

    static PYBIND11_DESCR name() {
        return type_descr(_("Tuple[") + detail::concat(make_caster<Tuple>::name()...) + _("]"));
    }

    template <typename T> using cast_op_type = type;

    operator type() { return implicit_cast(indices{}); }

protected:
    template <size_t... Is>
    type implicit_cast(index_sequence<Is...>) { return type(cast_op<Tuple>(std::get<Is>(value))...); }

    static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }

    template <size_t... Is>
    bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
        for (bool r : {std::get<Is>(value).load(seq[Is], convert)...})
            if (!r)
                return false;
        return true;
    }

    static handle cast_impl(const type &, return_value_policy, handle,
                            index_sequence<>) { return tuple().release(); }

    /* Implementation: Convert a C++ tuple into a Python tuple */
    template <size_t... Is>
    static handle cast_impl(const type &src, return_value_policy policy, handle parent, index_sequence<Is...>) {
        std::array<object, size> entries {{
            reinterpret_steal<object>(make_caster<Tuple>::cast(std::get<Is>(src), policy, parent))...
        }};
        for (const auto &entry: entries)
            if (!entry)
                return handle();
        tuple result(size);
        int counter = 0;
        for (auto & entry: entries)
            PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
        return result.release();
    }

    std::tuple<make_caster<Tuple>...> value;
};

/// Type caster for holder types like std::shared_ptr, etc.
template <typename type, typename holder_type> class type_caster_holder : public type_caster_base<type> {
public:
    using base = type_caster_base<type>;
    using base::base;
    using base::cast;
    using base::typeinfo;
    using base::value;
    using base::temp;

    PYBIND11_NOINLINE bool load(handle src, bool convert) {
        return load(src, convert, Py_TYPE(src.ptr()));
    }

    bool load(handle src, bool convert, PyTypeObject *tobj) {
        if (!src || !typeinfo)
            return false;
        if (src.is_none()) {
            value = nullptr;
            return true;
        }

        if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
            /* Check if we can safely perform a reinterpret-style cast */
            if (PyType_IsSubtype(tobj, typeinfo->type))
                return load_value_and_holder(src);
        } else { /* Case 2: multiple inheritance */
            /* Check if we can safely perform a reinterpret-style cast */
            if (tobj == typeinfo->type)
                return load_value_and_holder(src);

            /* If this is a python class, also check the parents recursively */
            auto const &type_dict = get_internals().registered_types_py;
            bool new_style_class = PyType_Check((PyObject *) tobj);
            if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
                auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
                for (handle parent : parents) {
                    bool result = load(src, convert, (PyTypeObject *) parent.ptr());
                    if (result)
                        return true;
                }
            }

            if (try_implicit_casts(src, convert))
                return true;
        }

        if (convert) {
            for (auto &converter : typeinfo->implicit_conversions) {
                temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
                if (load(temp, false))
                    return true;
            }
        }

        return false;
    }

    bool load_value_and_holder(handle src) {
        auto inst = (instance<type, holder_type> *) src.ptr();
        value = (void *) inst->value;
        if (inst->holder_constructed) {
            holder = inst->holder;
            return true;
        } else {
            throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
#if defined(NDEBUG)
                             "(compile in debug mode for type information)");
#else
                             "of type '" + type_id<holder_type>() + "''");
#endif
        }
    }

    template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
    bool try_implicit_casts(handle, bool) { return false; }

    template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
    bool try_implicit_casts(handle src, bool convert) {
        for (auto &cast : typeinfo->implicit_casts) {
            type_caster_holder sub_caster(*cast.first);
            if (sub_caster.load(src, convert)) {
                value = cast.second(sub_caster.value);
                holder = holder_type(sub_caster.holder, (type *) value);
                return true;
            }
        }
        return false;
    }

    explicit operator type*() { return this->value; }
    explicit operator type&() { return *(this->value); }
    explicit operator holder_type*() { return &holder; }

    // Workaround for Intel compiler bug
    // see pybind11 issue 94
    #if defined(__ICC) || defined(__INTEL_COMPILER)
    operator holder_type&() { return holder; }
    #else
    explicit operator holder_type&() { return holder; }
    #endif

    static handle cast(const holder_type &src, return_value_policy, handle) {
        return type_caster_generic::cast(
            src.get(), return_value_policy::take_ownership, handle(),
            src.get() ? &typeid(*src.get()) : nullptr, &typeid(type),
            nullptr, nullptr, &src);
    }

protected:
    holder_type holder;
};

/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T>
class type_caster<std::shared_ptr<T>> : public type_caster_holder<T, std::shared_ptr<T>> { };

template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };

/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
    namespace pybind11 { namespace detail { \
    template <typename type> \
    struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__>  { }; \
    template <typename type> \
    class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
        : public type_caster_holder<type, holder_type> { }; \
    }}

// PYBIND11_DECLARE_HOLDER_TYPE holder types:
template <typename base, typename holder> struct is_holder_type :
    std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
// Specialization for always-supported unique_ptr holders:
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
    std::true_type {};

template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };

template <typename type>
struct pyobject_caster {
    template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
    bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }

    template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
    bool load(handle src, bool /* convert */) {
        if (!isinstance<type>(src))
            return false;
        value = reinterpret_borrow<type>(src);
        return true;
    }

    static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
        return src.inc_ref();
    }
    PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
};

template <typename T>
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };

// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
//   must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
template <typename T> using move_is_plain_type = none_of<
    std::is_void<T>, std::is_pointer<T>, std::is_reference<T>, std::is_const<T>
>;
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
template <typename T> struct move_always<T, enable_if_t<all_of<
    move_is_plain_type<T>,
    negation<std::is_copy_constructible<T>>,
    std::is_move_constructible<T>,
    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
    move_is_plain_type<T>,
    negation<move_always<T>>,
    std::is_move_constructible<T>,
    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;

// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster.  Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
template <typename type> using cast_is_temporary_value_reference = bool_constant<
    (std::is_reference<type>::value || std::is_pointer<type>::value) &&
    !std::is_base_of<type_caster_generic, make_caster<type>>::value
>;

// Basic python -> C++ casting; throws if casting fails
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
    if (!conv.load(handle, true)) {
#if defined(NDEBUG)
        throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
#else
        throw cast_error("Unable to cast Python instance of type " +
            (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
#endif
    }
    return conv;
}
// Wrapper around the above that also constructs and returns a type_caster
template <typename T> make_caster<T> load_type(const handle &handle) {
    make_caster<T> conv;
    load_type(conv, handle);
    return conv;
}

NAMESPACE_END(detail)

// pytype -> C++ type
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) {
    using namespace detail;
    static_assert(!cast_is_temporary_value_reference<T>::value,
            "Unable to cast type to reference: value is local to type caster");
    return cast_op<T>(load_type<T>(handle));
}

// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }

// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
            handle parent = handle()) {
    if (policy == return_value_policy::automatic)
        policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
    else if (policy == return_value_policy::automatic_reference)
        policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
    return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
}

template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
template <> inline void handle::cast() const { return; }

template <typename T>
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
    if (obj.ref_count() > 1)
#if defined(NDEBUG)
        throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
            " (compile in debug mode for details)");
#else
        throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
                " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
#endif

    // Move into a temporary and return that, because the reference may be a local value of `conv`
    T ret = std::move(detail::load_type<T>(obj).operator T&());
    return ret;
}

// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
// - If we have to move (because T has no copy constructor), do it.  This will fail if the moved
//   object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
    return move<T>(std::move(object));
}
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
    if (object.ref_count() > 1)
        return cast<T>(object);
    else
        return move<T>(std::move(object));
}
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
    return cast<T>(object);
}

template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
template <> inline void object::cast() const & { return; }
template <> inline void object::cast() && { return; }

NAMESPACE_BEGIN(detail)

// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }

struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
template <typename ret_type> using overload_caster_t = conditional_t<
    cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;

// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable.  For other types, this is a no-op.
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
    return cast_op<T>(load_type(caster, o));
}
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
    pybind11_fail("Internal error: cast_ref fallback invoked"); }

// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
// cases where pybind11::cast is valid.
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
    return pybind11::cast<T>(std::move(o)); }
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
    pybind11_fail("Internal error: cast_safe fallback invoked"); }
template <> inline void cast_safe<void>(object &&) {}

NAMESPACE_END(detail)

template <return_value_policy policy = return_value_policy::automatic_reference,
          typename... Args> tuple make_tuple(Args&&... args_) {
    const size_t size = sizeof...(Args);
    std::array<object, size> args {
        { reinterpret_steal<object>(detail::make_caster<Args>::cast(
            std::forward<Args>(args_), policy, nullptr))... }
    };
    for (auto &arg_value : args) {
        if (!arg_value) {
#if defined(NDEBUG)
            throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
#else
            throw cast_error("make_tuple(): unable to convert arguments of types '" +
                (std::string) type_id<std::tuple<Args...>>() + "' to Python object");
#endif
        }
    }
    tuple result(size);
    int counter = 0;
    for (auto &arg_value : args)
        PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
    return result;
}

/// Annotation for keyword arguments
struct arg {
    constexpr explicit arg(const char *name) : name(name) { }
    template <typename T> arg_v operator=(T &&value) const;

    const char *name;
};

/// Annotation for keyword arguments with values
struct arg_v : arg {
    template <typename T>
    arg_v(const char *name, T &&x, const char *descr = nullptr)
        : arg(name),
          value(reinterpret_steal<object>(
              detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
          )),
          descr(descr)
#if !defined(NDEBUG)
        , type(type_id<T>())
#endif
    { }

    object value;
    const char *descr;
#if !defined(NDEBUG)
    std::string type;
#endif
};

template <typename T>
arg_v arg::operator=(T &&value) const { return {name, std::forward<T>(value)}; }

/// Alias for backward compatibility -- to be removed in version 2.0
template <typename /*unused*/> using arg_t = arg_v;

inline namespace literals {
/// String literal version of arg
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
}

NAMESPACE_BEGIN(detail)

/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args>
class argument_loader {
    using itypes = type_list<intrinsic_t<Args>...>;
    using indices = make_index_sequence<sizeof...(Args)>;

public:
    argument_loader() : value() {} // Helps gcc-7 properly initialize value

    static constexpr auto has_kwargs = std::is_same<itypes, type_list<args, kwargs>>::value;
    static constexpr auto has_args = has_kwargs || std::is_same<itypes, type_list<args>>::value;

    static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }

    bool load_args(handle args, handle kwargs) {
        return load_impl(args, kwargs, itypes{});
    }

    template <typename Return, typename Func>
    enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) {
        return call_impl<Return>(std::forward<Func>(f), indices{});
    }

    template <typename Return, typename Func>
    enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) {
        call_impl<Return>(std::forward<Func>(f), indices{});
        return void_type();
    }

private:
    bool load_impl(handle args_, handle, type_list<args>) {
        std::get<0>(value).load(args_, true);
        return true;
    }

    bool load_impl(handle args_, handle kwargs_, type_list<args, kwargs>) {
        std::get<0>(value).load(args_, true);
        std::get<1>(value).load(kwargs_, true);
        return true;
    }

    bool load_impl(handle args, handle, ... /* anything else */) {
        return load_impl_sequence(args, indices{});
    }

    static bool load_impl_sequence(handle, index_sequence<>) { return true; }

    template <size_t... Is>
    bool load_impl_sequence(handle src, index_sequence<Is...>) {
        for (bool r : {std::get<Is>(value).load(PyTuple_GET_ITEM(src.ptr(), Is), true)...})
            if (!r)
                return false;
        return true;
    }

    template <typename Return, typename Func, size_t... Is>
    Return call_impl(Func &&f, index_sequence<Is...>) {
        return std::forward<Func>(f)(cast_op<Args>(std::get<Is>(value))...);
    }

    std::tuple<make_caster<Args>...> value;
};

NAMESPACE_BEGIN(constexpr_impl)
/// Implementation details for constexpr functions
constexpr int first(int i) { return i; }
template <typename T, typename... Ts>
constexpr int first(int i, T v, Ts... vs) { return v ? i : first(i + 1, vs...); }

constexpr int last(int /*i*/, int result) { return result; }
template <typename T, typename... Ts>
constexpr int last(int i, int result, T v, Ts... vs) { return last(i + 1, v ? i : result, vs...); }
NAMESPACE_END(constexpr_impl)

/// Return the index of the first type in Ts which satisfies Predicate<T>
template <template<typename> class Predicate, typename... Ts>
constexpr int constexpr_first() { return constexpr_impl::first(0, Predicate<Ts>::value...); }

/// Return the index of the last type in Ts which satisfies Predicate<T>
template <template<typename> class Predicate, typename... Ts>
constexpr int constexpr_last() { return constexpr_impl::last(0, -1, Predicate<Ts>::value...); }

/// Helper class which collects only positional arguments for a Python function call.
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
template <return_value_policy policy>
class simple_collector {
public:
    template <typename... Ts>
    explicit simple_collector(Ts &&...values)
        : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }

    const tuple &args() const & { return m_args; }
    dict kwargs() const { return {}; }

    tuple args() && { return std::move(m_args); }

    /// Call a Python function and pass the collected arguments
    object call(PyObject *ptr) const {
        PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
        if (!result)
            throw error_already_set();
        return reinterpret_steal<object>(result);
    }

private:
    tuple m_args;
};

/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
template <return_value_policy policy>
class unpacking_collector {
public:
    template <typename... Ts>
    explicit unpacking_collector(Ts &&...values) {
        // Tuples aren't (easily) resizable so a list is needed for collection,
        // but the actual function call strictly requires a tuple.
        auto args_list = list();
        int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
        ignore_unused(_);

        m_args = std::move(args_list);
    }

    const tuple &args() const & { return m_args; }
    const dict &kwargs() const & { return m_kwargs; }

    tuple args() && { return std::move(m_args); }
    dict kwargs() && { return std::move(m_kwargs); }

    /// Call a Python function and pass the collected arguments
    object call(PyObject *ptr) const {
        PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
        if (!result)
            throw error_already_set();
        return reinterpret_steal<object>(result);
    }

private:
    template <typename T>
    void process(list &args_list, T &&x) {
        auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
        if (!o) {
#if defined(NDEBUG)
            argument_cast_error();
#else
            argument_cast_error(std::to_string(args_list.size()), type_id<T>());
#endif
        }
        args_list.append(o);
    }

    void process(list &args_list, detail::args_proxy ap) {
        for (const auto &a : ap)
            args_list.append(a);
    }

    void process(list &/*args_list*/, arg_v a) {
        if (m_kwargs.contains(a.name)) {
#if defined(NDEBUG)
            multiple_values_error();
#else
            multiple_values_error(a.name);
#endif
        }
        if (!a.value) {
#if defined(NDEBUG)
            argument_cast_error();
#else
            argument_cast_error(a.name, a.type);
#endif
        }
        m_kwargs[a.name] = a.value;
    }

    void process(list &/*args_list*/, detail::kwargs_proxy kp) {
        if (!kp)
            return;
        for (const auto &k : reinterpret_borrow<dict>(kp)) {
            if (m_kwargs.contains(k.first)) {
#if defined(NDEBUG)
                multiple_values_error();
#else
                multiple_values_error(str(k.first));
#endif
            }
            m_kwargs[k.first] = k.second;
        }
    }

    [[noreturn]] static void multiple_values_error() {
        throw type_error("Got multiple values for keyword argument "
                         "(compile in debug mode for details)");
    }

    [[noreturn]] static void multiple_values_error(std::string name) {
        throw type_error("Got multiple values for keyword argument '" + name + "'");
    }

    [[noreturn]] static void argument_cast_error() {
        throw cast_error("Unable to convert call argument to Python object "
                         "(compile in debug mode for details)");
    }

    [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
        throw cast_error("Unable to convert call argument '" + name
                         + "' of type '" + type + "' to Python object");
    }

private:
    tuple m_args;
    dict m_kwargs;
};

/// Collect only positional arguments for a Python function call
template <return_value_policy policy, typename... Args,
          typename = enable_if_t<all_of<is_positional<Args>...>::value>>
simple_collector<policy> collect_arguments(Args &&...args) {
    return simple_collector<policy>(std::forward<Args>(args)...);
}

/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
template <return_value_policy policy, typename... Args,
          typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
unpacking_collector<policy> collect_arguments(Args &&...args) {
    // Following argument order rules for generalized unpacking according to PEP 448
    static_assert(
        constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
        && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
        "Invalid function call: positional args must precede keywords and ** unpacking; "
        "* unpacking must precede ** unpacking"
    );
    return unpacking_collector<policy>(std::forward<Args>(args)...);
}

template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::operator()(Args &&...args) const {
    return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
}

template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::call(Args &&...args) const {
    return operator()<policy>(std::forward<Args>(args)...);
}

NAMESPACE_END(detail)

#define PYBIND11_MAKE_OPAQUE(Type) \
    namespace pybind11 { namespace detail { \
        template<> class type_caster<Type> : public type_caster_base<Type> { }; \
    }}

NAMESPACE_END(pybind11)