/usr/lib/pypy/dist-packages/hypothesis/stateful.py is in pypy-hypothesis 3.44.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | # coding=utf-8
#
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis-python
#
# Most of this work is copyright (C) 2013-2017 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER
"""This module provides support for a stateful style of testing, where tests
attempt to find a sequence of operations that cause a breakage rather than just
a single value.
Notably, the set of steps available at any point may depend on the
execution to date.
"""
from __future__ import division, print_function, absolute_import
import inspect
import traceback
from unittest import TestCase
import attr
import hypothesis.internal.conjecture.utils as cu
from hypothesis.core import find
from hypothesis.errors import Flaky, NoSuchExample, InvalidDefinition, \
HypothesisException
from hypothesis.control import BuildContext
from hypothesis._settings import settings as Settings
from hypothesis._settings import Verbosity
from hypothesis.reporting import report, verbose_report, current_verbosity
from hypothesis.strategies import just, lists, builds, one_of, runner, \
integers
from hypothesis.vendor.pretty import CUnicodeIO, RepresentationPrinter
from hypothesis.internal.reflection import proxies, nicerepr
from hypothesis.internal.conjecture.data import StopTest
from hypothesis.internal.conjecture.utils import integer_range
from hypothesis.searchstrategy.strategies import SearchStrategy
from hypothesis.searchstrategy.collections import TupleStrategy, \
FixedKeysDictStrategy
class TestCaseProperty(object): # pragma: no cover
def __get__(self, obj, typ=None):
if obj is not None:
typ = type(obj)
return typ._to_test_case()
def __set__(self, obj, value):
raise AttributeError(u'Cannot set TestCase')
def __delete__(self, obj):
raise AttributeError(u'Cannot delete TestCase')
def find_breaking_runner(state_machine_factory, settings=None):
def is_breaking_run(runner):
try:
runner.run(state_machine_factory())
return False
except HypothesisException:
raise
except Exception:
verbose_report(traceback.format_exc)
return True
if settings is None:
try:
settings = state_machine_factory.TestCase.settings
except AttributeError:
settings = Settings.default
search_strategy = StateMachineSearchStrategy(settings)
return find(
search_strategy,
is_breaking_run,
settings=settings,
database_key=state_machine_factory.__name__.encode('utf-8')
)
def run_state_machine_as_test(state_machine_factory, settings=None):
"""Run a state machine definition as a test, either silently doing nothing
or printing a minimal breaking program and raising an exception.
state_machine_factory is anything which returns an instance of
GenericStateMachine when called with no arguments - it can be a class or a
function. settings will be used to control the execution of the test.
"""
try:
breaker = find_breaking_runner(state_machine_factory, settings)
except NoSuchExample:
return
try:
with BuildContext(None, is_final=True):
breaker.run(state_machine_factory(), print_steps=True)
except StopTest:
pass
raise Flaky(
u'Run failed initially but succeeded on a second try'
)
class GenericStateMachine(object):
"""A GenericStateMachine is the basic entry point into Hypothesis's
approach to stateful testing.
The intent is for it to be subclassed to provide state machine descriptions
The way this is used is that Hypothesis will repeatedly execute something
that looks something like::
x = MyStatemachineSubclass()
x.check_invariants()
try:
for _ in range(n_steps):
x.execute_step(x.steps().example())
x.check_invariants()
finally:
x.teardown()
And if this ever produces an error it will shrink it down to a small
sequence of example choices demonstrating that.
"""
def steps(self):
"""Return a SearchStrategy instance the defines the available next
steps."""
raise NotImplementedError(u'%r.steps()' % (self,))
def execute_step(self, step):
"""Execute a step that has been previously drawn from self.steps()"""
raise NotImplementedError(u'%r.execute_step()' % (self,))
def print_step(self, step):
"""Print a step to the current reporter.
This is called right before a step is executed.
"""
self.step_count = getattr(self, u'step_count', 0) + 1
report(u'Step #%d: %s' % (self.step_count, nicerepr(step)))
def teardown(self):
"""Called after a run has finished executing to clean up any necessary
state.
Does nothing by default
"""
pass
def check_invariants(self):
"""Called after initializing and after executing each step."""
pass
_test_case_cache = {}
TestCase = TestCaseProperty()
@classmethod
def _to_test_case(state_machine_class):
try:
return state_machine_class._test_case_cache[state_machine_class]
except KeyError:
pass
class StateMachineTestCase(TestCase):
settings = Settings(
min_satisfying_examples=1
)
# We define this outside of the class and assign it because you can't
# assign attributes to instance method values in Python 2
def runTest(self):
run_state_machine_as_test(state_machine_class)
runTest.is_hypothesis_test = True
StateMachineTestCase.runTest = runTest
base_name = state_machine_class.__name__
StateMachineTestCase.__name__ = str(
base_name + u'.TestCase'
)
StateMachineTestCase.__qualname__ = str(
getattr(state_machine_class, u'__qualname__', base_name) +
u'.TestCase'
)
state_machine_class._test_case_cache[state_machine_class] = (
StateMachineTestCase
)
return StateMachineTestCase
GenericStateMachine.find_breaking_runner = classmethod(find_breaking_runner)
class StateMachineRunner(object):
"""A StateMachineRunner is a description of how to run a state machine.
It contains values that it will use to shape the examples.
"""
def __init__(self, data, n_steps):
self.data = data
self.data.is_find = False
self.n_steps = n_steps
def run(self, state_machine, print_steps=None):
if print_steps is None:
print_steps = current_verbosity() >= Verbosity.debug
self.data.hypothesis_runner = state_machine
stopping_value = 1 - 1.0 / (1 + self.n_steps * 0.5)
try:
state_machine.check_invariants()
steps = 0
while True:
if steps >= self.n_steps:
stopping_value = 0
self.data.start_example()
if not cu.biased_coin(self.data, stopping_value):
self.data.stop_example()
break
assert steps < self.n_steps
value = self.data.draw(state_machine.steps())
steps += 1
if print_steps:
state_machine.print_step(value)
state_machine.execute_step(value)
self.data.stop_example()
state_machine.check_invariants()
finally:
state_machine.teardown()
class StateMachineSearchStrategy(SearchStrategy):
def __init__(self, settings=None):
self.program_size = (settings or Settings.default).stateful_step_count
def do_draw(self, data):
return StateMachineRunner(data, self.program_size)
@attr.s()
class Rule(object):
targets = attr.ib()
function = attr.ib()
arguments = attr.ib()
precondition = attr.ib()
self_strategy = runner()
class Bundle(SearchStrategy):
def __init__(self, name):
self.name = name
def do_draw(self, data):
machine = data.draw(self_strategy)
bundle = machine.bundle(self.name)
if not bundle:
data.mark_invalid()
reference = bundle.pop()
bundle.insert(integer_range(data, 0, len(bundle)), reference)
return machine.names_to_values[reference.name]
RULE_MARKER = u'hypothesis_stateful_rule'
PRECONDITION_MARKER = u'hypothesis_stateful_precondition'
INVARIANT_MARKER = u'hypothesis_stateful_invariant'
def rule(targets=(), target=None, **kwargs):
"""Decorator for RuleBasedStateMachine. Any name present in target or
targets will define where the end result of this function should go. If
both are empty then the end result will be discarded.
targets may either be a Bundle or the name of a Bundle.
kwargs then define the arguments that will be passed to the function
invocation. If their value is a Bundle then values that have previously
been produced for that bundle will be provided, if they are anything else
it will be turned into a strategy and values from that will be provided.
"""
if target is not None:
targets += (target,)
converted_targets = []
for t in targets:
while isinstance(t, Bundle):
t = t.name
converted_targets.append(t)
def accept(f):
existing_rule = getattr(f, RULE_MARKER, None)
if existing_rule is not None:
raise InvalidDefinition(
'A function cannot be used for two distinct rules. ',
Settings.default,
)
precondition = getattr(f, PRECONDITION_MARKER, None)
rule = Rule(targets=tuple(converted_targets), arguments=kwargs,
function=f, precondition=precondition)
@proxies(f)
def rule_wrapper(*args, **kwargs):
return f(*args, **kwargs)
setattr(rule_wrapper, RULE_MARKER, rule)
return rule_wrapper
return accept
@attr.s()
class VarReference(object):
name = attr.ib()
def precondition(precond):
"""Decorator to apply a precondition for rules in a RuleBasedStateMachine.
Specifies a precondition for a rule to be considered as a valid step in the
state machine. The given function will be called with the instance of
RuleBasedStateMachine and should return True or False. Usually it will need
to look at attributes on that instance.
For example::
class MyTestMachine(RuleBasedStateMachine):
state = 1
@precondition(lambda self: self.state != 0)
@rule(numerator=integers())
def divide_with(self, numerator):
self.state = numerator / self.state
This is better than using assume in your rule since more valid rules
should be able to be run.
"""
def decorator(f):
@proxies(f)
def precondition_wrapper(*args, **kwargs):
return f(*args, **kwargs)
rule = getattr(f, RULE_MARKER, None)
if rule is None:
setattr(precondition_wrapper, PRECONDITION_MARKER, precond)
else:
new_rule = Rule(targets=rule.targets, arguments=rule.arguments,
function=rule.function, precondition=precond)
setattr(precondition_wrapper, RULE_MARKER, new_rule)
invariant = getattr(f, INVARIANT_MARKER, None)
if invariant is not None:
new_invariant = Invariant(function=invariant.function,
precondition=precond)
setattr(precondition_wrapper, INVARIANT_MARKER, new_invariant)
return precondition_wrapper
return decorator
@attr.s()
class Invariant(object):
function = attr.ib()
precondition = attr.ib()
def invariant():
"""Decorator to apply an invariant for rules in a RuleBasedStateMachine.
The decorated function will be run after every rule and can raise an
exception to indicate failed invariants.
For example::
class MyTestMachine(RuleBasedStateMachine):
state = 1
@invariant()
def is_nonzero(self):
assert self.state != 0
"""
def accept(f):
existing_invariant = getattr(f, INVARIANT_MARKER, None)
if existing_invariant is not None:
raise InvalidDefinition(
'A function cannot be used for two distinct invariants.',
Settings.default,
)
precondition = getattr(f, PRECONDITION_MARKER, None)
rule = Invariant(function=f, precondition=precondition)
@proxies(f)
def invariant_wrapper(*args, **kwargs):
return f(*args, **kwargs)
setattr(invariant_wrapper, INVARIANT_MARKER, rule)
return invariant_wrapper
return accept
@attr.s()
class ShuffleBundle(object):
bundle = attr.ib()
swaps = attr.ib()
class RuleBasedStateMachine(GenericStateMachine):
"""A RuleBasedStateMachine gives you a more structured way to define state
machines.
The idea is that a state machine carries a bunch of types of data
divided into Bundles, and has a set of rules which may read data
from bundles (or just from normal strategies) and push data onto
bundles. At any given point a random applicable rule will be
executed.
"""
_rules_per_class = {}
_invariants_per_class = {}
_base_rules_per_class = {}
def __init__(self):
if not self.rules():
raise InvalidDefinition(u'Type %s defines no rules' % (
type(self).__name__,
))
self.bundles = {}
self.name_counter = 1
self.names_to_values = {}
self.__stream = CUnicodeIO()
self.__printer = RepresentationPrinter(self.__stream)
def __pretty(self, value):
self.__stream.seek(0)
self.__stream.truncate(0)
self.__printer.output_width = 0
self.__printer.buffer_width = 0
self.__printer.buffer.clear()
self.__printer.pretty(value)
self.__printer.flush()
return self.__stream.getvalue()
def __repr__(self):
return u'%s(%s)' % (
type(self).__name__,
nicerepr(self.bundles),
)
def upcoming_name(self):
return u'v%d' % (self.name_counter,)
def new_name(self):
result = self.upcoming_name()
self.name_counter += 1
return result
def bundle(self, name):
return self.bundles.setdefault(name, [])
@classmethod
def rules(cls):
try:
return cls._rules_per_class[cls]
except KeyError:
pass
for k, v in inspect.getmembers(cls):
r = getattr(v, RULE_MARKER, None)
if r is not None:
cls.define_rule(
r.targets, r.function, r.arguments, r.precondition,
)
cls._rules_per_class[cls] = cls._base_rules_per_class.pop(cls, [])
return cls._rules_per_class[cls]
@classmethod
def invariants(cls):
try:
return cls._invariants_per_class[cls]
except KeyError:
pass
target = []
for k, v in inspect.getmembers(cls):
i = getattr(v, INVARIANT_MARKER, None)
if i is not None:
target.append(i)
cls._invariants_per_class[cls] = target
return cls._invariants_per_class[cls]
@classmethod
def define_rule(cls, targets, function, arguments, precondition=None):
converted_arguments = {}
for k, v in arguments.items():
converted_arguments[k] = v
if cls in cls._rules_per_class:
target = cls._rules_per_class[cls]
else:
target = cls._base_rules_per_class.setdefault(cls, [])
return target.append(
Rule(
targets, function, converted_arguments, precondition,
)
)
def steps(self):
strategies = []
for rule in self.rules():
converted_arguments = {}
valid = True
if rule.precondition and not rule.precondition(self):
continue
for k, v in sorted(rule.arguments.items()):
if isinstance(v, Bundle):
bundle = self.bundle(v.name)
if not bundle:
valid = False
break
converted_arguments[k] = v
if valid:
strategies.append(TupleStrategy((
just(rule),
FixedKeysDictStrategy(converted_arguments)
), tuple))
if not strategies:
raise InvalidDefinition(
u'No progress can be made from state %r' % (self,)
)
for name, bundle in self.bundles.items():
if len(bundle) > 1:
strategies.append(
builds(
ShuffleBundle, just(name),
lists(integers(0, len(bundle) - 1))))
return one_of(strategies)
def print_step(self, step):
if isinstance(step, ShuffleBundle):
return
rule, data = step
data_repr = {}
for k, v in data.items():
data_repr[k] = self.__pretty(v)
self.step_count = getattr(self, u'step_count', 0) + 1
report(u'Step #%d: %s%s(%s)' % (
self.step_count,
u'%s = ' % (self.upcoming_name(),) if rule.targets else u'',
rule.function.__name__,
u', '.join(u'%s=%s' % kv for kv in data_repr.items())
))
def execute_step(self, step):
if isinstance(step, ShuffleBundle):
bundle = self.bundle(step.bundle)
for i in step.swaps:
bundle.insert(i, bundle.pop())
return
rule, data = step
data = dict(data)
result = rule.function(self, **data)
if rule.targets:
name = self.new_name()
self.names_to_values[name] = result
self.__printer.singleton_pprinters.setdefault(
id(result), lambda obj, p, cycle: p.text(name),
)
for target in rule.targets:
self.bundle(target).append(VarReference(name))
def check_invariants(self):
for invar in self.invariants():
if invar.precondition and not invar.precondition(self):
continue
invar.function(self)
|