This file is indexed.

/usr/lib/pypy/dist-packages/hypothesis/strategies.py is in pypy-hypothesis 3.44.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
# coding=utf-8
#
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis-python
#
# Most of this work is copyright (C) 2013-2017 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER

from __future__ import division, print_function, absolute_import

import enum
import math
import datetime as dt
import operator
from decimal import Context, Decimal
from inspect import isclass, isfunction
from fractions import Fraction
from functools import reduce

from hypothesis.errors import InvalidArgument, ResolutionFailed
from hypothesis.control import assume
from hypothesis._settings import note_deprecation
from hypothesis.internal.cache import LRUReusedCache
from hypothesis.searchstrategy import SearchStrategy
from hypothesis.internal.compat import gcd, ceil, floor, hrange, \
    text_type, get_type_hints, getfullargspec, implements_iterator
from hypothesis.internal.floats import is_negative, float_to_int, \
    int_to_float, count_between_floats
from hypothesis.internal.renaming import renamed_arguments
from hypothesis.utils.conventions import infer, not_set
from hypothesis.internal.reflection import proxies, required_args
from hypothesis.internal.validation import check_type, try_convert, \
    check_strategy, check_valid_bound, check_valid_sizes, \
    check_valid_integer, check_valid_interval

__all__ = [
    'nothing',
    'just', 'one_of',
    'none',
    'choices', 'streaming',
    'booleans', 'integers', 'floats', 'complex_numbers', 'fractions',
    'decimals',
    'characters', 'text', 'from_regex', 'binary', 'uuids',
    'tuples', 'lists', 'sets', 'frozensets', 'iterables',
    'dictionaries', 'fixed_dictionaries',
    'sampled_from', 'permutations',
    'datetimes', 'dates', 'times', 'timedeltas',
    'builds',
    'randoms', 'random_module',
    'recursive', 'composite',
    'shared', 'runner', 'data',
    'deferred',
    'from_type', 'register_type_strategy',
]

_strategies = set()


class FloatKey(object):

    def __init__(self, f):
        self.value = float_to_int(f)

    def __eq__(self, other):
        return isinstance(other, FloatKey) and (
            other.value == self.value
        )

    def __ne__(self, other):
        return not self.__eq__(other)

    def __hash__(self):
        return hash(self.value)


def convert_value(v):
    if isinstance(v, float):
        return FloatKey(v)
    return (type(v), v)


STRATEGY_CACHE = LRUReusedCache(1024)


def cacheable(fn):
    @proxies(fn)
    def cached_strategy(*args, **kwargs):
        kwargs_cache_key = set()
        try:
            for k, v in kwargs.items():
                kwargs_cache_key.add((k, convert_value(v)))
        except TypeError:
            return fn(*args, **kwargs)
        cache_key = (
            fn,
            tuple(map(convert_value, args)), frozenset(kwargs_cache_key))
        try:
            return STRATEGY_CACHE[cache_key]
        except TypeError:
            return fn(*args, **kwargs)
        except KeyError:
            result = fn(*args, **kwargs)
            if not isinstance(result, SearchStrategy) or result.is_cacheable:
                STRATEGY_CACHE[cache_key] = result
            return result
    cached_strategy.__clear_cache = STRATEGY_CACHE.clear
    return cached_strategy


def base_defines_strategy(force_reusable):
    def decorator(strategy_definition):
        from hypothesis.searchstrategy.lazy import LazyStrategy
        _strategies.add(strategy_definition.__name__)

        @proxies(strategy_definition)
        def accept(*args, **kwargs):
            result = LazyStrategy(strategy_definition, args, kwargs)
            if force_reusable:
                result.force_has_reusable_values = True
                assert result.has_reusable_values
            return result
        return accept
    return decorator


defines_strategy = base_defines_strategy(False)
defines_strategy_with_reusable_values = base_defines_strategy(True)


class Nothing(SearchStrategy):
    def calc_is_empty(self, recur):
        return True

    def do_draw(self, data):
        # This method should never be called because draw() will mark the
        # data as invalid immediately because is_empty is True.
        assert False  # pragma: no cover

    def calc_has_reusable_values(self, recur):
        return True

    def __repr__(self):
        return 'nothing()'

    def map(self, f):
        return self

    def filter(self, f):
        return self

    def flatmap(self, f):
        return self


NOTHING = Nothing()


@cacheable
def nothing():
    """This strategy never successfully draws a value and will always reject on
    an attempt to draw.

    Examples from this strategy do not shrink (because there are none).

    """
    return NOTHING


def just(value):
    """Return a strategy which only generates ``value``.

    Note: ``value`` is not copied. Be wary of using mutable values.

    If ``value`` is the result of a callable, you can use
    :func:`builds(callable) <hypothesis.strategies.builds>` instead
    of ``just(callable())`` to get a fresh value each time.

    Examples from this strategy do not shrink (because there is only one).

    """
    from hypothesis.searchstrategy.misc import JustStrategy

    return JustStrategy(value)


@defines_strategy
def none():
    """Return a strategy which only generates None.

    Examples from this strategy do not shrink (because there is only
    one).

    """
    return just(None)


def one_of(*args):
    """Return a strategy which generates values from any of the argument
    strategies.

    This may be called with one iterable argument instead of multiple
    strategy arguments. In which case one_of(x) and one_of(\*x) are
    equivalent.

    Examples from this strategy will generally shrink to ones that come from
    strategies earlier in the list, then shrink according to behaviour of the
    strategy that produced them. In order to get good shrinking behaviour,
    try to put simpler strategies first. e.g. ``one_of(none(), text())`` is
    better than ``one_of(text(), none())``.

    This is especially important when using recursive strategies. e.g.
    ``x = st.deferred(lambda: st.none() | st.tuples(x, x))`` will shrink well,
    but ``x = st.deferred(lambda: st.tuples(x, x) | st.none())`` will shrink
    very badly indeed.

    """
    if len(args) == 1 and not isinstance(args[0], SearchStrategy):
        try:
            args = tuple(args[0])
        except TypeError:
            pass
    from hypothesis.searchstrategy.strategies import OneOfStrategy
    return OneOfStrategy(args)


@cacheable
@defines_strategy_with_reusable_values
def integers(min_value=None, max_value=None):
    """Returns a strategy which generates integers (in Python 2 these may be
    ints or longs).

    If min_value is not None then all values will be >= min_value. If
    max_value is not None then all values will be <= max_value

    Examples from this strategy will shrink towards being positive (e.g. 1000
    is considered simpler than -1) and then towards zero.

    """

    check_valid_bound(min_value, 'min_value')
    check_valid_bound(max_value, 'max_value')
    check_valid_interval(min_value, max_value, 'min_value', 'max_value')

    from hypothesis.searchstrategy.numbers import IntegersFromStrategy, \
        BoundedIntStrategy, WideRangeIntStrategy

    min_int_value = None if min_value is None else ceil(min_value)
    max_int_value = None if max_value is None else floor(max_value)

    if min_int_value is not None and max_int_value is not None and \
            min_int_value > max_int_value:
        raise InvalidArgument('No integers between min_value=%r and '
                              'max_value=%r' % (min_value, max_value))

    if min_int_value is None:
        if max_int_value is None:
            return (
                WideRangeIntStrategy()
            )
        else:
            return IntegersFromStrategy(0).map(lambda x: max_int_value - x)
    else:
        if max_int_value is None:
            return IntegersFromStrategy(min_int_value)
        else:
            assert min_int_value <= max_int_value
            if min_int_value == max_int_value:
                return just(min_int_value)
            elif min_int_value >= 0:
                return BoundedIntStrategy(min_int_value, max_int_value)
            elif max_int_value <= 0:
                return BoundedIntStrategy(
                    -max_int_value, -min_int_value
                ).map(lambda t: -t)
            else:
                return integers(min_value=0, max_value=max_int_value) | \
                    integers(min_value=min_int_value, max_value=0)


@cacheable
@defines_strategy
def booleans():
    """Returns a strategy which generates instances of bool.

    Examples from this strategy will shrink towards False (i.e.
    shrinking will try to replace True with False where possible).

    """
    from hypothesis.searchstrategy.misc import BoolStrategy
    return BoolStrategy()


@cacheable
@defines_strategy_with_reusable_values
def floats(
    min_value=None, max_value=None, allow_nan=None, allow_infinity=None
):
    """Returns a strategy which generates floats.

    - If min_value is not None, all values will be >= min_value.
    - If max_value is not None, all values will be <= max_value.
    - If min_value or max_value is not None, it is an error to enable
      allow_nan.
    - If both min_value and max_value are not None, it is an error to enable
      allow_infinity.

    Where not explicitly ruled out by the bounds, all of infinity, -infinity
    and NaN are possible values generated by this strategy.

    Examples from this strategy have a complicated and hard to explain
    shrinking behaviour, but it tries to improve "human readability". Finite
    numbers will be preferred to infinity and infinity will be preferred to
    NaN.

    """

    if allow_nan is None:
        allow_nan = bool(min_value is None and max_value is None)
    elif allow_nan:
        if min_value is not None or max_value is not None:
            raise InvalidArgument(
                'Cannot have allow_nan=%r, with min_value or max_value' % (
                    allow_nan
                ))

    min_value = try_convert(float, min_value, 'min_value')
    max_value = try_convert(float, max_value, 'max_value')

    check_valid_bound(min_value, 'min_value')
    check_valid_bound(max_value, 'max_value')
    check_valid_interval(min_value, max_value, 'min_value', 'max_value')
    if min_value == float(u'-inf'):
        min_value = None
    if max_value == float(u'inf'):
        max_value = None

    if allow_infinity is None:
        allow_infinity = bool(min_value is None or max_value is None)
    elif allow_infinity:
        if min_value is not None and max_value is not None:
            raise InvalidArgument(
                'Cannot have allow_infinity=%r, with both min_value and '
                'max_value' % (
                    allow_infinity
                ))

    from hypothesis.searchstrategy.numbers import FloatStrategy, \
        FixedBoundedFloatStrategy
    if min_value is None and max_value is None:
        return FloatStrategy(
            allow_infinity=allow_infinity, allow_nan=allow_nan,
        )
    elif min_value is not None and max_value is not None:
        if min_value == max_value:
            return just(min_value)
        elif is_negative(min_value):
            if is_negative(max_value):
                return floats(min_value=-max_value, max_value=-min_value).map(
                    operator.neg
                )
            else:
                return floats(min_value=0.0, max_value=max_value) | floats(
                    min_value=0.0, max_value=-min_value).map(operator.neg)
        elif count_between_floats(min_value, max_value) > 1000:
            return FixedBoundedFloatStrategy(
                lower_bound=min_value, upper_bound=max_value
            )
        else:
            ub_int = float_to_int(max_value)
            lb_int = float_to_int(min_value)
            assert lb_int <= ub_int
            return integers(min_value=lb_int, max_value=ub_int).map(
                int_to_float
            )
    elif min_value is not None:
        if min_value < 0:
            result = floats(
                min_value=0.0
            ) | floats(min_value=min_value, max_value=-0.0)
        else:
            result = (
                floats(allow_infinity=allow_infinity, allow_nan=False).map(
                    lambda x: assume(not math.isnan(x)) and min_value + abs(x)
                )
            )
        if min_value == 0 and not is_negative(min_value):
            result = result.filter(lambda x: math.copysign(1.0, x) == 1)
        return result
    else:
        assert max_value is not None
        if max_value > 0:
            result = floats(
                min_value=0.0,
                max_value=max_value,
            ) | floats(max_value=-0.0)
        else:
            result = (
                floats(allow_infinity=allow_infinity, allow_nan=False).map(
                    lambda x: assume(not math.isnan(x)) and max_value - abs(x)
                )
            )
        if max_value == 0 and is_negative(max_value):
            result = result.filter(is_negative)
        return result


@cacheable
@defines_strategy_with_reusable_values
def complex_numbers():
    """Returns a strategy that generates complex numbers.

    Examples from this strategy shrink by shrinking their component real
    and imaginary parts.

    """
    from hypothesis.searchstrategy.numbers import ComplexStrategy
    return ComplexStrategy(
        tuples(floats(), floats())
    )


@cacheable
@defines_strategy
def tuples(*args):
    """Return a strategy which generates a tuple of the same length as args by
    generating the value at index i from args[i].

    e.g. tuples(integers(), integers()) would generate a tuple of length
    two with both values an integer.

    Examples from this strategy shrink by shrinking their component parts.

    """
    for arg in args:
        check_strategy(arg)

    from hypothesis.searchstrategy.collections import TupleStrategy
    return TupleStrategy(args, tuple)


@defines_strategy
def sampled_from(elements):
    """Returns a strategy which generates any value present in ``elements``.

    Note that as with :func:`~hypotheses.strategies.just`, values will not be
    copied and thus you should be careful of using mutable data.

    ``sampled_from`` supports ordered collections, as well as
    :class:`~python:enum.Enum` objects.  :class:`~python:enum.Flag` objects
    may also generate any combination of their members.

    Examples from this strategy shrink by replacing them with values earlier in
    the list. So e.g. sampled_from((10, 1)) will shrink by trying to replace
    1 values with 10, and sampled_from((1, 10)) will shrink by trying to
    replace 10 values with 1.

    """
    from hypothesis.searchstrategy.misc import SampledFromStrategy
    from hypothesis.internal.conjecture.utils import check_sample
    values = check_sample(elements)
    if not values:
        return nothing()
    if len(values) == 1:
        return just(values[0])
    if hasattr(enum, 'Flag') and isclass(elements) and \
            issubclass(elements, enum.Flag):
        # Combinations of enum.Flag members are also members.  We generate
        # these dynamically, because static allocation takes O(2^n) memory.
        return sets(sampled_from(values), min_size=1).map(
            lambda s: reduce(operator.or_, s))
    return SampledFromStrategy(values)


_AVERAGE_LIST_LENGTH = 5.0


@cacheable
@defines_strategy
def lists(
    elements=None, min_size=None, average_size=None, max_size=None,
    unique_by=None, unique=False,
):
    """Returns a list containing values drawn from elements with length in the
    interval [min_size, max_size] (no bounds in that direction if these are
    None). If max_size is 0 then elements may be None and only the empty list
    will be drawn.

    average_size may be used as a size hint to roughly control the size
    of the list but it may not be the actual average of sizes you get, due
    to a variety of factors.

    If unique is True (or something that evaluates to True), we compare direct
    object equality, as if unique_by was `lambda x: x`. This comparison only
    works for hashable types.

    if unique_by is not None it must be a function returning a hashable type
    when given a value drawn from elements. The resulting list will satisfy the
    condition that for i != j, unique_by(result[i]) != unique_by(result[j]).

    Examples from this strategy shrink by trying to remove elements from the
    list, and by shrinking each individual element of the list.

    """
    check_valid_sizes(min_size, average_size, max_size)
    if elements is None or (max_size is not None and max_size <= 0):
        if max_size is None or max_size > 0:
            raise InvalidArgument(
                u'Cannot create non-empty lists without an element type'
            )
        else:
            return builds(list)
    check_strategy(elements)
    if unique:
        if unique_by is not None:
            raise InvalidArgument((
                'cannot specify both unique and unique_by (you probably only '
                'want to set unique_by)'
            ))
        else:
            def unique_by(x):
                return x

    if unique_by is not None:
        from hypothesis.searchstrategy.collections import UniqueListStrategy
        min_size = min_size or 0
        max_size = max_size or float(u'inf')
        if average_size is None:
            if max_size < float(u'inf'):
                if max_size <= 5:
                    average_size = min_size + 0.75 * (max_size - min_size)
                else:
                    average_size = (max_size + min_size) / 2
            else:
                average_size = max(
                    _AVERAGE_LIST_LENGTH,
                    min_size * 2
                )
        result = UniqueListStrategy(
            elements=elements,
            average_size=average_size,
            max_size=max_size,
            min_size=min_size,
            key=unique_by
        )
    else:
        from hypothesis.searchstrategy.collections import ListStrategy
        if min_size is None:
            min_size = 0
        if average_size is None:
            if max_size is None:
                average_size = _AVERAGE_LIST_LENGTH
            else:
                average_size = (min_size + max_size) * 0.5

        result = ListStrategy(
            (elements,), average_length=average_size,
            min_size=min_size, max_size=max_size,
        )
    return result


@cacheable
@defines_strategy
def sets(elements=None, min_size=None, average_size=None, max_size=None):
    """This has the same behaviour as lists, but returns sets instead.

    Note that Hypothesis cannot tell if values are drawn from elements
    are hashable until running the test, so you can define a strategy
    for sets of an unhashable type but it will fail at test time.

    Examples from this strategy shrink by trying to remove elements from the
    set, and by shrinking each individual element of the set.

    """
    return lists(
        elements=elements, min_size=min_size, average_size=average_size,
        max_size=max_size, unique=True
    ).map(set)


@cacheable
@defines_strategy
def frozensets(elements=None, min_size=None, average_size=None, max_size=None):
    """This is identical to the sets function but instead returns
    frozensets."""
    return lists(
        elements=elements, min_size=min_size, average_size=average_size,
        max_size=max_size, unique=True
    ).map(frozenset)


@defines_strategy
def iterables(elements=None, min_size=None, average_size=None, max_size=None,
              unique_by=None, unique=False):
    """This has the same behaviour as lists, but returns iterables instead.

    Some iterables cannot be indexed (e.g. sets) and some do not have a
    fixed length (e.g. generators). This strategy produces iterators,
    which cannot be indexed and do not have a fixed length. This ensures
    that you do not accidentally depend on sequence behaviour.

    """
    @implements_iterator
    class PrettyIter(object):
        def __init__(self, values):
            self._values = values
            self._iter = iter(self._values)

        def __iter__(self):
            return self._iter

        def __next__(self):
            return next(self._iter)

        def __repr__(self):
            return 'iter({!r})'.format(self._values)

    return lists(
        elements=elements, min_size=min_size, average_size=average_size,
        max_size=max_size, unique_by=unique_by, unique=unique
    ).map(PrettyIter)


@defines_strategy
def fixed_dictionaries(mapping):
    """Generates a dictionary of the same type as mapping with a fixed set of
    keys mapping to strategies. mapping must be a dict subclass.

    Generated values have all keys present in mapping, with the
    corresponding values drawn from mapping[key]. If mapping is an
    instance of OrderedDict the keys will also be in the same order,
    otherwise the order is arbitrary.

    Examples from this strategy shrink by shrinking each individual value in
    the generated dictionary.

    """
    from hypothesis.searchstrategy.collections import FixedKeysDictStrategy
    check_type(dict, mapping, 'mapping')
    for v in mapping.values():
        check_strategy(v)
    return FixedKeysDictStrategy(mapping)


@cacheable
@defines_strategy
def dictionaries(
    keys, values, dict_class=dict,
    min_size=None, average_size=None, max_size=None
):
    """Generates dictionaries of type dict_class with keys drawn from the keys
    argument and values drawn from the values argument.

    The size parameters have the same interpretation as for lists.

    Examples from this strategy shrink by trying to remove keys from the
    generated dictionary, and by shrinking each generated key and value.

    """
    check_valid_sizes(min_size, average_size, max_size)
    if max_size == 0:
        return fixed_dictionaries(dict_class())
    check_strategy(keys)
    check_strategy(values)

    return lists(
        tuples(keys, values),
        min_size=min_size, average_size=average_size, max_size=max_size,
        unique_by=lambda x: x[0]
    ).map(dict_class)


@defines_strategy
def streaming(elements):
    """Generates an infinite stream of values where each value is drawn from
    elements.

    The result is iterable (the iterator will never terminate) and
    indexable.

    Examples from this strategy shrink by trying to shrink each value drawn.

    .. deprecated:: 3.15.0
        Use :func:`data() <hypothesis.strategies.data>` instead.

    """
    note_deprecation(
        'streaming() has been deprecated. Use the data() strategy instead and '
        'replace stream iteration with data.draw() calls.'
    )

    check_strategy(elements)

    from hypothesis.searchstrategy.streams import StreamStrategy
    return StreamStrategy(elements)


@cacheable
@defines_strategy_with_reusable_values
def characters(whitelist_categories=None, blacklist_categories=None,
               blacklist_characters=None, min_codepoint=None,
               max_codepoint=None, whitelist_characters=None):
    """Generates unicode text type (unicode on python 2, str on python 3)
    characters following specified filtering rules.

    When no filtering rules are specifed, any character can be produced.

    If ``min_codepoint`` or ``max_codepoint`` is specifed, then only
    characters having a codepoint in that range will be produced.

    If ``whitelist_categories`` is specified, then only characters from those
    Unicode categories will be produced. This is a further restriction,
    characters must also satisfy ``min_codepoint`` and ``max_codepoint``.

    If ``blacklist_categories`` is specified, then any character from those
    categories will not be produced. This is a further restriction,
    characters that match both ``whitelist_categories`` and
    ``blacklist_categories`` will not be produced.

    If ``whitelist_characters`` is specified, then any additional characters
    in that list will also be produced.

    If ``blacklist_characters`` is specified, then any characters in that list
    will be not be produced. Any overlap between ``whitelist_characters`` and
    ``blacklist_characters`` will raise an exception.

    Examples from this strategy shrink towards smaller codepoints.

    """
    if (
        min_codepoint is not None and max_codepoint is not None and
        min_codepoint > max_codepoint
    ):
        raise InvalidArgument(
            'Cannot have min_codepoint=%d > max_codepoint=%d ' % (
                min_codepoint, max_codepoint
            )
        )
    if all((whitelist_characters is not None,
            min_codepoint is None,
            max_codepoint is None,
            whitelist_categories is None,
            blacklist_categories is None,
            )):
        raise InvalidArgument(
            'Cannot have just whitelist_characters=%r alone, '
            'it would have no effect. Perhaps you want sampled_from()' % (
                whitelist_characters,
            )
        )
    if (
        whitelist_characters is not None and
        blacklist_characters is not None and
        set(blacklist_characters).intersection(set(whitelist_characters))
    ):
        raise InvalidArgument(
            'Characters %r are present in both whitelist_characters=%r, and '
            'blacklist_characters=%r' % (
                set(blacklist_characters).intersection(
                    set(whitelist_characters)
                ),
                whitelist_characters, blacklist_characters,
            )
        )

    from hypothesis.searchstrategy.strings import OneCharStringStrategy
    return OneCharStringStrategy(whitelist_categories=whitelist_categories,
                                 blacklist_categories=blacklist_categories,
                                 blacklist_characters=blacklist_characters,
                                 min_codepoint=min_codepoint,
                                 max_codepoint=max_codepoint,
                                 whitelist_characters=whitelist_characters)


@cacheable
@defines_strategy_with_reusable_values
def text(
    alphabet=None,
    min_size=None, average_size=None, max_size=None
):
    """Generates values of a unicode text type (unicode on python 2, str on
    python 3) with values drawn from alphabet, which should be an iterable of
    length one strings or a strategy generating such. If it is None it will
    default to generating the full unicode range. If it is an empty collection
    this will only generate empty strings.

    min_size, max_size and average_size have the usual interpretations.

    Examples from this strategy shrink towards shorter strings, and with the
    characters in the text shrinking as per the alphabet strategy.

    """
    from hypothesis.searchstrategy.strings import StringStrategy
    if alphabet is None:
        char_strategy = characters(blacklist_categories=('Cs',))
    elif not alphabet:
        if (min_size or 0) > 0:
            raise InvalidArgument(
                'Invalid min_size %r > 0 for empty alphabet' % (
                    min_size,
                )
            )
        return just(u'')
    elif isinstance(alphabet, SearchStrategy):
        char_strategy = alphabet
    else:
        char_strategy = sampled_from(list(map(text_type, alphabet)))
    return StringStrategy(lists(
        char_strategy, average_size=average_size, min_size=min_size,
        max_size=max_size
    ))


@cacheable
@defines_strategy
def from_regex(regex):
    """Generates strings that contain a match for the given regex (i.e. ones
    for which :func:`re.search` will return a non-None result).

    ``regex`` may be a pattern or :func:`compiled regex <python:re.compile>`.
    Both byte-strings and unicode strings are supported, and will generate
    examples of the same type.

    You can use regex flags such as :const:`re.IGNORECASE`, :const:`re.DOTALL`
    or :const:`re.UNICODE` to control generation. Flags can be passed either
    in compiled regex or inside the pattern with a ``(?iLmsux)`` group.

    Some regular expressions are only partly supported - the underlying
    strategy checks local matching and relies on filtering to resolve
    context-dependent expressions.  Using too many of these constructs may
    cause health-check errors as too many examples are filtered out. This
    mainly includes (positive or negative) lookahead and lookbehind groups.

    If you want the generated string to match the whole regex you should use
    boundary markers. So e.g. ``r"\\A.\\Z"`` will return a single character
    string, while ``"."`` will return any string, and ``r"\\A.$"`` will return
    a single character optionally followed by a ``"\\n"``.

    Examples from this strategy shrink towards shorter strings and lower
    character values.

    """
    from hypothesis.searchstrategy.regex import regex_strategy
    return regex_strategy(regex)


@cacheable
@defines_strategy_with_reusable_values
def binary(
    min_size=None, average_size=None, max_size=None
):
    """Generates the appropriate binary type (str in python 2, bytes in python
    3).

    min_size, average_size and max_size have the usual interpretations.

    Examples from this strategy shrink towards smaller strings and lower byte
    values.

    """
    from hypothesis.searchstrategy.strings import BinaryStringStrategy, \
        FixedSizeBytes
    check_valid_sizes(min_size, average_size, max_size)
    if min_size == max_size is not None:
        return FixedSizeBytes(min_size)
    return BinaryStringStrategy(
        lists(
            integers(min_value=0, max_value=255),
            average_size=average_size, min_size=min_size, max_size=max_size
        )
    )


@cacheable
@defines_strategy
def randoms():
    """Generates instances of Random (actually a Hypothesis specific
    RandomWithSeed class which displays what it was initially seeded with)

    Examples from this strategy shrink to seeds closer to zero.

    """
    from hypothesis.searchstrategy.misc import RandomStrategy
    return RandomStrategy(integers())


class RandomSeeder(object):

    def __init__(self, seed):
        self.seed = seed

    def __repr__(self):
        return 'random.seed(%r)' % (self.seed,)


@cacheable
@defines_strategy
def random_module():
    """If your code depends on the global random module then you need to use
    this.

    It will explicitly seed the random module at the start of your test
    so that tests are reproducible. The value it passes you is an opaque
    object whose only useful feature is that its repr displays the
    random seed. It is not itself a random number generator. If you want
    a random number generator you should use the randoms() strategy
    which will give you one.

    Examples from these strategy shrink to seeds closer to zero.

    """
    from hypothesis.control import cleanup
    import random

    class RandomModule(SearchStrategy):
        def do_draw(self, data):
            data.can_reproduce_example_from_repr = False
            seed = data.draw(integers())
            state = random.getstate()
            random.seed(seed)
            cleanup(lambda: random.setstate(state))
            return RandomSeeder(seed)

    return shared(RandomModule(), 'hypothesis.strategies.random_module()')


@cacheable
@defines_strategy
def builds(target, *args, **kwargs):
    """Generates values by drawing from ``args`` and ``kwargs`` and passing
    them to ``target`` in the appropriate argument position.

    e.g. ``builds(target, integers(), flag=booleans())`` would draw an
    integer ``i`` and a boolean ``b`` and call ``target(i, flag=b)``.

    If ``target`` has type annotations, they will be used to infer a strategy
    for required arguments that were not passed to builds.  You can also tell
    builds to infer a strategy for an optional argument by passing the special
    value :const:`hypothesis.infer` as a keyword argument to
    builds, instead of a strategy for that argument to ``target``.

    Examples from this strategy shrink by shrinking the argument values to
    the target.

    """
    if infer in args:
        # Avoid an implementation nightmare juggling tuples and worse things
        raise InvalidArgument('infer was passed as a positional argument to '
                              'builds(), but is only allowed as a keyword arg')
    hints = get_type_hints(target.__init__ if isclass(target) else target)
    for kw in [k for k, v in kwargs.items() if v is infer]:
        if kw not in hints:
            raise InvalidArgument(
                'passed %s=infer for %s, but %s has no type annotation'
                % (kw, target.__name__, kw))
        kwargs[kw] = from_type(hints[kw])
    required = required_args(target, args, kwargs)
    for ms in set(hints) & (required or set()):
        kwargs[ms] = from_type(hints[ms])
    return tuples(tuples(*args), fixed_dictionaries(kwargs)).map(
        lambda value: target(*value[0], **value[1])
    )


def delay_error(func):
    """A decorator to make exceptions lazy but success immediate.

    We want from_type to resolve to a strategy immediately if possible,
    for a useful repr and interactive use, but delay errors until a
    value would be drawn to localise them to a particular test.

    """
    @proxies(func)
    def inner(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            error = e

            def lazy_error():
                raise error

            return builds(lazy_error)
    return inner


@cacheable
@delay_error
def from_type(thing):
    """Looks up the appropriate search strategy for the given type.

    ``from_type`` is used internally to fill in missing arguments to
    :func:`~hypothesis.strategies.builds` and can be used interactively
    to explore what strategies are available or to debug type resolution.

    You can use :func:`~hypothesis.strategies.register_type_strategy` to
    handle your custom types, or to globally redefine certain strategies -
    for example excluding NaN from floats, or use timezone-aware instead of
    naive time and datetime strategies.

    The resolution logic may be changed in a future version, but currently
    tries these four options:

    1. If ``thing`` is in the default lookup mapping or user-registered lookup,
       return the corresponding strategy.  The default lookup covers all types
       with Hypothesis strategies, including extras where possible.
    2. If ``thing`` is from the :mod:`python:typing` module, return the
       corresponding strategy (special logic).
    3. If ``thing`` has one or more subtypes in the merged lookup, return
       the union of the strategies for those types that are not subtypes of
       other elements in the lookup.
    4. Finally, if ``thing`` has type annotations for all required arguments,
       it is resolved via :func:`~hypothesis.strategies.builds`.

    """
    from hypothesis.searchstrategy import types
    if not isinstance(thing, type):
        try:
            # At runtime, `typing.NewType` returns an identity function rather
            # than an actual type, but we can check that for a possible match
            # and then read the magic attribute to unwrap it.
            import typing
            if all([
                hasattr(thing, '__supertype__'), hasattr(typing, 'NewType'),
                isfunction(thing), getattr(thing, '__module__', 0) == 'typing'
            ]):
                return from_type(thing.__supertype__)
            # Under Python 3.6, Unions are not instances of `type` - but we
            # still want to resolve them!
            if getattr(thing, '__origin__', None) is typing.Union:
                args = sorted(thing.__args__, key=types.type_sorting_key)
                return one_of([from_type(t) for t in args])
        except ImportError:  # pragma: no cover
            pass
        raise InvalidArgument('thing=%s must be a type' % (thing,))
    # Now that we know `thing` is a type, the first step is to check for an
    # explicitly registered strategy.  This is the best (and hopefully most
    # common) way to resolve a type to a strategy.  Note that the value in the
    # lookup may be a strategy or a function from type -> strategy; and we
    # convert empty results into an explicit error.
    if thing in types._global_type_lookup:
        strategy = types._global_type_lookup[thing]
        if not isinstance(strategy, SearchStrategy):
            strategy = strategy(thing)
        if strategy.is_empty:
            raise ResolutionFailed(
                'Error: %r resolved to an empty strategy' % (thing,))
        return strategy
    # If there's no explicitly registered strategy, maybe a subtype of thing
    # is registered - if so, we can resolve it to the subclass strategy.
    # We'll start by checking if thing is from from the typing module,
    # because there are several special cases that don't play well with
    # subclass and instance checks.
    try:
        import typing
        if isinstance(thing, typing.TypingMeta):
            return types.from_typing_type(thing)
    except ImportError:  # pragma: no cover
        pass
    # If it's not from the typing module, we get all registered types that are
    # a subclass of `thing` and are not themselves a subtype of any other such
    # type.  For example, `Number -> integers() | floats()`, but bools() is
    # not included because bool is a subclass of int as well as Number.
    strategies = [
        v if isinstance(v, SearchStrategy) else v(thing)
        for k, v in types._global_type_lookup.items()
        if issubclass(k, thing) and
        sum(types.try_issubclass(k, T) for T in types._global_type_lookup) == 1
    ]
    empty = ', '.join(repr(s) for s in strategies if s.is_empty)
    if empty:
        raise ResolutionFailed(
            'Could not resolve %s to a strategy; consider using '
            'register_type_strategy' % empty)
    elif strategies:
        return one_of(strategies)
    # If we don't have a strategy registered for this type or any subtype, we
    # may be able to fall back on type annotations.
    # Types created via typing.NamedTuple use a custom attribute instead -
    # but we can still use builds(), if we work out the right kwargs.
    if issubclass(thing, tuple) and hasattr(thing, '_fields') \
            and hasattr(thing, '_field_types'):
        kwargs = {k: from_type(thing._field_types[k]) for k in thing._fields}
        return builds(thing, **kwargs)
    if issubclass(thing, enum.Enum):
        assert len(thing), repr(thing) + ' has no members to sample'
        return sampled_from(thing)
    # If the constructor has an annotation for every required argument,
    # we can (and do) use builds() without supplying additional arguments.
    required = required_args(thing)
    if not required or required.issubset(get_type_hints(thing.__init__)):
        return builds(thing)
    # We have utterly failed, and might as well say so now.
    raise ResolutionFailed('Could not resolve %r to a strategy; consider '
                           'using register_type_strategy' % (thing,))


@cacheable
@defines_strategy_with_reusable_values
def fractions(min_value=None, max_value=None, max_denominator=None):
    """Returns a strategy which generates Fractions.

    If min_value is not None then all generated values are no less than
    min_value.  If max_value is not None then all generated values are no
    greater than max_value.  min_value and max_value may be anything accepted
    by the :class:`~fractions.Fraction` constructor.

    If max_denominator is not None then the denominator of any generated
    values is no greater than max_denominator. Note that max_denominator must
    be None or a positive integer.

    Examples from this strategy shrink towards smaller denominators, then
    closer to zero.

    """
    min_value = try_convert(Fraction, min_value, 'min_value')
    max_value = try_convert(Fraction, max_value, 'max_value')

    check_valid_interval(min_value, max_value, 'min_value', 'max_value')
    check_valid_integer(max_denominator)

    if max_denominator is not None:
        if max_denominator < 1:
            raise InvalidArgument(
                'max_denominator=%r must be >= 1' % max_denominator)

        def fraction_bounds(value):
            """Find the best lower and upper approximation for value."""
            # Adapted from CPython's Fraction.limit_denominator here:
            # https://github.com/python/cpython/blob/3.6/Lib/fractions.py#L219
            if value is None or value.denominator <= max_denominator:
                return value, value
            p0, q0, p1, q1 = 0, 1, 1, 0
            n, d = value.numerator, value.denominator
            while True:
                a = n // d
                q2 = q0 + a * q1
                if q2 > max_denominator:
                    break
                p0, q0, p1, q1 = p1, q1, p0 + a * p1, q2
                n, d = d, n - a * d
            k = (max_denominator - q0) // q1
            low, high = Fraction(p1, q1), Fraction(p0 + k * p1, q0 + k * q1)
            assert low < value < high
            return low, high

        # Take the high approximation for min_value and low for max_value
        bounds = (max_denominator, min_value, max_value)
        _, min_value = fraction_bounds(min_value)
        max_value, _ = fraction_bounds(max_value)

        if None not in (min_value, max_value) and min_value > max_value:
            raise InvalidArgument(
                'There are no fractions with a denominator <= %r between '
                'min_value=%r and max_value=%r' % bounds)

    if min_value is not None and min_value == max_value:
        return just(min_value)

    def dm_func(denom):
        """Take denom, construct numerator strategy, and build fraction."""
        # Four cases of algebra to get integer bounds and scale factor.
        min_num, max_num = None, None
        if max_value is None and min_value is None:
            pass
        elif min_value is None:
            max_num = denom * max_value.numerator
            denom *= max_value.denominator
        elif max_value is None:
            min_num = denom * min_value.numerator
            denom *= min_value.denominator
        else:
            low = min_value.numerator * max_value.denominator
            high = max_value.numerator * min_value.denominator
            scale = min_value.denominator * max_value.denominator
            # After calculating our integer bounds and scale factor, we remove
            # the gcd to avoid drawing more bytes for the example than needed.
            # Note that `div` can be at most equal to `scale`.
            div = gcd(scale, gcd(low, high))
            min_num = denom * low // div
            max_num = denom * high // div
            denom *= scale // div

        return builds(
            Fraction,
            integers(min_value=min_num, max_value=max_num),
            just(denom)
        )

    if max_denominator is None:
        return integers(min_value=1).flatmap(dm_func)

    return integers(1, max_denominator).flatmap(dm_func).map(
        lambda f: f.limit_denominator(max_denominator))


@cacheable
@defines_strategy_with_reusable_values
def decimals(min_value=None, max_value=None,
             allow_nan=None, allow_infinity=None, places=None):
    """Generates instances of :class:`decimals.Decimal`, which may be:

    - A finite rational number, between ``min_value`` and ``max_value``.
    - Not a Number, if ``allow_nan`` is True.  None means "allow NaN, unless
      ``min_value`` and ``max_value`` are not None".
    - Positive or negative infinity, if ``max_value`` and ``min_value``
      respectively are None, and ``allow_infinity`` is not False.  None means
      "allow infinity, unless excluded by the min and max values".

    Note that where floats have one ``NaN`` value, Decimals have four: signed,
    and either *quiet* or *signalling*.  See `the decimal module docs
    <https://docs.python.org/3/library/decimal.html#special-values>`_ for
    more information on special values.

    If ``places`` is not None, all finite values drawn from the strategy will
    have that number of digits after the decimal place.

    Examples from this strategy do not have a well defined shrink order but
    try to maximize human readability when shrinking.

    """
    # Convert min_value and max_value to Decimal values, and validate args
    check_valid_integer(places)
    if places is not None and places < 0:
        raise InvalidArgument('places=%r may not be negative' % places)

    if min_value is not None:
        min_value = try_convert(Decimal, min_value, 'min_value')
        if min_value.is_infinite() and min_value < 0:
            if not (allow_infinity or allow_infinity is None):
                raise InvalidArgument('allow_infinity=%r, but min_value=%r'
                                      % (allow_infinity, min_value))
            min_value = None
        elif not min_value.is_finite():
            # This could be positive infinity, quiet NaN, or signalling NaN
            raise InvalidArgument(u'Invalid min_value=%r' % min_value)
    if max_value is not None:
        max_value = try_convert(Decimal, max_value, 'max_value')
        if max_value.is_infinite() and max_value > 0:
            if not (allow_infinity or allow_infinity is None):
                raise InvalidArgument('allow_infinity=%r, but max_value=%r'
                                      % (allow_infinity, max_value))
            max_value = None
        elif not max_value.is_finite():
            raise InvalidArgument(u'Invalid max_value=%r' % max_value)
    check_valid_interval(min_value, max_value, 'min_value', 'max_value')

    if allow_infinity and (None not in (min_value, max_value)):
        raise InvalidArgument('Cannot allow infinity between finite bounds')
    # Set up a strategy for finite decimals.  Note that both floating and
    # fixed-point decimals require careful handling to remain isolated from
    # any external precision context - in short, we always work out the
    # required precision for lossless operation and use context methods.
    if places is not None:
        # Fixed-point decimals are basically integers with a scale factor
        def ctx(val):
            """Return a context in which this value is lossless."""
            precision = ceil(math.log10(abs(val) or 1)) + places + 1
            return Context(prec=max([precision, 1]))

        def int_to_decimal(val):
            context = ctx(val)
            return context.quantize(context.multiply(val, factor), factor)

        factor = Decimal(10) ** -places
        min_num, max_num = None, None
        if min_value is not None:
            min_num = ceil(ctx(min_value).divide(min_value, factor))
        if max_value is not None:
            max_num = floor(ctx(max_value).divide(max_value, factor))
        if None not in (min_num, max_num) and min_num > max_num:
            raise InvalidArgument(
                'There are no decimals with %d places between min_value=%r '
                'and max_value=%r ' % (places, min_value, max_value))
        strat = integers(min_num, max_num).map(int_to_decimal)
    else:
        # Otherwise, they're like fractions featuring a power of ten
        def fraction_to_decimal(val):
            precision = ceil(math.log10(abs(val.numerator) or 1) +
                             math.log10(val.denominator)) + 1
            return Context(prec=precision or 1).divide(
                Decimal(val.numerator), val.denominator)

        strat = fractions(min_value, max_value).map(fraction_to_decimal)
    # Compose with sampled_from for infinities and NaNs as appropriate
    special = []
    if allow_nan or (allow_nan is None and (None in (min_value, max_value))):
        special.extend(map(Decimal, ('NaN', '-NaN', 'sNaN', '-sNaN')))
    if allow_infinity or (allow_infinity is max_value is None):
        special.append(Decimal('Infinity'))
    if allow_infinity or (allow_infinity is min_value is None):
        special.append(Decimal('-Infinity'))
    return strat | sampled_from(special)


def recursive(base, extend, max_leaves=100):
    """base: A strategy to start from.

    extend: A function which takes a strategy and returns a new strategy.

    max_leaves: The maximum number of elements to be drawn from base on a given
    run.

    This returns a strategy ``S`` such that ``S = extend(base | S)``. That is,
    values may be drawn from base, or from any strategy reachable by mixing
    applications of | and extend.

    An example may clarify: ``recursive(booleans(), lists)`` would return a
    strategy that may return arbitrarily nested and mixed lists of booleans.
    So e.g. ``False``, ``[True]``, ``[False, []]``, and ``[[[[True]]]]`` are
    all valid values to be drawn from that strategy.

    Examples from this strategy shrink by trying to reduce the amount of
    recursion and by shrinking according to the shrinking behaviour of base
    and the result of extend.

    """

    from hypothesis.searchstrategy.recursive import RecursiveStrategy
    return RecursiveStrategy(base, extend, max_leaves)


@defines_strategy
def permutations(values):
    """Return a strategy which returns permutations of the collection
    ``values``.

    Examples from this strategy shrink by trying to become closer to the
    original order of values.

    """
    from hypothesis.internal.conjecture.utils import integer_range

    values = list(values)
    if not values:
        return builds(list)

    class PermutationStrategy(SearchStrategy):

        def do_draw(self, data):
            # Reversed Fisher-Yates shuffle. Reverse order so that it shrinks
            # propertly: This way we prefer things that are lexicographically
            # closer to the identity.
            result = list(values)
            for i in hrange(len(result)):
                j = integer_range(data, i, len(result) - 1)
                result[i], result[j] = result[j], result[i]
            return result
    return PermutationStrategy()


@defines_strategy_with_reusable_values
@renamed_arguments(
    min_datetime='min_value',
    max_datetime='max_value',
)
def datetimes(
    min_value=dt.datetime.min, max_value=dt.datetime.max,
    timezones=none(),
    min_datetime=None, max_datetime=None,
):
    """A strategy for generating datetimes, which may be timezone-aware.

    This strategy works by drawing a naive datetime between ``min_datetime``
    and ``max_datetime``, which must both be naive (have no timezone).

    ``timezones`` must be a strategy that generates tzinfo objects (or None,
    which is valid for naive datetimes).  A value drawn from this strategy
    will be added to a naive datetime, and the resulting tz-aware datetime
    returned.

    .. note::
        tz-aware datetimes from this strategy may be ambiguous or non-existent
        due to daylight savings, leap seconds, timezone and calendar
        adjustments, etc.  This is intentional, as malformed timestamps are a
        common source of bugs.

    :py:func:`hypothesis.extra.timezones` requires the ``pytz`` package, but
    provides all timezones in the Olsen database.  If you also want to allow
    naive datetimes, combine strategies like ``none() | timezones()``.

    Alternatively, you can create a list of the timezones you wish to allow
    (e.g. from the standard library, ``datetutil``, or ``pytz``) and use
    :py:func:`sampled_from`.  Ensure that simple values such as None or UTC
    are at the beginning of the list for proper minimisation.

    Examples from this strategy shrink towards midnight on January 1st 2000.

    """
    # Why must bounds be naive?  In principle, we could also write a strategy
    # that took aware bounds, but the API and validation is much harder.
    # If you want to generate datetimes between two particular momements in
    # time I suggest (a) just filtering out-of-bounds values; (b) if bounds
    # are very close, draw a value and subtract it's UTC offset, handling
    # overflows and nonexistent times; or (c) do something customised to
    # handle datetimes in e.g. a four-microsecond span which is not
    # representable in UTC.  Handling (d), all of the above, leads to a much
    # more complex API for all users and a useful feature for very few.
    from hypothesis.searchstrategy.datetime import DatetimeStrategy

    check_type(dt.datetime, min_value, 'min_value')
    check_type(dt.datetime, max_value, 'max_value')
    if min_value.tzinfo is not None:
        raise InvalidArgument('min_value=%r must not have tzinfo'
                              % (min_value,))
    if max_value.tzinfo is not None:
        raise InvalidArgument('max_value=%r must not have tzinfo'
                              % (max_value,))
    check_valid_interval(min_value, max_value,
                         'min_value', 'max_value')
    if not isinstance(timezones, SearchStrategy):
        raise InvalidArgument(
            'timezones=%r must be a SearchStrategy that can provide tzinfo '
            'for datetimes (either None or dt.tzinfo objects)' % (timezones,))
    return DatetimeStrategy(min_value, max_value, timezones)


@defines_strategy_with_reusable_values
@renamed_arguments(
    min_date='min_value',
    max_date='max_value',
)
def dates(
    min_value=dt.date.min, max_value=dt.date.max,
    min_date=None, max_date=None,
):
    """A strategy for dates between ``min_date`` and ``max_date``.

    Examples from this strategy shrink towards January 1st 2000.

    """
    from hypothesis.searchstrategy.datetime import DateStrategy

    check_type(dt.date, min_value, 'min_value')
    check_type(dt.date, max_value, 'max_value')
    check_valid_interval(min_value, max_value, 'min_value', 'max_value')
    if min_value == max_value:
        return just(min_value)
    return DateStrategy(min_value, max_value)


@defines_strategy_with_reusable_values
@renamed_arguments(
    min_time='min_value',
    max_time='max_value',
)
def times(
    min_value=dt.time.min, max_value=dt.time.max, timezones=none(),
    min_time=None, max_time=None,
):
    """A strategy for times between ``min_time`` and ``max_time``.

    The ``timezones`` argument is handled as for :py:func:`datetimes`.

    Examples from this strategy shrink towards midnight, with the timezone
    component shrinking as for the strategy that provided it.

    """
    check_type(dt.time, min_value, 'min_value')
    check_type(dt.time, max_value, 'max_value')
    if min_value.tzinfo is not None:
        raise InvalidArgument('min_value=%r must not have tzinfo' % min_value)
    if max_value.tzinfo is not None:
        raise InvalidArgument('max_value=%r must not have tzinfo' % max_value)
    check_valid_interval(min_value, max_value, 'min_value', 'max_value')
    day = dt.date(2000, 1, 1)
    return datetimes(min_value=dt.datetime.combine(day, min_value),
                     max_value=dt.datetime.combine(day, max_value),
                     timezones=timezones).map(lambda t: t.timetz())


@defines_strategy_with_reusable_values
@renamed_arguments(
    min_delta='min_value',
    max_delta='max_value',
)
def timedeltas(
    min_value=dt.timedelta.min, max_value=dt.timedelta.max,
    min_delta=None, max_delta=None
):
    """A strategy for timedeltas between ``min_value`` and ``max_value``.

    Examples from this strategy shrink towards zero.

    """
    from hypothesis.searchstrategy.datetime import TimedeltaStrategy

    check_type(dt.timedelta, min_value, 'min_value')
    check_type(dt.timedelta, max_value, 'max_value')
    check_valid_interval(min_value, max_value, 'min_value', 'max_value')
    if min_value == max_value:
        return just(min_value)
    return TimedeltaStrategy(min_value=min_value, max_value=max_value)


@cacheable
def composite(f):
    """Defines a strategy that is built out of potentially arbitrarily many
    other strategies.

    This is intended to be used as a decorator. See
    :ref:`the full documentation for more details <composite-strategies>`
    about how to use this function.

    Examples from this strategy shrink by shrinking the output of each draw
    call.

    """

    from hypothesis.internal.reflection import define_function_signature
    argspec = getfullargspec(f)

    if (
        argspec.defaults is not None and
        len(argspec.defaults) == len(argspec.args)
    ):
        raise InvalidArgument(
            'A default value for initial argument will never be used')
    if len(argspec.args) == 0 and not argspec.varargs:
        raise InvalidArgument(
            'Functions wrapped with composite must take at least one '
            'positional argument.'
        )

    annots = {k: v for k, v in argspec.annotations.items()
              if k in (argspec.args + argspec.kwonlyargs + ['return'])}
    new_argspec = argspec._replace(args=argspec.args[1:], annotations=annots)

    @defines_strategy
    @define_function_signature(f.__name__, f.__doc__, new_argspec)
    def accept(*args, **kwargs):
        class CompositeStrategy(SearchStrategy):

            def do_draw(self, data):
                first_draw = [True]

                def draw(strategy):
                    first_draw[0] = False
                    return data.draw(strategy)

                return f(draw, *args, **kwargs)
        return CompositeStrategy()
    accept.__module__ = f.__module__
    return accept


def shared(base, key=None):
    """Returns a strategy that draws a single shared value per run, drawn from
    base. Any two shared instances with the same key will share the same value,
    otherwise the identity of this strategy will be used. That is:

    >>> s = integers()  # or any other strategy
    >>> x = shared(s)
    >>> y = shared(s)

    In the above x and y may draw different (or potentially the same) values.
    In the following they will always draw the same:

    >>> x = shared(s, key="hi")
    >>> y = shared(s, key="hi")

    Examples from this strategy shrink as per their base strategy.

    """
    from hypothesis.searchstrategy.shared import SharedStrategy
    return SharedStrategy(base, key)


@defines_strategy
def choices():
    """Strategy that generates a function that behaves like random.choice.

    Will note choices made for reproducibility.

    .. deprecated:: 3.15.0

        Use :func:`data() <hypothesis.strategies.data>` with
        :func:`sampled_from() <hypothesis.strategies.sampled_from>` instead.

    Examples from this strategy shrink by making each choice function return
    an earlier value in the sequence passed to it.

    """
    from hypothesis.control import note, current_build_context
    from hypothesis.internal.conjecture.utils import choice, check_sample

    note_deprecation(
        'choices() has been deprecated. Use the data() strategy instead and '
        'replace its usage with data.draw(sampled_from(elements))) calls.'
    )

    class Chooser(object):

        def __init__(self, build_context, data):
            self.build_context = build_context
            self.data = data
            self.choice_count = 0

        def __call__(self, values):
            if not values:
                raise IndexError('Cannot choose from empty sequence')
            result = choice(self.data, check_sample(values))
            with self.build_context.local():
                self.choice_count += 1
                note('Choice #%d: %r' % (self.choice_count, result))
            return result

        def __repr__(self):
            return 'choice'

    class ChoiceStrategy(SearchStrategy):
        supports_find = False

        def do_draw(self, data):
            data.can_reproduce_example_from_repr = False
            return Chooser(current_build_context(), data)

    return shared(
        ChoiceStrategy(),
        key='hypothesis.strategies.chooser.choice_function'
    )


@cacheable
@defines_strategy_with_reusable_values
def uuids(version=None):
    """Returns a strategy that generates :class:`UUIDs <uuid.UUID>`.

    If the optional version argument is given, value is passed through
    to :class:`~python:uuid.UUID` and only UUIDs of that version will
    be generated.

    All returned values from this will be unique, so e.g. if you do
    ``lists(uuids())`` the resulting list will never contain duplicates.

    Examples from this strategy don't have any meaningful shrink order.

    """
    from uuid import UUID
    if version not in (None, 1, 2, 3, 4, 5):
        raise InvalidArgument((
            'version=%r, but version must be in (None, 1, 2, 3, 4, 5) '
            'to pass to the uuid.UUID constructor.') % (version, )
        )
    return shared(randoms(), key='hypothesis.strategies.uuids.generator').map(
        lambda r: UUID(version=version, int=r.getrandbits(128))
    )


@defines_strategy_with_reusable_values
def runner(default=not_set):
    """A strategy for getting "the current test runner", whatever that may be.
    The exact meaning depends on the entry point, but it will usually be the
    associated 'self' value for it.

    If there is no current test runner and a default is provided, return
    that default. If no default is provided, raises InvalidArgument.

    Examples from this strategy do not shrink (because there is only one).

    """
    class RunnerStrategy(SearchStrategy):

        def do_draw(self, data):
            runner = getattr(data, 'hypothesis_runner', not_set)
            if runner is not_set:
                if default is not_set:
                    raise InvalidArgument(
                        'Cannot use runner() strategy with no '
                        'associated runner or explicit default.'
                    )
                else:
                    return default
            else:
                return runner
    return RunnerStrategy()


@cacheable
def data():
    """This isn't really a normal strategy, but instead gives you an object
    which can be used to draw data interactively from other strategies.

    It can only be used within :func:`@given <hypothesis.given>`, not
    :func:`find() <hypothesis.find>`. This is because the lifetime
    of the object cannot outlast the test body.

    See :ref:`the rest of the documentation <interactive-draw>` for more
    complete information.

    Examples from this strategy do not shrink (because there is only one),
    but the result of calls to each draw() call shrink as they normally would.

    """
    from hypothesis.control import note

    class DataObject(object):

        def __init__(self, data):
            self.count = 0
            self.data = data

        def __repr__(self):
            return 'data(...)'

        def draw(self, strategy, label=None):
            result = self.data.draw(strategy)
            self.count += 1
            if label is not None:
                note('Draw %d (%s): %r' % (self.count, label, result))
            else:
                note('Draw %d: %r' % (self.count, result))
            return result

    class DataStrategy(SearchStrategy):
        supports_find = False

        def do_draw(self, data):
            data.can_reproduce_example_from_repr = False

            if not hasattr(data, 'hypothesis_shared_data_strategy'):
                data.hypothesis_shared_data_strategy = DataObject(data)
            return data.hypothesis_shared_data_strategy

        def __repr__(self):
            return 'data()'

        def map(self, f):
            self.__not_a_first_class_strategy('map')

        def filter(self, f):
            self.__not_a_first_class_strategy('filter')

        def flatmap(self, f):
            self.__not_a_first_class_strategy('flatmap')

        def example(self):
            self.__not_a_first_class_strategy('example')

        def __not_a_first_class_strategy(self, name):
            raise InvalidArgument((
                'Cannot call %s on a DataStrategy. You should probably be '
                "using @composite for whatever it is you're trying to do."
            ) % (name,))
    return DataStrategy()


def register_type_strategy(custom_type, strategy):
    """Add an entry to the global type-to-strategy lookup.

    This lookup is used in :func:`~hypothesis.strategies.builds` and
    :func:`@given <hypothesis.given>`.

    :func:`~hypothesis.strategies.builds` will be used automatically for
    classes with type annotations on ``__init__`` , so you only need to
    register a strategy if one or more arguments need to be more tightly
    defined than their type-based default, or if you want to supply a strategy
    for an argument with a default value.

    ``strategy`` may be a search strategy, or a function that takes a type and
    returns a strategy (useful for generic types).

    """
    from hypothesis.searchstrategy import types
    if not isinstance(custom_type, type):
        raise InvalidArgument('custom_type=%r must be a type')
    elif not (isinstance(strategy, SearchStrategy) or callable(strategy)):
        raise InvalidArgument(
            'strategy=%r must be a SearchStrategy, or a function that takes '
            'a generic type and returns a specific SearchStrategy')
    elif isinstance(strategy, SearchStrategy) and strategy.is_empty:
        raise InvalidArgument('strategy=%r must not be empty')
    types._global_type_lookup[custom_type] = strategy
    from_type.__clear_cache()


@cacheable
def deferred(definition):
    """A deferred strategy allows you to write a strategy that references other
    strategies that have not yet been defined. This allows for the easy
    definition of recursive and mutually recursive strategies.

    The definition argument should be a zero-argument function that returns a
    strategy. It will be evaluated the first time the strategy is used to
    produce an example.

    Example usage:

    >>> import hypothesis.strategies as st
    >>> x = st.deferred(lambda: st.booleans() | st.tuples(x, x))
    >>> x.example()
    (((False, (True, True)), (False, True)), (True, True))
    >>> x.example()
    (True, True)

    Mutual recursion also works fine:

    >>> a = st.deferred(lambda: st.booleans() | b)
    >>> b = st.deferred(lambda: st.tuples(a, a))
    >>> a.example()
    (True, (True, False))
    >>> b.example()
    (False, True)

    Examples from this strategy shrink as they normally would from the strategy
    returned by the definition.

    """
    from hypothesis.searchstrategy.deferred import DeferredStrategy
    return DeferredStrategy(definition)


assert _strategies.issubset(set(__all__)), _strategies - set(__all__)